llvm-profdata.cpp 97.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
//===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// llvm-profdata merges .profdata files.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/ProfileData/SampleProfWriter.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;

enum ProfileFormat {
  PF_None = 0,
  PF_Text,
  PF_Compact_Binary,
  PF_Ext_Binary,
  PF_GCC,
  PF_Binary
};

static void warn(Twine Message, std::string Whence = "",
                 std::string Hint = "") {
  WithColor::warning();
  if (!Whence.empty())
    errs() << Whence << ": ";
  errs() << Message << "\n";
  if (!Hint.empty())
    WithColor::note() << Hint << "\n";
}

static void exitWithError(Twine Message, std::string Whence = "",
                          std::string Hint = "") {
  WithColor::error();
  if (!Whence.empty())
    errs() << Whence << ": ";
  errs() << Message << "\n";
  if (!Hint.empty())
    WithColor::note() << Hint << "\n";
  ::exit(1);
}

static void exitWithError(Error E, StringRef Whence = "") {
  if (E.isA<InstrProfError>()) {
    handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
      instrprof_error instrError = IPE.get();
      StringRef Hint = "";
      if (instrError == instrprof_error::unrecognized_format) {
        // Hint for common error of forgetting --sample for sample profiles.
        Hint = "Perhaps you forgot to use the --sample option?";
      }
      exitWithError(IPE.message(), std::string(Whence), std::string(Hint));
    });
  }

  exitWithError(toString(std::move(E)), std::string(Whence));
}

static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
  exitWithError(EC.message(), std::string(Whence));
}

namespace {
enum ProfileKinds { instr, sample };
enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid };
}

static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
                                 StringRef Whence = "") {
  if (FailMode == failIfAnyAreInvalid)
    exitWithErrorCode(EC, Whence);
  else
    warn(EC.message(), std::string(Whence));
}

static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
                                   StringRef WhenceFunction = "",
                                   bool ShowHint = true) {
  if (!WhenceFile.empty())
    errs() << WhenceFile << ": ";
  if (!WhenceFunction.empty())
    errs() << WhenceFunction << ": ";

  auto IPE = instrprof_error::success;
  E = handleErrors(std::move(E),
                   [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
                     IPE = E->get();
                     return Error(std::move(E));
                   });
  errs() << toString(std::move(E)) << "\n";

  if (ShowHint) {
    StringRef Hint = "";
    if (IPE != instrprof_error::success) {
      switch (IPE) {
      case instrprof_error::hash_mismatch:
      case instrprof_error::count_mismatch:
      case instrprof_error::value_site_count_mismatch:
        Hint = "Make sure that all profile data to be merged is generated "
               "from the same binary.";
        break;
      default:
        break;
      }
    }

    if (!Hint.empty())
      errs() << Hint << "\n";
  }
}

namespace {
/// A remapper from original symbol names to new symbol names based on a file
/// containing a list of mappings from old name to new name.
class SymbolRemapper {
  std::unique_ptr<MemoryBuffer> File;
  DenseMap<StringRef, StringRef> RemappingTable;

public:
  /// Build a SymbolRemapper from a file containing a list of old/new symbols.
  static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
    auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
    if (!BufOrError)
      exitWithErrorCode(BufOrError.getError(), InputFile);

    auto Remapper = std::make_unique<SymbolRemapper>();
    Remapper->File = std::move(BufOrError.get());

    for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
         !LineIt.is_at_eof(); ++LineIt) {
      std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
      if (Parts.first.empty() || Parts.second.empty() ||
          Parts.second.count(' ')) {
        exitWithError("unexpected line in remapping file",
                      (InputFile + ":" + Twine(LineIt.line_number())).str(),
                      "expected 'old_symbol new_symbol'");
      }
      Remapper->RemappingTable.insert(Parts);
    }
    return Remapper;
  }

  /// Attempt to map the given old symbol into a new symbol.
  ///
  /// \return The new symbol, or \p Name if no such symbol was found.
  StringRef operator()(StringRef Name) {
    StringRef New = RemappingTable.lookup(Name);
    return New.empty() ? Name : New;
  }
};
}

struct WeightedFile {
  std::string Filename;
  uint64_t Weight;
};
typedef SmallVector<WeightedFile, 5> WeightedFileVector;

/// Keep track of merged data and reported errors.
struct WriterContext {
  std::mutex Lock;
  InstrProfWriter Writer;
  std::vector<std::pair<Error, std::string>> Errors;
  std::mutex &ErrLock;
  SmallSet<instrprof_error, 4> &WriterErrorCodes;

  WriterContext(bool IsSparse, std::mutex &ErrLock,
                SmallSet<instrprof_error, 4> &WriterErrorCodes)
      : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock),
        WriterErrorCodes(WriterErrorCodes) {}
};

/// Computer the overlap b/w profile BaseFilename and TestFileName,
/// and store the program level result to Overlap.
static void overlapInput(const std::string &BaseFilename,
                         const std::string &TestFilename, WriterContext *WC,
                         OverlapStats &Overlap,
                         const OverlapFuncFilters &FuncFilter,
                         raw_fd_ostream &OS, bool IsCS) {
  auto ReaderOrErr = InstrProfReader::create(TestFilename);
  if (Error E = ReaderOrErr.takeError()) {
    // Skip the empty profiles by returning sliently.
    instrprof_error IPE = InstrProfError::take(std::move(E));
    if (IPE != instrprof_error::empty_raw_profile)
      WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename);
    return;
  }

  auto Reader = std::move(ReaderOrErr.get());
  for (auto &I : *Reader) {
    OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
    FuncOverlap.setFuncInfo(I.Name, I.Hash);

    WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
    FuncOverlap.dump(OS);
  }
}

/// Load an input into a writer context.
static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
                      WriterContext *WC) {
  std::unique_lock<std::mutex> CtxGuard{WC->Lock};

  // Copy the filename, because llvm::ThreadPool copied the input "const
  // WeightedFile &" by value, making a reference to the filename within it
  // invalid outside of this packaged task.
  std::string Filename = Input.Filename;

  auto ReaderOrErr = InstrProfReader::create(Input.Filename);
  if (Error E = ReaderOrErr.takeError()) {
    // Skip the empty profiles by returning sliently.
    instrprof_error IPE = InstrProfError::take(std::move(E));
    if (IPE != instrprof_error::empty_raw_profile)
      WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
    return;
  }

  auto Reader = std::move(ReaderOrErr.get());
  bool IsIRProfile = Reader->isIRLevelProfile();
  bool HasCSIRProfile = Reader->hasCSIRLevelProfile();
  if (WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) {
    WC->Errors.emplace_back(
        make_error<StringError>(
            "Merge IR generated profile with Clang generated profile.",
            std::error_code()),
        Filename);
    return;
  }
  WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled());

  for (auto &I : *Reader) {
    if (Remapper)
      I.Name = (*Remapper)(I.Name);
    const StringRef FuncName = I.Name;
    bool Reported = false;
    WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
      if (Reported) {
        consumeError(std::move(E));
        return;
      }
      Reported = true;
      // Only show hint the first time an error occurs.
      instrprof_error IPE = InstrProfError::take(std::move(E));
      std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
      bool firstTime = WC->WriterErrorCodes.insert(IPE).second;
      handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename,
                             FuncName, firstTime);
    });
  }
  if (Reader->hasError())
    if (Error E = Reader->getError())
      WC->Errors.emplace_back(std::move(E), Filename);
}

/// Merge the \p Src writer context into \p Dst.
static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
  for (auto &ErrorPair : Src->Errors)
    Dst->Errors.push_back(std::move(ErrorPair));
  Src->Errors.clear();

  Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
    instrprof_error IPE = InstrProfError::take(std::move(E));
    std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
    bool firstTime = Dst->WriterErrorCodes.insert(IPE).second;
    if (firstTime)
      warn(toString(make_error<InstrProfError>(IPE)));
  });
}

static void writeInstrProfile(StringRef OutputFilename,
                              ProfileFormat OutputFormat,
                              InstrProfWriter &Writer) {
  std::error_code EC;
  raw_fd_ostream Output(OutputFilename.data(), EC, sys::fs::OF_None);
  if (EC)
    exitWithErrorCode(EC, OutputFilename);

  if (OutputFormat == PF_Text) {
    if (Error E = Writer.writeText(Output))
      exitWithError(std::move(E));
  } else {
    Writer.write(Output);
  }
}

static void mergeInstrProfile(const WeightedFileVector &Inputs,
                              SymbolRemapper *Remapper,
                              StringRef OutputFilename,
                              ProfileFormat OutputFormat, bool OutputSparse,
                              unsigned NumThreads, FailureMode FailMode) {
  if (OutputFilename.compare("-") == 0)
    exitWithError("Cannot write indexed profdata format to stdout.");

  if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary &&
      OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text)
    exitWithError("Unknown format is specified.");

  std::mutex ErrorLock;
  SmallSet<instrprof_error, 4> WriterErrorCodes;

  // If NumThreads is not specified, auto-detect a good default.
  if (NumThreads == 0)
    NumThreads = std::min(hardware_concurrency().compute_thread_count(),
                          unsigned((Inputs.size() + 1) / 2));
  // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails
  // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't
  // merged, thus the emitted file ends up with a PF_Unknown kind.

