xray-stacks.cpp 31.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
//===- xray-stacks.cpp: XRay Function Call Stack Accounting ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements stack-based accounting. It takes XRay traces, and
// collates statistics across these traces to show a breakdown of time spent
// at various points of the stack to provide insight into which functions
// spend the most time in terms of a call stack. We provide a few
// sorting/filtering options for zero'ing in on the useful stacks.
//
//===----------------------------------------------------------------------===//

#include <forward_list>
#include <numeric>

#include "func-id-helper.h"
#include "trie-node.h"
#include "xray-registry.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatAdapters.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/XRay/Graph.h"
#include "llvm/XRay/InstrumentationMap.h"
#include "llvm/XRay/Trace.h"

using namespace llvm;
using namespace llvm::xray;

static cl::SubCommand Stack("stack", "Call stack accounting");
static cl::list<std::string> StackInputs(cl::Positional,
                                         cl::desc("<xray trace>"), cl::Required,
                                         cl::sub(Stack), cl::OneOrMore);

static cl::opt<bool>
    StackKeepGoing("keep-going", cl::desc("Keep going on errors encountered"),
                   cl::sub(Stack), cl::init(false));
static cl::alias StackKeepGoing2("k", cl::aliasopt(StackKeepGoing),
                                 cl::desc("Alias for -keep-going"));

// TODO: Does there need to be an option to deduce tail or sibling calls?

static cl::opt<std::string> StacksInstrMap(
    "instr_map",
    cl::desc("instrumentation map used to identify function ids. "
             "Currently supports elf file instrumentation maps."),
    cl::sub(Stack), cl::init(""));
static cl::alias StacksInstrMap2("m", cl::aliasopt(StacksInstrMap),
                                 cl::desc("Alias for -instr_map"));

static cl::opt<bool>
    SeparateThreadStacks("per-thread-stacks",
                         cl::desc("Report top stacks within each thread id"),
                         cl::sub(Stack), cl::init(false));

static cl::opt<bool>
    AggregateThreads("aggregate-threads",
                     cl::desc("Aggregate stack times across threads"),
                     cl::sub(Stack), cl::init(false));

static cl::opt<bool>
    DumpAllStacks("all-stacks",
                  cl::desc("Dump sum of timings for all stacks. "
                           "By default separates stacks per-thread."),
                  cl::sub(Stack), cl::init(false));
static cl::alias DumpAllStacksShort("all", cl::aliasopt(DumpAllStacks),
                                    cl::desc("Alias for -all-stacks"));

// TODO(kpw): Add other interesting formats. Perhaps chrome trace viewer format
// possibly with aggregations or just a linear trace of timings.
enum StackOutputFormat { HUMAN, FLAMETOOL };

static cl::opt<StackOutputFormat> StacksOutputFormat(
    "stack-format",
    cl::desc("The format that output stacks should be "
             "output in. Only applies with all-stacks."),
    cl::values(
        clEnumValN(HUMAN, "human",
                   "Human readable output. Only valid without -all-stacks."),
        clEnumValN(FLAMETOOL, "flame",
                   "Format consumable by Brendan Gregg's FlameGraph tool. "
                   "Only valid with -all-stacks.")),
    cl::sub(Stack), cl::init(HUMAN));

// Types of values for each stack in a CallTrie.
enum class AggregationType {
  TOTAL_TIME,      // The total time spent in a stack and its callees.
  INVOCATION_COUNT // The number of times the stack was invoked.
};

static cl::opt<AggregationType> RequestedAggregation(
    "aggregation-type",
    cl::desc("The type of aggregation to do on call stacks."),
    cl::values(
        clEnumValN(
            AggregationType::TOTAL_TIME, "time",
            "Capture the total time spent in an all invocations of a stack."),
        clEnumValN(AggregationType::INVOCATION_COUNT, "count",
                   "Capture the number of times a stack was invoked. "
                   "In flamegraph mode, this count also includes invocations "
                   "of all callees.")),
    cl::sub(Stack), cl::init(AggregationType::TOTAL_TIME));

/// A helper struct to work with formatv and XRayRecords. Makes it easier to
/// use instrumentation map names or addresses in formatted output.
struct format_xray_record : public FormatAdapter<XRayRecord> {
  explicit format_xray_record(XRayRecord record,
                              const FuncIdConversionHelper &conv)
      : FormatAdapter<XRayRecord>(std::move(record)), Converter(&conv) {}
  void format(raw_ostream &Stream, StringRef Style) override {
    Stream << formatv(
        "{FuncId: \"{0}\", ThreadId: \"{1}\", RecordType: \"{2}\"}",
        Converter->SymbolOrNumber(Item.FuncId), Item.TId,
        DecodeRecordType(Item.RecordType));
  }

private:
  Twine DecodeRecordType(uint16_t recordType) {
    switch (recordType) {
    case 0:
      return Twine("Fn Entry");
    case 1:
      return Twine("Fn Exit");
    default:
      // TODO: Add Tail exit when it is added to llvm/XRay/XRayRecord.h
      return Twine("Unknown");
    }
  }

  const FuncIdConversionHelper *Converter;
};

/// The stack command will take a set of XRay traces as arguments, and collects
/// information about the stacks of instrumented functions that appear in the
/// traces. We track the following pieces of information:
///
///   - Total time: amount of time/cycles accounted for in the traces.
///   - Stack count: number of times a specific stack appears in the
///     traces. Only instrumented functions show up in stacks.
///   - Cumulative stack time: amount of time spent in a stack accumulated
///     across the invocations in the traces.
///   - Cumulative local time: amount of time spent in each instrumented
///     function showing up