  // Initialize the writer contexts.
  SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
  for (unsigned I = 0; I < NumThreads; ++I)
    Contexts.emplace_back(std::make_unique<WriterContext>(
        OutputSparse, ErrorLock, WriterErrorCodes));

  if (NumThreads == 1) {
    for (const auto &Input : Inputs)
      loadInput(Input, Remapper, Contexts[0].get());
  } else {
    ThreadPool Pool(hardware_concurrency(NumThreads));

    // Load the inputs in parallel (N/NumThreads serial steps).
    unsigned Ctx = 0;
    for (const auto &Input : Inputs) {
      Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get());
      Ctx = (Ctx + 1) % NumThreads;
    }
    Pool.wait();

    // Merge the writer contexts together (~ lg(NumThreads) serial steps).
    unsigned Mid = Contexts.size() / 2;
    unsigned End = Contexts.size();
    assert(Mid > 0 && "Expected more than one context");
    do {
      for (unsigned I = 0; I < Mid; ++I)
        Pool.async(mergeWriterContexts, Contexts[I].get(),
                   Contexts[I + Mid].get());
      Pool.wait();
      if (End & 1) {
        Pool.async(mergeWriterContexts, Contexts[0].get(),
                   Contexts[End - 1].get());
        Pool.wait();
      }
      End = Mid;
      Mid /= 2;
    } while (Mid > 0);
  }

  // Handle deferred errors encountered during merging. If the number of errors
  // is equal to the number of inputs the merge failed.
  unsigned NumErrors = 0;
  for (std::unique_ptr<WriterContext> &WC : Contexts) {
    for (auto &ErrorPair : WC->Errors) {
      ++NumErrors;
      warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
    }
  }
  if (NumErrors == Inputs.size() ||
      (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
    exitWithError("No profiles could be merged.");

  writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
}

/// The profile entry for a function in instrumentation profile.
struct InstrProfileEntry {
  uint64_t MaxCount = 0;
  float ZeroCounterRatio = 0.0;
  InstrProfRecord *ProfRecord;
  InstrProfileEntry(InstrProfRecord *Record);
  InstrProfileEntry() = default;
};

InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
  ProfRecord = Record;
  uint64_t CntNum = Record->Counts.size();
  uint64_t ZeroCntNum = 0;
  for (size_t I = 0; I < CntNum; ++I) {
    MaxCount = std::max(MaxCount, Record->Counts[I]);
    ZeroCntNum += !Record->Counts[I];
  }
  ZeroCounterRatio = (float)ZeroCntNum / CntNum;
}

/// Either set all the counters in the instr profile entry \p IFE to -1
/// in order to drop the profile or scale up the counters in \p IFP to
/// be above hot threshold. We use the ratio of zero counters in the
/// profile of a function to decide the profile is helpful or harmful
/// for performance, and to choose whether to scale up or drop it.
static void updateInstrProfileEntry(InstrProfileEntry &IFE,
                                    uint64_t HotInstrThreshold,
                                    float ZeroCounterThreshold) {
  InstrProfRecord *ProfRecord = IFE.ProfRecord;
  if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
    // If all or most of the counters of the function are zero, the
    // profile is unaccountable and shuld be dropped. Reset all the
    // counters to be -1 and PGO profile-use will drop the profile.
    // All counters being -1 also implies that the function is hot so
    // PGO profile-use will also set the entry count metadata to be
    // above hot threshold.
    for (size_t I = 0; I < ProfRecord->Counts.size(); ++I)
      ProfRecord->Counts[I] = -1;
    return;
  }

  // Scale up the MaxCount to be multiple times above hot threshold.
  const unsigned MultiplyFactor = 3;
  uint64_t Numerator = HotInstrThreshold * MultiplyFactor;
  uint64_t Denominator = IFE.MaxCount;
  ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
    warn(toString(make_error<InstrProfError>(E)));
  });
}

const uint64_t ColdPercentileIdx = 15;
const uint64_t HotPercentileIdx = 11;

/// Adjust the instr profile in \p WC based on the sample profile in
/// \p Reader.
static void
adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
                   std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
                   unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
                   unsigned InstrProfColdThreshold) {
  // Function to its entry in instr profile.
  StringMap<InstrProfileEntry> InstrProfileMap;
  InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
  for (auto &PD : WC->Writer.getProfileData()) {
    // Populate IPBuilder.
    for (const auto &PDV : PD.getValue()) {
      InstrProfRecord Record = PDV.second;
      IPBuilder.addRecord(Record);
    }

    // If a function has multiple entries in instr profile, skip it.
    if (PD.getValue().size() != 1)
      continue;

    // Initialize InstrProfileMap.
    InstrProfRecord *R = &PD.getValue().begin()->second;
    InstrProfileMap[PD.getKey()] = InstrProfileEntry(R);
  }

  ProfileSummary InstrPS = *IPBuilder.getSummary();
  ProfileSummary SamplePS = Reader->getSummary();

  // Compute cold thresholds for instr profile and sample profile.
  uint64_t ColdSampleThreshold =
      ProfileSummaryBuilder::getEntryForPercentile(
          SamplePS.getDetailedSummary(),
          ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
          .MinCount;
  uint64_t HotInstrThreshold =
      ProfileSummaryBuilder::getEntryForPercentile(
          InstrPS.getDetailedSummary(),
          ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
          .MinCount;
  uint64_t ColdInstrThreshold =
      InstrProfColdThreshold
          ? InstrProfColdThreshold
          : ProfileSummaryBuilder::getEntryForPercentile(
                InstrPS.getDetailedSummary(),
                ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
                .MinCount;

  // Find hot/warm functions in sample profile which is cold in instr profile
  // and adjust the profiles of those functions in the instr profile.
  for (const auto &PD : Reader->getProfiles()) {
    StringRef FName = PD.getKey();
    const sampleprof::FunctionSamples &FS = PD.getValue();
    auto It = InstrProfileMap.find(FName);
    if (FS.getHeadSamples() > ColdSampleThreshold &&
        It != InstrProfileMap.end() &&
        It->second.MaxCount <= ColdInstrThreshold &&
        FS.getBodySamples().size() >= SupplMinSizeThreshold) {
      updateInstrProfileEntry(It->second, HotInstrThreshold,
                              ZeroCounterThreshold);
    }
  }
}

/// The main function to supplement instr profile with sample profile.
/// \Inputs contains the instr profile. \p SampleFilename specifies the
/// sample profile. \p OutputFilename specifies the output profile name.
/// \p OutputFormat specifies the output profile format. \p OutputSparse
/// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
/// specifies the minimal size for the functions whose profile will be
/// adjusted. \p ZeroCounterThreshold is the threshold to check whether
/// a function contains too many zero counters and whether its profile
/// should be dropped. \p InstrProfColdThreshold is the user specified
/// cold threshold which will override the cold threshold got from the
/// instr profile summary.
static void supplementInstrProfile(
    const WeightedFileVector &Inputs, StringRef SampleFilename,
    StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse,
    unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
    unsigned InstrProfColdThreshold) {
  if (OutputFilename.compare("-") == 0)
    exitWithError("Cannot write indexed profdata format to stdout.");
  if (Inputs.size() != 1)
    exitWithError("Expect one input to be an instr profile.");
  if (Inputs[0].Weight != 1)
    exitWithError("Expect instr profile doesn't have weight.");

  StringRef InstrFilename = Inputs[0].Filename;

  // Read sample profile.
  LLVMContext Context;
  auto ReaderOrErr =
      sampleprof::SampleProfileReader::create(SampleFilename.str(), Context);
  if (std::error_code EC = ReaderOrErr.getError())
    exitWithErrorCode(EC, SampleFilename);
  auto Reader = std::move(ReaderOrErr.get());
  if (std::error_code EC = Reader->read())
    exitWithErrorCode(EC, SampleFilename);

  // Read instr profile.
  std::mutex ErrorLock;
  SmallSet<instrprof_error, 4> WriterErrorCodes;
  auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
                                            WriterErrorCodes);
  loadInput(Inputs[0], nullptr, WC.get());
  if (WC->Errors.size() > 0)
    exitWithError(std::move(WC->Errors[0].first), InstrFilename);

  adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
                     InstrProfColdThreshold);
  writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
}

/// Make a copy of the given function samples with all symbol names remapped
/// by the provided symbol remapper.
static sampleprof::FunctionSamples
remapSamples(const sampleprof::FunctionSamples &Samples,
             SymbolRemapper &Remapper, sampleprof_error &Error) {
  sampleprof::FunctionSamples Result;
  Result.setName(Remapper(Samples.getName()));
  Result.addTotalSamples(Samples.getTotalSamples());
  Result.addHeadSamples(Samples.getHeadSamples());
  for (const auto &BodySample : Samples.getBodySamples()) {
    Result.addBodySamples(BodySample.first.LineOffset,
                          BodySample.first.Discriminator,
                          BodySample.second.getSamples());
    for (const auto &Target : BodySample.second.getCallTargets()) {
      Result.addCalledTargetSamples(BodySample.first.LineOffset,
                                    BodySample.first.Discriminator,
                                    Remapper(Target.first()), Target.second);
    }
  }
  for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
    sampleprof::FunctionSamplesMap &Target =
        Result.functionSamplesAt(CallsiteSamples.first);
    for (const auto &Callsite : CallsiteSamples.second) {
      sampleprof::FunctionSamples Remapped =
          remapSamples(Callsite.second, Remapper, Error);
      MergeResult(Error,
                  Target[std::string(Remapped.getName())].merge(Remapped));
    }
  }
  return Result;
}

static sampleprof::SampleProfileFormat FormatMap[] = {
    sampleprof::SPF_None,
    sampleprof::SPF_Text,
    sampleprof::SPF_Compact_Binary,
    sampleprof::SPF_Ext_Binary,
    sampleprof::SPF_GCC,
    sampleprof::SPF_Binary};

static std::unique_ptr<MemoryBuffer>
getInputFileBuf(const StringRef &InputFile) {
  if (InputFile == "")
    return {};

  auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
  if (!BufOrError)
    exitWithErrorCode(BufOrError.getError(), InputFile);

  return std::move(*BufOrError);
}

static void populateProfileSymbolList(MemoryBuffer *Buffer,
                                      sampleprof::ProfileSymbolList &PSL) {
  if (!Buffer)
    return;

  SmallVector<StringRef, 32> SymbolVec;
  StringRef Data = Buffer->getBuffer();
  Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);

  for (StringRef symbol : SymbolVec)
    PSL.add(symbol);
}

static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
                                  ProfileFormat OutputFormat,
                                  MemoryBuffer *Buffer,
                                  sampleprof::ProfileSymbolList &WriterList,
                                  bool CompressAllSections, bool UseMD5,
                                  bool GenPartialProfile) {
  populateProfileSymbolList(Buffer, WriterList);
  if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
    warn("Profile Symbol list is not empty but the output format is not "
         "ExtBinary format. The list will be lost in the output. ");

  Writer.setProfileSymbolList(&WriterList);

  if (CompressAllSections) {
    if (OutputFormat != PF_Ext_Binary)
      warn("-compress-all-section is ignored. Specify -extbinary to enable it");
    else
      Writer.setToCompressAllSections();
  }
  if (UseMD5) {
    if (OutputFormat != PF_Ext_Binary)
      warn("-use-md5 is ignored. Specify -extbinary to enable it");
    else
      Writer.setUseMD5();
  }
  if (GenPartialProfile) {
    if (OutputFormat != PF_Ext_Binary)
      warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
    else
      Writer.setPartialProfile();
  }
}

static void
mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper,
                   StringRef OutputFilename, ProfileFormat OutputFormat,
                   StringRef ProfileSymbolListFile, bool CompressAllSections,
                   bool UseMD5, bool GenPartialProfile, FailureMode FailMode) {
  using namespace sampleprof;
  StringMap<FunctionSamples> ProfileMap;
  SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
  LLVMContext Context;
  sampleprof::ProfileSymbolList WriterList;
  for (const auto &Input : Inputs) {
    auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context);
    if (std::error_code EC = ReaderOrErr.getError()) {
      warnOrExitGivenError(FailMode, EC, Input.Filename);
      continue;
    }

    // We need to keep the readers around until after all the files are
    // read so that we do not lose the function names stored in each
    // reader's memory. The function names are needed to write out the
    // merged profile map.
    Readers.push_back(std::move(ReaderOrErr.get()));
    const auto Reader = Readers.back().get();
    if (std::error_code EC = Reader->read()) {
      warnOrExitGivenError(FailMode, EC, Input.Filename);
      Readers.pop_back();
      continue;
    }

    StringMap<FunctionSamples> &Profiles = Reader->getProfiles();
    for (StringMap<FunctionSamples>::iterator I = Profiles.begin(),
                                              E = Profiles.end();
         I != E; ++I) {
      sampleprof_error Result = sampleprof_error::success;
      FunctionSamples Remapped =
          Remapper ? remapSamples(I->second, *Remapper, Result)
                   : FunctionSamples();
      FunctionSamples &Samples = Remapper ? Remapped : I->second;
      StringRef FName = Samples.getName();
      MergeResult(Result, ProfileMap[FName].merge(Samples, Input.Weight));
      if (Result != sampleprof_error::success) {
        std::error_code EC = make_error_code(Result);
        handleMergeWriterError(errorCodeToError(EC), Input.Filename, FName);
      }
    }

    std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
        Reader->getProfileSymbolList();
    if (ReaderList)
      WriterList.merge(*ReaderList);
  }
  auto WriterOrErr =
      SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
  if (std::error_code EC = WriterOrErr.getError())
    exitWithErrorCode(EC, OutputFilename);

  auto Writer = std::move(WriterOrErr.get());
  // WriterList will have StringRef refering to string in Buffer.
  // Make sure Buffer lives as long as WriterList.
  auto Buffer = getInputFileBuf(ProfileSymbolListFile);
  handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
                        CompressAllSections, UseMD5, GenPartialProfile);
  Writer->write(ProfileMap);
}

static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
  StringRef WeightStr, FileName;
  std::tie(WeightStr, FileName) = WeightedFilename.split(',');

  uint64_t Weight;
  if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
    exitWithError("Input weight must be a positive integer.");

  return {std::string(FileName), Weight};
}

static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
  StringRef Filename = WF.Filename;
  uint64_t Weight = WF.Weight;

  // If it's STDIN just pass it on.
  if (Filename == "-") {
    WNI.push_back({std::string(Filename), Weight});
    return;
  }

  llvm::sys::fs::file_status Status;
  llvm::sys::fs::status(Filename, Status);
  if (!llvm::sys::fs::exists(Status))
    exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
                      Filename);
  // If it's a source file, collect it.
  if (llvm::sys::fs::is_regular_file(Status)) {
    WNI.push_back({std::string(Filename), Weight});
    return;
  }

  if (llvm::sys::fs::is_directory(Status)) {
    std::error_code EC;
    for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
         F != E && !EC; F.increment(EC)) {
      if (llvm::sys::fs::is_regular_file(F->path())) {
        addWeightedInput(WNI, {F->path(), Weight});
      }
    }
    if (EC)
      exitWithErrorCode(EC, Filename);
  }
}

static void parseInputFilenamesFile(MemoryBuffer *Buffer,
                                    WeightedFileVector &WFV) {
  if (!Buffer)
    return;

  SmallVector<StringRef, 8> Entries;
  StringRef Data = Buffer->getBuffer();
  Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
  for (const StringRef &FileWeightEntry : Entries) {
    StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
    // Skip comments.
    if (SanitizedEntry.startswith("#"))
      continue;
    // If there's no comma, it's an unweighted profile.
    else if (SanitizedEntry.find(',') == StringRef::npos)
      addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
    else
      addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
  }
}

static int merge_main(int argc, const char *argv[]) {
  cl::list<std::string> InputFilenames(cl::Positional,
                                       cl::desc("<filename...>"));
  cl::list<std::string> WeightedInputFilenames("weighted-input",
                                               cl::desc("<weight>,<filename>"));
  cl::opt<std::string> InputFilenamesFile(
      "input-files", cl::init(""),
      cl::desc("Path to file containing newline-separated "
               "[<weight>,]<filename> entries"));
  cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
                                cl::aliasopt(InputFilenamesFile));
  cl::opt<bool> DumpInputFileList(
      "dump-input-file-list", cl::init(false), cl::Hidden,
      cl::desc("Dump the list of input files and their weights, then exit"));
  cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
                                     cl::desc("Symbol remapping file"));
  cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
                           cl::aliasopt(RemappingFile));
  cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
                                      cl::init("-"), cl::Required,
                                      cl::desc("Output file"));
  cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
                            cl::aliasopt(OutputFilename));
  cl::opt<ProfileKinds> ProfileKind(
      cl::desc("Profile kind:"), cl::init(instr),
      cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
                 clEnumVal(sample, "Sample profile")));
  cl::opt<ProfileFormat> OutputFormat(
      cl::desc("Format of output profile"), cl::init(PF_Binary),
      cl::values(
          clEnumValN(PF_Binary, "binary", "Binary encoding (default)"),
          clEnumValN(PF_Compact_Binary, "compbinary",
                     "Compact binary encoding"),
          clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"),
          clEnumValN(PF_Text, "text", "Text encoding"),
          clEnumValN(PF_GCC, "gcc",
                     "GCC encoding (only meaningful for -sample)")));
  cl::opt<FailureMode> FailureMode(
      "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"),
      cl::values(clEnumValN(failIfAnyAreInvalid, "any",
                            "Fail if any profile is invalid."),
                 clEnumValN(failIfAllAreInvalid, "all",
                            "Fail only if all profiles are invalid.")));
  cl::opt<bool> OutputSparse("sparse", cl::init(false),
      cl::desc("Generate a sparse profile (only meaningful for -instr)"));
  cl::opt<unsigned> NumThreads(
      "num-threads", cl::init(0),
      cl::desc("Number of merge threads to use (default: autodetect)"));
  cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
                        cl::aliasopt(NumThreads));
  cl::opt<std::string> ProfileSymbolListFile(
      "prof-sym-list", cl::init(""),
      cl::desc("Path to file containing the list of function symbols "
               "used to populate profile symbol list"));
  cl::opt<bool> CompressAllSections(
      "compress-all-sections", cl::init(false), cl::Hidden,
      cl::desc("Compress all sections when writing the profile (only "
               "meaningful for -extbinary)"));
  cl::opt<bool> UseMD5(
      "use-md5", cl::init(false), cl::Hidden,
      cl::desc("Choose to use MD5 to represent string in name table (only "
               "meaningful for -extbinary)"));
  cl::opt<bool> GenPartialProfile(
      "gen-partial-profile", cl::init(false), cl::Hidden,
      cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
  cl::opt<std::string> SupplInstrWithSample(
      "supplement-instr-with-sample", cl::init(""), cl::Hidden,
      cl::desc("Supplement an instr profile with sample profile, to correct "
               "the profile unrepresentativeness issue. The sample "
               "profile is the input of the flag. Output will be in instr "
               "format (The flag only works with -instr)"));
  cl::opt<float> ZeroCounterThreshold(
      "zero-counter-threshold", cl::init(0.7), cl::Hidden,
      cl::desc("For the function which is cold in instr profile but hot in "
               "sample profile, if the ratio of the number of zero counters "
               "divided by the the total number of counters is above the "
               "threshold, the profile of the function will be regarded as "
               "being harmful for performance and will be dropped. "));
  cl::opt<unsigned> SupplMinSizeThreshold(
      "suppl-min-size-threshold", cl::init(10), cl::Hidden,
      cl::desc("If the size of a function is smaller than the threshold, "
               "assume it can be inlined by PGO early inliner and it won't "
               "be adjusted based on sample profile. "));
  cl::opt<unsigned> InstrProfColdThreshold(
      "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
      cl::desc("User specified cold threshold for instr profile which will "
               "override the cold threshold got from profile summary. "));

  cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n");

  WeightedFileVector WeightedInputs;
  for (StringRef Filename : InputFilenames)
    addWeightedInput(WeightedInputs, {std::string(Filename), 1});
  for (StringRef WeightedFilename : WeightedInputFilenames)
    addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));

  // Make sure that the file buffer stays alive for the duration of the
  // weighted input vector's lifetime.
  auto Buffer = getInputFileBuf(InputFilenamesFile);
  parseInputFilenamesFile(Buffer.get(), WeightedInputs);

  if (WeightedInputs.empty())
    exitWithError("No input files specified. See " +
                  sys::path::filename(argv[0]) + " -help");

  if (DumpInputFileList) {
    for (auto &WF : WeightedInputs)
      outs() << WF.Weight << "," << WF.Filename << "\n";
    return 0;
  }

  std::unique_ptr<SymbolRemapper> Remapper;
  if (!RemappingFile.empty())
    Remapper = SymbolRemapper::create(RemappingFile);

  if (!SupplInstrWithSample.empty()) {
    if (ProfileKind != instr)
      exitWithError(
          "-supplement-instr-with-sample can only work with -instr. ");

    supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename,
                           OutputFormat, OutputSparse, SupplMinSizeThreshold,
                           ZeroCounterThreshold, InstrProfColdThreshold);
    return 0;
  }

  if (ProfileKind == instr)
    mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename,
                      OutputFormat, OutputSparse, NumThreads, FailureMode);
  else
    mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename,
                       OutputFormat, ProfileSymbolListFile, CompressAllSections,
                       UseMD5, GenPartialProfile, FailureMode);

  return 0;
}

/// Computer the overlap b/w profile BaseFilename and profile TestFilename.
static void overlapInstrProfile(const std::string &BaseFilename,
                                const std::string &TestFilename,
                                const OverlapFuncFilters &FuncFilter,
                                raw_fd_ostream &OS, bool IsCS) {
  std::mutex ErrorLock;
  SmallSet<instrprof_error, 4> WriterErrorCodes;
  WriterContext Context(false, ErrorLock, WriterErrorCodes);
  WeightedFile WeightedInput{BaseFilename, 1};
  OverlapStats Overlap;
  Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
  if (E)
    exitWithError(std::move(E), "Error in getting profile count sums");
  if (Overlap.Base.CountSum < 1.0f) {
    OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
    exit(0);
  }
  if (Overlap.Test.CountSum < 1.0f) {
    OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
    exit(0);
  }
  loadInput(WeightedInput, nullptr, &Context);
  overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
               IsCS);
  Overlap.dump(OS);
}

namespace {
struct SampleOverlapStats {
  StringRef BaseName;
  StringRef TestName;
  // Number of overlap units
  uint64_t OverlapCount;
  // Total samples of overlap units
  uint64_t OverlapSample;
  // Number of and total samples of units that only present in base or test
  // profile
  uint64_t BaseUniqueCount;
  uint64_t BaseUniqueSample;
  uint64_t TestUniqueCount;
  uint64_t TestUniqueSample;
  // Number of units and total samples in base or test profile
  uint64_t BaseCount;
  uint64_t BaseSample;
  uint64_t TestCount;
  uint64_t TestSample;
  // Number of and total samples of units that present in at least one profile
  uint64_t UnionCount;
  uint64_t UnionSample;
  // Weighted similarity
  double Similarity;
  // For SampleOverlapStats instances representing functions, weights of the
  // function in base and test profiles
  double BaseWeight;
  double TestWeight;

  SampleOverlapStats()
      : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0),
        BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0),
        BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0),
        UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {}
};
} // end anonymous namespace

namespace {
struct FuncSampleStats {
  uint64_t SampleSum;
  uint64_t MaxSample;
  uint64_t HotBlockCount;
  FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {}
  FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
                  uint64_t HotBlockCount)
      : SampleSum(SampleSum), MaxSample(MaxSample),
        HotBlockCount(HotBlockCount) {}
};
} // end anonymous namespace

namespace {
enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };

// Class for updating merging steps for two sorted maps. The class should be
// instantiated with a map iterator type.
template <class T> class MatchStep {
public:
  MatchStep() = delete;

  MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
      : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
        SecondEnd(SecondEnd), Status(MS_None) {}

  bool areBothFinished() const {
    return (FirstIter == FirstEnd && SecondIter == SecondEnd);
  }

  bool isFirstFinished() const { return FirstIter == FirstEnd; }

  bool isSecondFinished() const { return SecondIter == SecondEnd; }

  /// Advance one step based on the previous match status unless the previous
  /// status is MS_None. Then update Status based on the comparison between two
  /// container iterators at the current step. If the previous status is
  /// MS_None, it means two iterators are at the beginning and no comparison has
  /// been made, so we simply update Status without advancing the iterators.
  void updateOneStep();

  T getFirstIter() const { return FirstIter; }

  T getSecondIter() const { return SecondIter; }

  MatchStatus getMatchStatus() const { return Status; }

private:
  // Current iterator and end iterator of the first container.
  T FirstIter;
  T FirstEnd;
  // Current iterator and end iterator of the second container.
  T SecondIter;
  T SecondEnd;
  // Match status of the current step.
  MatchStatus Status;
};
} // end anonymous namespace

template <class T> void MatchStep<T>::updateOneStep() {
  switch (Status) {
  case MS_Match:
    ++FirstIter;
    ++SecondIter;
    break;
  case MS_FirstUnique:
    ++FirstIter;
    break;
  case MS_SecondUnique:
    ++SecondIter;
    break;
  case MS_None:
    break;
  }

  // Update Status according to iterators at the current step.
  if (areBothFinished())
    return;
  if (FirstIter != FirstEnd &&
      (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
    Status = MS_FirstUnique;
  else if (SecondIter != SecondEnd &&
           (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
    Status = MS_SecondUnique;
  else
    Status = MS_Match;
}

// Return the sum of line/block samples, the max line/block sample, and the
// number of line/block samples above the given threshold in a function
// including its inlinees.
static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
                               FuncSampleStats &FuncStats,
                               uint64_t HotThreshold) {
  for (const auto &L : Func.getBodySamples()) {
    uint64_t Sample = L.second.getSamples();
    FuncStats.SampleSum += Sample;
    FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
    if (Sample >= HotThreshold)
      ++FuncStats.HotBlockCount;
  }

  for (const auto &C : Func.getCallsiteSamples()) {
    for (const auto &F : C.second)
      getFuncSampleStats(F.second, FuncStats, HotThreshold);
  }
}

/// Predicate that determines if a function is hot with a given threshold. We
/// keep it separate from its callsites for possible extension in the future.
static bool isFunctionHot(const FuncSampleStats &FuncStats,
                          uint64_t HotThreshold) {
  // We intentionally compare the maximum sample count in a function with the
  // HotThreshold to get an approximate determination on hot functions.
  return (FuncStats.MaxSample >= HotThreshold);
}

namespace {
class SampleOverlapAggregator {
public:
  SampleOverlapAggregator(const std::string &BaseFilename,
                          const std::string &TestFilename,
                          double LowSimilarityThreshold, double Epsilon,
                          const OverlapFuncFilters &FuncFilter)
      : BaseFilename(BaseFilename), TestFilename(TestFilename),
        LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
        FuncFilter(FuncFilter) {}

  /// Detect 0-sample input profile and report to output stream. This interface
  /// should be called after loadProfiles().
  bool detectZeroSampleProfile(raw_fd_ostream &OS) const;

  /// Write out function-level similarity statistics for functions specified by
  /// options --function, --value-cutoff, and --similarity-cutoff.
  void dumpFuncSimilarity(raw_fd_ostream &OS) const;

  /// Write out program-level similarity and overlap statistics.
  void dumpProgramSummary(raw_fd_ostream &OS) const;

  /// Write out hot-function and hot-block statistics for base_profile,
  /// test_profile, and their overlap. For both cases, the overlap HO is
  /// calculated as follows:
  ///    Given the number of functions (or blocks) that are hot in both profiles
  ///    HCommon and the number of functions (or blocks) that are hot in at
  ///    least one profile HUnion, HO = HCommon / HUnion.
  void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;

  /// This function tries matching functions in base and test profiles. For each
  /// pair of matched functions, it aggregates the function-level
  /// similarity into a profile-level similarity. It also dump function-level
  /// similarity information of functions specified by --function,
  /// --value-cutoff, and --similarity-cutoff options. The program-level
  /// similarity PS is computed as follows:
  ///     Given function-level similarity FS(A) for all function A, the
  ///     weight of function A in base profile WB(A), and the weight of function
  ///     A in test profile WT(A), compute PS(base_profile, test_profile) =
  ///     sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
  ///     meaning no-overlap.
  void computeSampleProfileOverlap(raw_fd_ostream &OS);

  /// Initialize ProfOverlap with the sum of samples in base and test
  /// profiles. This function also computes and keeps the sum of samples and
  /// max sample counts of each function in BaseStats and TestStats for later
  /// use to avoid re-computations.
  void initializeSampleProfileOverlap();

  /// Load profiles specified by BaseFilename and TestFilename.
  std::error_code loadProfiles();

private:
  SampleOverlapStats ProfOverlap;
  SampleOverlapStats HotFuncOverlap;
  SampleOverlapStats HotBlockOverlap;
  std::string BaseFilename;
  std::string TestFilename;
  std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
  std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
  // BaseStats and TestStats hold FuncSampleStats for each function, with
  // function name as the key.
  StringMap<FuncSampleStats> BaseStats;
  StringMap<FuncSampleStats> TestStats;
  // Low similarity threshold in floating point number
  double LowSimilarityThreshold;
  // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
  // for tracking hot blocks.
  uint64_t BaseHotThreshold;
  uint64_t TestHotThreshold;
  // A small threshold used to round the results of floating point accumulations
  // to resolve imprecision.
  const double Epsilon;
  std::multimap<double, SampleOverlapStats, std::greater<double>>
      FuncSimilarityDump;
  // FuncFilter carries specifications in options --value-cutoff and
  // --function.
  OverlapFuncFilters FuncFilter;
  // Column offsets for printing the function-level details table.
  static const unsigned int TestWeightCol = 15;
  static const unsigned int SimilarityCol = 30;
  static const unsigned int OverlapCol = 43;
  static const unsigned int BaseUniqueCol = 53;
  static const unsigned int TestUniqueCol = 67;
  static const unsigned int BaseSampleCol = 81;
  static const unsigned int TestSampleCol = 96;
  static const unsigned int FuncNameCol = 111;

  /// Return a similarity of two line/block sample counters in the same
  /// function in base and test profiles. The line/block-similarity BS(i) is
  /// computed as follows:
  ///    For an offsets i, given the sample count at i in base profile BB(i),
  ///    the sample count at i in test profile BT(i), the sum of sample counts
  ///    in this function in base profile SB, and the sum of sample counts in
  ///    this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
  ///    BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
  double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
                                const SampleOverlapStats &FuncOverlap) const;

  void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
                             uint64_t HotBlockCount);

  void getHotFunctions(const StringMap<FuncSampleStats> &ProfStats,
                       StringMap<FuncSampleStats> &HotFunc,
                       uint64_t HotThreshold) const;

  void computeHotFuncOverlap();

  /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
  /// Difference for two sample units in a matched function according to the
  /// given match status.
  void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
                                     uint64_t HotBlockCount,
                                     SampleOverlapStats &FuncOverlap,
                                     double &Difference, MatchStatus Status);

  /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
  /// Difference for unmatched callees that only present in one profile in a
  /// matched caller function.
  void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
                                SampleOverlapStats &FuncOverlap,
                                double &Difference, MatchStatus Status);

  /// This function updates sample overlap statistics of an overlap function in
  /// base and test profile. It also calculates a function-internal similarity
  /// FIS as follows:
  ///    For offsets i that have samples in at least one profile in this
  ///    function A, given BS(i) returned by computeBlockSimilarity(), compute
  ///    FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
  ///    0.0 meaning no overlap.
  double computeSampleFunctionInternalOverlap(
      const sampleprof::FunctionSamples &BaseFunc,
      const sampleprof::FunctionSamples &TestFunc,
      SampleOverlapStats &FuncOverlap);

  /// Function-level similarity (FS) is a weighted value over function internal
  /// similarity (FIS). This function computes a function's FS from its FIS by
  /// applying the weight.
  double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
                                 uint64_t TestFuncSample) const;

  /// The function-level similarity FS(A) for a function A is computed as
  /// follows:
  ///     Compute a function-internal similarity FIS(A) by
  ///     computeSampleFunctionInternalOverlap(). Then, with the weight of
  ///     function A in base profile WB(A), and the weight of function A in test
  ///     profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
  ///     ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
  double
  computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
                               const sampleprof::FunctionSamples *TestFunc,
                               SampleOverlapStats *FuncOverlap,
                               uint64_t BaseFuncSample,
                               uint64_t TestFuncSample);

  /// Profile-level similarity (PS) is a weighted aggregate over function-level
  /// similarities (FS). This method weights the FS value by the function
  /// weights in the base and test profiles for the aggregation.
  double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
                            uint64_t TestFuncSample) const;
};
} // end anonymous namespace

bool SampleOverlapAggregator::detectZeroSampleProfile(
    raw_fd_ostream &OS) const {
  bool HaveZeroSample = false;
  if (ProfOverlap.BaseSample == 0) {
    OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
    HaveZeroSample = true;
  }
  if (ProfOverlap.TestSample == 0) {
    OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
    HaveZeroSample = true;
  }
  return HaveZeroSample;
}

double SampleOverlapAggregator::computeBlockSimilarity(
    uint64_t BaseSample, uint64_t TestSample,
    const SampleOverlapStats &FuncOverlap) const {
  double BaseFrac = 0.0;
  double TestFrac = 0.0;
  if (FuncOverlap.BaseSample > 0)
    BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
  if (FuncOverlap.TestSample > 0)
    TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
  return 1.0 - std::fabs(BaseFrac - TestFrac);
}

void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
                                                    uint64_t TestSample,
                                                    uint64_t HotBlockCount) {
  bool IsBaseHot = (BaseSample >= BaseHotThreshold);
  bool IsTestHot = (TestSample >= TestHotThreshold);
  if (!IsBaseHot && !IsTestHot)
    return;

  HotBlockOverlap.UnionCount += HotBlockCount;
  if (IsBaseHot)
    HotBlockOverlap.BaseCount += HotBlockCount;
  if (IsTestHot)
    HotBlockOverlap.TestCount += HotBlockCount;
  if (IsBaseHot && IsTestHot)
    HotBlockOverlap.OverlapCount += HotBlockCount;
}

void SampleOverlapAggregator::getHotFunctions(
    const StringMap<FuncSampleStats> &ProfStats,
    StringMap<FuncSampleStats> &HotFunc, uint64_t HotThreshold) const {
  for (const auto &F : ProfStats) {
    if (isFunctionHot(F.second, HotThreshold))
      HotFunc.try_emplace(F.first(), F.second);
  }
}

void SampleOverlapAggregator::computeHotFuncOverlap() {
  StringMap<FuncSampleStats> BaseHotFunc;
  getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
  HotFuncOverlap.BaseCount = BaseHotFunc.size();

  StringMap<FuncSampleStats> TestHotFunc;
  getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
  HotFuncOverlap.TestCount = TestHotFunc.size();
  HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;

  for (const auto &F : BaseHotFunc) {
    if (TestHotFunc.count(F.first()))
      ++HotFuncOverlap.OverlapCount;
    else
      ++HotFuncOverlap.UnionCount;
  }
}

void SampleOverlapAggregator::updateOverlapStatsForFunction(
    uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
    SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
  assert(Status != MS_None &&
         "Match status should be updated before updating overlap statistics");
  if (Status == MS_FirstUnique) {
    TestSample = 0;
    FuncOverlap.BaseUniqueSample += BaseSample;
  } else if (Status == MS_SecondUnique) {
    BaseSample = 0;
    FuncOverlap.TestUniqueSample += TestSample;
  } else {
    ++FuncOverlap.OverlapCount;
  }

  FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
  FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
  Difference +=
      1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
  updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
}

void SampleOverlapAggregator::updateForUnmatchedCallee(
    const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
    double &Difference, MatchStatus Status) {
  assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
         "Status must be either of the two unmatched cases");
  FuncSampleStats FuncStats;
  if (Status == MS_FirstUnique) {
    getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
    updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
                                  FuncStats.HotBlockCount, FuncOverlap,
                                  Difference, Status);
  } else {
    getFuncSampleStats(Func, FuncStats, TestHotThreshold);
    updateOverlapStatsForFunction(0, FuncStats.SampleSum,
                                  FuncStats.HotBlockCount, FuncOverlap,
                                  Difference, Status);
  }
}

double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
    const sampleprof::FunctionSamples &BaseFunc,
    const sampleprof::FunctionSamples &TestFunc,
    SampleOverlapStats &FuncOverlap) {

  using namespace sampleprof;

  double Difference = 0;

  // Accumulate Difference for regular line/block samples in the function.
  // We match them through sort-merge join algorithm because
  // FunctionSamples::getBodySamples() returns a map of sample counters ordered
  // by their offsets.
  MatchStep<BodySampleMap::const_iterator> BlockIterStep(
      BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
      TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
  BlockIterStep.updateOneStep();
  while (!BlockIterStep.areBothFinished()) {
    uint64_t BaseSample =
        BlockIterStep.isFirstFinished()
            ? 0
            : BlockIterStep.getFirstIter()->second.getSamples();
    uint64_t TestSample =
        BlockIterStep.isSecondFinished()
            ? 0
            : BlockIterStep.getSecondIter()->second.getSamples();
    updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
                                  Difference, BlockIterStep.getMatchStatus());

    BlockIterStep.updateOneStep();
  }

  // Accumulate Difference for callsite lines in the function. We match
  // them through sort-merge algorithm because
  // FunctionSamples::getCallsiteSamples() returns a map of callsite records
  // ordered by their offsets.
  MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
      BaseFunc.getCallsiteSamples().cbegin(),
      BaseFunc.getCallsiteSamples().cend(),
      TestFunc.getCallsiteSamples().cbegin(),
      TestFunc.getCallsiteSamples().cend());
  CallsiteIterStep.updateOneStep();
  while (!CallsiteIterStep.areBothFinished()) {
    MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
    assert(CallsiteStepStatus != MS_None &&
           "Match status should be updated before entering loop body");

    if (CallsiteStepStatus != MS_Match) {
      auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
                          ? CallsiteIterStep.getFirstIter()
                          : CallsiteIterStep.getSecondIter();
      for (const auto &F : Callsite->second)
        updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
                                 CallsiteStepStatus);
    } else {
      // There may be multiple inlinees at the same offset, so we need to try
      // matching all of them. This match is implemented through sort-merge
      // algorithm because callsite records at the same offset are ordered by
      // function names.
      MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
          CallsiteIterStep.getFirstIter()->second.cbegin(),
          CallsiteIterStep.getFirstIter()->second.cend(),
          CallsiteIterStep.getSecondIter()->second.cbegin(),
          CallsiteIterStep.getSecondIter()->second.cend());
      CalleeIterStep.updateOneStep();
      while (!CalleeIterStep.areBothFinished()) {
        MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
        if (CalleeStepStatus != MS_Match) {
          auto Callee = (CalleeStepStatus == MS_FirstUnique)
                            ? CalleeIterStep.getFirstIter()
                            : CalleeIterStep.getSecondIter();
          updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
                                   CalleeStepStatus);
        } else {
          // An inlined function can contain other inlinees inside, so compute
          // the Difference recursively.
          Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
                                      CalleeIterStep.getFirstIter()->second,
                                      CalleeIterStep.getSecondIter()->second,
                                      FuncOverlap);
        }
        CalleeIterStep.updateOneStep();
      }
    }
    CallsiteIterStep.updateOneStep();
  }

  // Difference reflects the total differences of line/block samples in this
  // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
  // reflect the similarity between function profiles in [0.0f to 1.0f].
  return (2.0 - Difference) / 2;
}

double SampleOverlapAggregator::weightForFuncSimilarity(
    double FuncInternalSimilarity, uint64_t BaseFuncSample,
    uint64_t TestFuncSample) const {
  // Compute the weight as the distance between the function weights in two
  // profiles.
  double BaseFrac = 0.0;
  double TestFrac = 0.0;
  assert(ProfOverlap.BaseSample > 0 &&
         "Total samples in base profile should be greater than 0");
  BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
  assert(ProfOverlap.TestSample > 0 &&
         "Total samples in test profile should be greater than 0");
  TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
  double WeightDistance = std::fabs(BaseFrac - TestFrac);

  // Take WeightDistance into the similarity.
  return FuncInternalSimilarity * (1 - WeightDistance);
}

double
SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
                                            uint64_t BaseFuncSample,
                                            uint64_t TestFuncSample) const {

  double BaseFrac = 0.0;
  double TestFrac = 0.0;
  assert(ProfOverlap.BaseSample > 0 &&
         "Total samples in base profile should be greater than 0");
  BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
  assert(ProfOverlap.TestSample > 0 &&
         "Total samples in test profile should be greater than 0");
  TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
  return FuncSimilarity * (BaseFrac + TestFrac);
}

double SampleOverlapAggregator::computeSampleFunctionOverlap(
    const sampleprof::FunctionSamples *BaseFunc,
    const sampleprof::FunctionSamples *TestFunc,
    SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
    uint64_t TestFuncSample) {
  // Default function internal similarity before weighted, meaning two functions
  // has no overlap.
  const double DefaultFuncInternalSimilarity = 0;
  double FuncSimilarity;
  double FuncInternalSimilarity;

  // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
  // In this case, we use DefaultFuncInternalSimilarity as the function internal
  // similarity.
  if (!BaseFunc || !TestFunc) {
    FuncInternalSimilarity = DefaultFuncInternalSimilarity;
  } else {
    assert(FuncOverlap != nullptr &&
           "FuncOverlap should be provided in this case");
    FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
        *BaseFunc, *TestFunc, *FuncOverlap);
    // Now, FuncInternalSimilarity may be a little less than 0 due to
    // imprecision of floating point accumulations. Make it zero if the
    // difference is below Epsilon.
    FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
                                 ? 0
                                 : FuncInternalSimilarity;
  }
  FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
                                           BaseFuncSample, TestFuncSample);
  return FuncSimilarity;
}

void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
  using namespace sampleprof;

  StringMap<const FunctionSamples *> BaseFuncProf;
  const auto &BaseProfiles = BaseReader->getProfiles();
  for (const auto &BaseFunc : BaseProfiles) {
    BaseFuncProf.try_emplace(BaseFunc.second.getName(), &(BaseFunc.second));
  }
  ProfOverlap.UnionCount = BaseFuncProf.size();

  const auto &TestProfiles = TestReader->getProfiles();
  for (const auto &TestFunc : TestProfiles) {
    SampleOverlapStats FuncOverlap;
    FuncOverlap.TestName = TestFunc.second.getName();
    assert(TestStats.count(FuncOverlap.TestName) &&
           "TestStats should have records for all functions in test profile "
           "except inlinees");
    FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;

    const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
    if (Match == BaseFuncProf.end()) {
      const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
      ++ProfOverlap.TestUniqueCount;
      ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
      FuncOverlap.TestUniqueSample = FuncStats.SampleSum;

      updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);

      double FuncSimilarity = computeSampleFunctionOverlap(
          nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
      ProfOverlap.Similarity +=
          weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);

      ++ProfOverlap.UnionCount;
      ProfOverlap.UnionSample += FuncStats.SampleSum;
    } else {
      ++ProfOverlap.OverlapCount;

      // Two functions match with each other. Compute function-level overlap and
      // aggregate them into profile-level overlap.
      FuncOverlap.BaseName = Match->second->getName();
      assert(BaseStats.count(FuncOverlap.BaseName) &&
             "BaseStats should have records for all functions in base profile "
             "except inlinees");
      FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;

      FuncOverlap.Similarity = computeSampleFunctionOverlap(
          Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
          FuncOverlap.TestSample);
      ProfOverlap.Similarity +=
          weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
                             FuncOverlap.TestSample);
      ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
      ProfOverlap.UnionSample += FuncOverlap.UnionSample;

      // Accumulate the percentage of base unique and test unique samples into
      // ProfOverlap.
      ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
      ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;

      // Remove matched base functions for later reporting functions not found
      // in test profile.
      BaseFuncProf.erase(Match);
    }

    // Print function-level similarity information if specified by options.
    assert(TestStats.count(FuncOverlap.TestName) &&
           "TestStats should have records for all functions in test profile "
           "except inlinees");
    if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
        (Match != BaseFuncProf.end() &&
         FuncOverlap.Similarity < LowSimilarityThreshold) ||
        (Match != BaseFuncProf.end() && !FuncFilter.NameFilter.empty() &&
         FuncOverlap.BaseName.find(FuncFilter.NameFilter) !=
             FuncOverlap.BaseName.npos)) {
      assert(ProfOverlap.BaseSample > 0 &&
             "Total samples in base profile should be greater than 0");
      FuncOverlap.BaseWeight =
          static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
      assert(ProfOverlap.TestSample > 0 &&
             "Total samples in test profile should be greater than 0");
      FuncOverlap.TestWeight =
          static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
      FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
    }
  }

  // Traverse through functions in base profile but not in test profile.
  for (const auto &F : BaseFuncProf) {
    assert(BaseStats.count(F.second->getName()) &&
           "BaseStats should have records for all functions in base profile "
           "except inlinees");
    const FuncSampleStats &FuncStats = BaseStats[F.second->getName()];
    ++ProfOverlap.BaseUniqueCount;
    ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;

    updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);

    double FuncSimilarity = computeSampleFunctionOverlap(
        nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
    ProfOverlap.Similarity +=
        weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);

    ProfOverlap.UnionSample += FuncStats.SampleSum;
  }

  // Now, ProfSimilarity may be a little greater than 1 due to imprecision
  // of floating point accumulations. Make it 1.0 if the difference is below
  // Epsilon.
  ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
                               ? 1
                               : ProfOverlap.Similarity;

  computeHotFuncOverlap();
}

void SampleOverlapAggregator::initializeSampleProfileOverlap() {
  const auto &BaseProf = BaseReader->getProfiles();
  for (const auto &I : BaseProf) {
    ++ProfOverlap.BaseCount;
    FuncSampleStats FuncStats;
    getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
    ProfOverlap.BaseSample += FuncStats.SampleSum;
    BaseStats.try_emplace(I.second.getName(), FuncStats);
  }

  const auto &TestProf = TestReader->getProfiles();
  for (const auto &I : TestProf) {
    ++ProfOverlap.TestCount;
    FuncSampleStats FuncStats;
    getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
    ProfOverlap.TestSample += FuncStats.SampleSum;
    TestStats.try_emplace(I.second.getName(), FuncStats);
  }

  ProfOverlap.BaseName = StringRef(BaseFilename);
  ProfOverlap.TestName = StringRef(TestFilename);
}

void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
  using namespace sampleprof;

  if (FuncSimilarityDump.empty())
    return;

  formatted_raw_ostream FOS(OS);
  FOS << "Function-level details:\n";
  FOS << "Base weight";
  FOS.PadToColumn(TestWeightCol);
  FOS << "Test weight";
  FOS.PadToColumn(SimilarityCol);
  FOS << "Similarity";
  FOS.PadToColumn(OverlapCol);
  FOS << "Overlap";
  FOS.PadToColumn(BaseUniqueCol);
  FOS << "Base unique";
  FOS.PadToColumn(TestUniqueCol);
  FOS << "Test unique";
  FOS.PadToColumn(BaseSampleCol);
  FOS << "Base samples";
  FOS.PadToColumn(TestSampleCol);
  FOS << "Test samples";
  FOS.PadToColumn(FuncNameCol);
  FOS << "Function name\n";
  for (const auto &F : FuncSimilarityDump) {
    double OverlapPercent =
        F.second.UnionSample > 0
            ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
            : 0;
    double BaseUniquePercent =
        F.second.BaseSample > 0
            ? static_cast<double>(F.second.BaseUniqueSample) /
                  F.second.BaseSample
            : 0;
    double TestUniquePercent =
        F.second.TestSample > 0
            ? static_cast<double>(F.second.TestUniqueSample) /
                  F.second.TestSample
            : 0;

    FOS << format("%.2f%%", F.second.BaseWeight * 100);
    FOS.PadToColumn(TestWeightCol);
    FOS << format("%.2f%%", F.second.TestWeight * 100);
    FOS.PadToColumn(SimilarityCol);
    FOS << format("%.2f%%", F.second.Similarity * 100);
    FOS.PadToColumn(OverlapCol);
    FOS << format("%.2f%%", OverlapPercent * 100);
    FOS.PadToColumn(BaseUniqueCol);
    FOS << format("%.2f%%", BaseUniquePercent * 100);
    FOS.PadToColumn(TestUniqueCol);
    FOS << format("%.2f%%", TestUniquePercent * 100);
    FOS.PadToColumn(BaseSampleCol);
    FOS << F.second.BaseSample;
    FOS.PadToColumn(TestSampleCol);
    FOS << F.second.TestSample;
    FOS.PadToColumn(FuncNameCol);
    FOS << F.second.TestName << "\n";
  }
}

void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
  OS << "Profile overlap infomation for base_profile: " << ProfOverlap.BaseName
     << " and test_profile: " << ProfOverlap.TestName << "\nProgram level:\n";

  OS << "  Whole program profile similarity: "
     << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";

  assert(ProfOverlap.UnionSample > 0 &&
         "Total samples in two profile should be greater than 0");
  double OverlapPercent =
      static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
  assert(ProfOverlap.BaseSample > 0 &&
         "Total samples in base profile should be greater than 0");
  double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
                             ProfOverlap.BaseSample;
  assert(ProfOverlap.TestSample > 0 &&
         "Total samples in test profile should be greater than 0");
  double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
                             ProfOverlap.TestSample;

  OS << "  Whole program sample overlap: "
     << format("%.3f%%", OverlapPercent * 100) << "\n";
  OS << "    percentage of samples unique in base profile: "
     << format("%.3f%%", BaseUniquePercent * 100) << "\n";
  OS << "    percentage of samples unique in test profile: "
     << format("%.3f%%", TestUniquePercent * 100) << "\n";
  OS << "    total samples in base profile: " << ProfOverlap.BaseSample << "\n"
     << "    total samples in test profile: " << ProfOverlap.TestSample << "\n";

  assert(ProfOverlap.UnionCount > 0 &&
         "There should be at least one function in two input profiles");
  double FuncOverlapPercent =
      static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
  OS << "  Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
     << "\n";
  OS << "    overlap functions: " << ProfOverlap.OverlapCount << "\n";
  OS << "    functions unique in base profile: " << ProfOverlap.BaseUniqueCount
     << "\n";
  OS << "    functions unique in test profile: " << ProfOverlap.TestUniqueCount
     << "\n";
}

void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
    raw_fd_ostream &OS) const {
  assert(HotFuncOverlap.UnionCount > 0 &&
         "There should be at least one hot function in two input profiles");
  OS << "  Hot-function overlap: "
     << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
                             HotFuncOverlap.UnionCount * 100)
     << "\n";
  OS << "    overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
  OS << "    hot functions unique in base profile: "
     << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
  OS << "    hot functions unique in test profile: "
     << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";

  assert(HotBlockOverlap.UnionCount > 0 &&
         "There should be at least one hot block in two input profiles");
  OS << "  Hot-block overlap: "
     << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
                             HotBlockOverlap.UnionCount * 100)
     << "\n";
  OS << "    overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
  OS << "    hot blocks unique in base profile: "
     << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
  OS << "    hot blocks unique in test profile: "
     << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
}

std::error_code SampleOverlapAggregator::loadProfiles() {
  using namespace sampleprof;

  LLVMContext Context;
  auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context);
  if (std::error_code EC = BaseReaderOrErr.getError())
    exitWithErrorCode(EC, BaseFilename);

  auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context);
  if (std::error_code EC = TestReaderOrErr.getError())
    exitWithErrorCode(EC, TestFilename);

  BaseReader = std::move(BaseReaderOrErr.get());
  TestReader = std::move(TestReaderOrErr.get());

  if (std::error_code EC = BaseReader->read())
    exitWithErrorCode(EC, BaseFilename);
  if (std::error_code EC = TestReader->read())
    exitWithErrorCode(EC, TestFilename);

  // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
  // profile summary.
  const uint64_t HotCutoff = 990000;
  ProfileSummary &BasePS = BaseReader->getSummary();
  for (const auto &SummaryEntry : BasePS.getDetailedSummary()) {
    if (SummaryEntry.Cutoff == HotCutoff) {
      BaseHotThreshold = SummaryEntry.MinCount;
      break;
    }
  }

  ProfileSummary &TestPS = TestReader->getSummary();
  for (const auto &SummaryEntry : TestPS.getDetailedSummary()) {
    if (SummaryEntry.Cutoff == HotCutoff) {
      TestHotThreshold = SummaryEntry.MinCount;
      break;
    }
  }
  return std::error_code();
}

void overlapSampleProfile(const std::string &BaseFilename,
                          const std::string &TestFilename,
                          const OverlapFuncFilters &FuncFilter,
                          uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
  using namespace sampleprof;

  // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
  // report 2--3 places after decimal point in percentage numbers.
  SampleOverlapAggregator OverlapAggr(
      BaseFilename, TestFilename,
      static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
  if (std::error_code EC = OverlapAggr.loadProfiles())
    exitWithErrorCode(EC);

  OverlapAggr.initializeSampleProfileOverlap();
  if (OverlapAggr.detectZeroSampleProfile(OS))
    return;

  OverlapAggr.computeSampleProfileOverlap(OS);

  OverlapAggr.dumpProgramSummary(OS);
  OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
  OverlapAggr.dumpFuncSimilarity(OS);
}

static int overlap_main(int argc, const char *argv[]) {
  cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
                                    cl::desc("<base profile file>"));
  cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
                                    cl::desc("<test profile file>"));
  cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"),
                              cl::desc("Output file"));
  cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output));
  cl::opt<bool> IsCS("cs", cl::init(false),
                     cl::desc("For context sensitive counts"));
  cl::opt<unsigned long long> ValueCutoff(
      "value-cutoff", cl::init(-1),
      cl::desc(
          "Function level overlap information for every function in test "
          "profile with max count value greater then the parameter value"));
  cl::opt<std::string> FuncNameFilter(
      "function",
      cl::desc("Function level overlap information for matching functions"));
  cl::opt<unsigned long long> SimilarityCutoff(
      "similarity-cutoff", cl::init(0),
      cl::desc(
          "For sample profiles, list function names for overlapped functions "
          "with similarities below the cutoff (percentage times 10000)."));
  cl::opt<ProfileKinds> ProfileKind(
      cl::desc("Profile kind:"), cl::init(instr),
      cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
                 clEnumVal(sample, "Sample profile")));
  cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n");

  std::error_code EC;
  raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_Text);
  if (EC)
    exitWithErrorCode(EC, Output);

  if (ProfileKind == instr)
    overlapInstrProfile(BaseFilename, TestFilename,
                        OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS,
                        IsCS);
  else
    overlapSampleProfile(BaseFilename, TestFilename,
                         OverlapFuncFilters{ValueCutoff, FuncNameFilter},
                         SimilarityCutoff, OS);

  return 0;
}

typedef struct ValueSitesStats {
  ValueSitesStats()
      : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0),
        TotalNumValues(0) {}
  uint64_t TotalNumValueSites;
  uint64_t TotalNumValueSitesWithValueProfile;
  uint64_t TotalNumValues;
  std::vector<unsigned> ValueSitesHistogram;
} ValueSitesStats;

static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
                                  ValueSitesStats &Stats, raw_fd_ostream &OS,
                                  InstrProfSymtab *Symtab) {
  uint32_t NS = Func.getNumValueSites(VK);
  Stats.TotalNumValueSites += NS;
  for (size_t I = 0; I < NS; ++I) {
    uint32_t NV = Func.getNumValueDataForSite(VK, I);
    std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I);
    Stats.TotalNumValues += NV;
    if (NV) {
      Stats.TotalNumValueSitesWithValueProfile++;
      if (NV > Stats.ValueSitesHistogram.size())
        Stats.ValueSitesHistogram.resize(NV, 0);
      Stats.ValueSitesHistogram[NV - 1]++;
    }

    uint64_t SiteSum = 0;
    for (uint32_t V = 0; V < NV; V++)
      SiteSum += VD[V].Count;
    if (SiteSum == 0)
      SiteSum = 1;

    for (uint32_t V = 0; V < NV; V++) {
      OS << "\t[ " << format("%2u", I) << ", ";
      if (Symtab == nullptr)
        OS << format("%4" PRIu64, VD[V].Value);
      else
        OS << Symtab->getFuncName(VD[V].Value);
      OS << ", " << format("%10" PRId64, VD[V].Count) << " ] ("
         << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n";
    }
  }
}

static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
                                ValueSitesStats &Stats) {
  OS << "  Total number of sites: " << Stats.TotalNumValueSites << "\n";
  OS << "  Total number of sites with values: "
     << Stats.TotalNumValueSitesWithValueProfile << "\n";
  OS << "  Total number of profiled values: " << Stats.TotalNumValues << "\n";

  OS << "  Value sites histogram:\n\tNumTargets, SiteCount\n";
  for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
    if (Stats.ValueSitesHistogram[I] > 0)
      OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
  }
}

static int showInstrProfile(const std::string &Filename, bool ShowCounts,
                            uint32_t TopN, bool ShowIndirectCallTargets,
                            bool ShowMemOPSizes, bool ShowDetailedSummary,
                            std::vector<uint32_t> DetailedSummaryCutoffs,
                            bool ShowAllFunctions, bool ShowCS,
                            uint64_t ValueCutoff, bool OnlyListBelow,
                            const std::string &ShowFunction, bool TextFormat,
                            raw_fd_ostream &OS) {
  auto ReaderOrErr = InstrProfReader::create(Filename);
  std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
  if (ShowDetailedSummary && Cutoffs.empty()) {
    Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990};
  }
  InstrProfSummaryBuilder Builder(std::move(Cutoffs));
  if (Error E = ReaderOrErr.takeError())
    exitWithError(std::move(E), Filename);

  auto Reader = std::move(ReaderOrErr.get());
  bool IsIRInstr = Reader->isIRLevelProfile();
  size_t ShownFunctions = 0;
  size_t BelowCutoffFunctions = 0;
  int NumVPKind = IPVK_Last - IPVK_First + 1;
  std::vector<ValueSitesStats> VPStats(NumVPKind);

  auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
                   const std::pair<std::string, uint64_t> &v2) {
    return v1.second > v2.second;
  };

  std::priority_queue<std::pair<std::string, uint64_t>,
                      std::vector<std::pair<std::string, uint64_t>>,
                      decltype(MinCmp)>
      HottestFuncs(MinCmp);

  if (!TextFormat && OnlyListBelow) {
    OS << "The list of functions with the maximum counter less than "
       << ValueCutoff << ":\n";
  }

  // Add marker so that IR-level instrumentation round-trips properly.
  if (TextFormat && IsIRInstr)
    OS << ":ir\n";

  for (const auto &Func : *Reader) {
    if (Reader->isIRLevelProfile()) {
      bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
      if (FuncIsCS != ShowCS)
        continue;
    }
    bool Show =
        ShowAllFunctions || (!ShowFunction.empty() &&
                             Func.Name.find(ShowFunction) != Func.Name.npos);

    bool doTextFormatDump = (Show && TextFormat);

    if (doTextFormatDump) {
      InstrProfSymtab &Symtab = Reader->getSymtab();
      InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
                                         OS);
      continue;
    }

    assert(Func.Counts.size() > 0 && "function missing entry counter");
    Builder.addRecord(Func);

    uint64_t FuncMax = 0;
    uint64_t FuncSum = 0;
    for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
      if (Func.Counts[I] == (uint64_t)-1)
        continue;
      FuncMax = std::max(FuncMax, Func.Counts[I]);
      FuncSum += Func.Counts[I];
    }

    if (FuncMax < ValueCutoff) {
      ++BelowCutoffFunctions;
      if (OnlyListBelow) {
        OS << "  " << Func.Name << ": (Max = " << FuncMax
           << " Sum = " << FuncSum << ")\n";
      }
      continue;
    } else if (OnlyListBelow)
      continue;

    if (TopN) {
      if (HottestFuncs.size() == TopN) {
        if (HottestFuncs.top().second < FuncMax) {
          HottestFuncs.pop();
          HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
        }
      } else
        HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
    }

    if (Show) {
      if (!ShownFunctions)
        OS << "Counters:\n";

      ++ShownFunctions;

      OS << "  " << Func.Name << ":\n"
         << "    Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
         << "    Counters: " << Func.Counts.size() << "\n";
      if (!IsIRInstr)
        OS << "    Function count: " << Func.Counts[0] << "\n";

      if (ShowIndirectCallTargets)
        OS << "    Indirect Call Site Count: "
           << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";

      uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
      if (ShowMemOPSizes && NumMemOPCalls > 0)
        OS << "    Number of Memory Intrinsics Calls: " << NumMemOPCalls
           << "\n";

      if (ShowCounts) {
        OS << "    Block counts: [";
        size_t Start = (IsIRInstr ? 0 : 1);
        for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
          OS << (I == Start ? "" : ", ") << Func.Counts[I];
        }
        OS << "]\n";
      }

      if (ShowIndirectCallTargets) {
        OS << "    Indirect Target Results:\n";
        traverseAllValueSites(Func, IPVK_IndirectCallTarget,
                              VPStats[IPVK_IndirectCallTarget], OS,
                              &(Reader->getSymtab()));
      }

      if (ShowMemOPSizes && NumMemOPCalls > 0) {
        OS << "    Memory Intrinsic Size Results:\n";
        traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
                              nullptr);
      }
    }
  }
  if (Reader->hasError())
    exitWithError(Reader->getError(), Filename);

  if (TextFormat)
    return 0;
  std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
  bool IsIR = Reader->isIRLevelProfile();
  OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
  if (IsIR)
    OS << "  entry_first = " << Reader->instrEntryBBEnabled();
  OS << "\n";
  if (ShowAllFunctions || !ShowFunction.empty())
    OS << "Functions shown: " << ShownFunctions << "\n";
  OS << "Total functions: " << PS->getNumFunctions() << "\n";
  if (ValueCutoff > 0) {
    OS << "Number of functions with maximum count (< " << ValueCutoff
       << "): " << BelowCutoffFunctions << "\n";
    OS << "Number of functions with maximum count (>= " << ValueCutoff
       << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
  }
  OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
  OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";

  if (TopN) {
    std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
    while (!HottestFuncs.empty()) {
      SortedHottestFuncs.emplace_back(HottestFuncs.top());
      HottestFuncs.pop();
    }
    OS << "Top " << TopN
       << " functions with the largest internal block counts: \n";
    for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
      OS << "  " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
  }

  if (ShownFunctions && ShowIndirectCallTargets) {
    OS << "Statistics for indirect call sites profile:\n";
    showValueSitesStats(OS, IPVK_IndirectCallTarget,
                        VPStats[IPVK_IndirectCallTarget]);
  }

  if (ShownFunctions && ShowMemOPSizes) {
    OS << "Statistics for memory intrinsic calls sizes profile:\n";
    showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
  }

  if (ShowDetailedSummary) {
    OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
    OS << "Total count: " << PS->getTotalCount() << "\n";
    PS->printDetailedSummary(OS);
  }
  return 0;
}

static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
                            raw_fd_ostream &OS) {
  if (!Reader->dumpSectionInfo(OS)) {
    WithColor::warning() << "-show-sec-info-only is only supported for "
                         << "sample profile in extbinary format and is "
                         << "ignored for other formats.\n";
    return;
  }
}

namespace {
struct HotFuncInfo {
  StringRef FuncName;
  uint64_t TotalCount;
  double TotalCountPercent;
  uint64_t MaxCount;
  uint64_t EntryCount;

  HotFuncInfo()
      : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0),
        EntryCount(0) {}

  HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
      : FuncName(FN), TotalCount(TS), TotalCountPercent(TSP), MaxCount(MS),
        EntryCount(ES) {}
};
} // namespace

// Print out detailed information about hot functions in PrintValues vector.
// Users specify titles and offset of every columns through ColumnTitle and
// ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
// and at least 4. Besides, users can optionally give a HotFuncMetric string to
// print out or let it be an empty string.
static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
                                const std::vector<int> &ColumnOffset,
                                const std::vector<HotFuncInfo> &PrintValues,
                                uint64_t HotFuncCount, uint64_t TotalFuncCount,
                                uint64_t HotProfCount, uint64_t TotalProfCount,
                                const std::string &HotFuncMetric,
                                raw_fd_ostream &OS) {
  assert(ColumnOffset.size() == ColumnTitle.size() &&
         "ColumnOffset and ColumnTitle should have the same size");
  assert(ColumnTitle.size() >= 4 &&
         "ColumnTitle should have at least 4 elements");
  assert(TotalFuncCount > 0 &&
         "There should be at least one function in the profile");
  double TotalProfPercent = 0;
  if (TotalProfCount > 0)
    TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;

  formatted_raw_ostream FOS(OS);
  FOS << HotFuncCount << " out of " << TotalFuncCount
      << " functions with profile ("
      << format("%.2f%%",
                (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
      << ") are considered hot functions";
  if (!HotFuncMetric.empty())
    FOS << " (" << HotFuncMetric << ")";
  FOS << ".\n";
  FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
      << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";

  for (size_t I = 0; I < ColumnTitle.size(); ++I) {
    FOS.PadToColumn(ColumnOffset[I]);
    FOS << ColumnTitle[I];
  }
  FOS << "\n";

  for (const HotFuncInfo &R : PrintValues) {
    FOS.PadToColumn(ColumnOffset[0]);
    FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
    FOS.PadToColumn(ColumnOffset[1]);
    FOS << R.MaxCount;
    FOS.PadToColumn(ColumnOffset[2]);
    FOS << R.EntryCount;
    FOS.PadToColumn(ColumnOffset[3]);
    FOS << R.FuncName << "\n";
  }
  return;
}

static int
showHotFunctionList(const StringMap<sampleprof::FunctionSamples> &Profiles,
                    ProfileSummary &PS, raw_fd_ostream &OS) {
  using namespace sampleprof;

  const uint32_t HotFuncCutoff = 990000;
  auto &SummaryVector = PS.getDetailedSummary();
  uint64_t MinCountThreshold = 0;
  for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
    if (SummaryEntry.Cutoff == HotFuncCutoff) {
      MinCountThreshold = SummaryEntry.MinCount;
      break;
    }
  }

  // Traverse all functions in the profile and keep only hot functions.
  // The following loop also calculates the sum of total samples of all
  // functions.
  std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
                std::greater<uint64_t>>
      HotFunc;
  uint64_t ProfileTotalSample = 0;
  uint64_t HotFuncSample = 0;
  uint64_t HotFuncCount = 0;

  for (const auto &I : Profiles) {
    FuncSampleStats FuncStats;
    const FunctionSamples &FuncProf = I.second;
    ProfileTotalSample += FuncProf.getTotalSamples();
    getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);

    if (isFunctionHot(FuncStats, MinCountThreshold)) {
      HotFunc.emplace(FuncProf.getTotalSamples(),
                      std::make_pair(&(I.second), FuncStats.MaxSample));
      HotFuncSample += FuncProf.getTotalSamples();
      ++HotFuncCount;
    }
  }

  std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
                                       "Entry sample", "Function name"};
  std::vector<int> ColumnOffset{0, 24, 42, 58};
  std::string Metric =
      std::string("max sample >= ") + std::to_string(MinCountThreshold);
  std::vector<HotFuncInfo> PrintValues;
  for (const auto &FuncPair : HotFunc) {
    const FunctionSamples &Func = *FuncPair.second.first;
    double TotalSamplePercent =
        (ProfileTotalSample > 0)
            ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
            : 0;
    PrintValues.emplace_back(
        HotFuncInfo(Func.getName(), Func.getTotalSamples(), TotalSamplePercent,
                    FuncPair.second.second, Func.getEntrySamples()));
  }
  dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
                      Profiles.size(), HotFuncSample, ProfileTotalSample,
                      Metric, OS);

  return 0;
}

static int showSampleProfile(const std::string &Filename, bool ShowCounts,
                             bool ShowAllFunctions, bool ShowDetailedSummary,
                             const std::string &ShowFunction,
                             bool ShowProfileSymbolList,
                             bool ShowSectionInfoOnly, bool ShowHotFuncList,
                             raw_fd_ostream &OS) {
  using namespace sampleprof;
  LLVMContext Context;
  auto ReaderOrErr = SampleProfileReader::create(Filename, Context);
  if (std::error_code EC = ReaderOrErr.getError())
    exitWithErrorCode(EC, Filename);

  auto Reader = std::move(ReaderOrErr.get());

  if (ShowSectionInfoOnly) {
    showSectionInfo(Reader.get(), OS);
    return 0;
  }

  if (std::error_code EC = Reader->read())
    exitWithErrorCode(EC, Filename);

  if (ShowAllFunctions || ShowFunction.empty())
    Reader->dump(OS);
  else
    Reader->dumpFunctionProfile(ShowFunction, OS);

  if (ShowProfileSymbolList) {
    std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
        Reader->getProfileSymbolList();
    ReaderList->dump(OS);
  }

  if (ShowDetailedSummary) {
    auto &PS = Reader->getSummary();
    PS.printSummary(OS);
    PS.printDetailedSummary(OS);
  }

  if (ShowHotFuncList)
    showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), OS);

  return 0;
}

static int show_main(int argc, const char *argv[]) {
  cl::opt<std::string> Filename(cl::Positional, cl::Required,
                                cl::desc("<profdata-file>"));

  cl::opt<bool> ShowCounts("counts", cl::init(false),
                           cl::desc("Show counter values for shown functions"));
  cl::opt<bool> TextFormat(
      "text", cl::init(false),
      cl::desc("Show instr profile data in text dump format"));
  cl::opt<bool> ShowIndirectCallTargets(
      "ic-targets", cl::init(false),
      cl::desc("Show indirect call site target values for shown functions"));
  cl::opt<bool> ShowMemOPSizes(
      "memop-sizes", cl::init(false),
      cl::desc("Show the profiled sizes of the memory intrinsic calls "
               "for shown functions"));
  cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
                                    cl::desc("Show detailed profile summary"));
  cl::list<uint32_t> DetailedSummaryCutoffs(
      cl::CommaSeparated, "detailed-summary-cutoffs",
      cl::desc(
          "Cutoff percentages (times 10000) for generating detailed summary"),
      cl::value_desc("800000,901000,999999"));
  cl::opt<bool> ShowHotFuncList(
      "hot-func-list", cl::init(false),
      cl::desc("Show profile summary of a list of hot functions"));
  cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
                                 cl::desc("Details for every function"));
  cl::opt<bool> ShowCS("showcs", cl::init(false),
                       cl::desc("Show context sensitive counts"));
  cl::opt<std::string> ShowFunction("function",
                                    cl::desc("Details for matching functions"));

  cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
                                      cl::init("-"), cl::desc("Output file"));
  cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
                            cl::aliasopt(OutputFilename));
  cl::opt<ProfileKinds> ProfileKind(
      cl::desc("Profile kind:"), cl::init(instr),
      cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
                 clEnumVal(sample, "Sample profile")));
  cl::opt<uint32_t> TopNFunctions(
      "topn", cl::init(0),
      cl::desc("Show the list of functions with the largest internal counts"));
  cl::opt<uint32_t> ValueCutoff(
      "value-cutoff", cl::init(0),
      cl::desc("Set the count value cutoff. Functions with the maximum count "
               "less than this value will not be printed out. (Default is 0)"));
  cl::opt<bool> OnlyListBelow(
      "list-below-cutoff", cl::init(false),
      cl::desc("Only output names of functions whose max count values are "
               "below the cutoff value"));
  cl::opt<bool> ShowProfileSymbolList(
      "show-prof-sym-list", cl::init(false),
      cl::desc("Show profile symbol list if it exists in the profile. "));
  cl::opt<bool> ShowSectionInfoOnly(
      "show-sec-info-only", cl::init(false),
      cl::desc("Show the information of each section in the sample profile. "
               "The flag is only usable when the sample profile is in "
               "extbinary format"));

  cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n");

  if (OutputFilename.empty())
    OutputFilename = "-";

  if (!Filename.compare(OutputFilename)) {
    errs() << sys::path::filename(argv[0])
           << ": Input file name cannot be the same as the output file name!\n";
    return 1;
  }

  std::error_code EC;
  raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_Text);
  if (EC)
    exitWithErrorCode(EC, OutputFilename);

  if (ShowAllFunctions && !ShowFunction.empty())
    WithColor::warning() << "-function argument ignored: showing all functions\n";

  if (ProfileKind == instr)
    return showInstrProfile(Filename, ShowCounts, TopNFunctions,
                            ShowIndirectCallTargets, ShowMemOPSizes,
                            ShowDetailedSummary, DetailedSummaryCutoffs,
                            ShowAllFunctions, ShowCS, ValueCutoff,
                            OnlyListBelow, ShowFunction, TextFormat, OS);
  else
    return showSampleProfile(Filename, ShowCounts, ShowAllFunctions,
                             ShowDetailedSummary, ShowFunction,
                             ShowProfileSymbolList, ShowSectionInfoOnly,
                             ShowHotFuncList, OS);
}

int main(int argc, const char *argv[]) {
  InitLLVM X(argc, argv);

  StringRef ProgName(sys::path::filename(argv[0]));
  if (argc > 1) {
    int (*func)(int, const char *[]) = nullptr;

    if (strcmp(argv[1], "merge") == 0)
      func = merge_main;
    else if (strcmp(argv[1], "show") == 0)
      func = show_main;
    else if (strcmp(argv[1], "overlap") == 0)
      func = overlap_main;

    if (func) {
      std::string Invocation(ProgName.str() + " " + argv[1]);
      argv[1] = Invocation.c_str();
      return func(argc - 1, argv + 1);
    }

    if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 ||
        strcmp(argv[1], "--help") == 0) {

      errs() << "OVERVIEW: LLVM profile data tools\n\n"
             << "USAGE: " << ProgName << " <command> [args...]\n"
             << "USAGE: " << ProgName << " <command> -help\n\n"
             << "See each individual command --help for more details.\n"
             << "Available commands: merge, show, overlap\n";
      return 0;
    }
  }

  if (argc < 2)
    errs() << ProgName << ": No command specified!\n";
  else
    errs() << ProgName << ": Unknown command!\n";

  errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n";
  return 1;
}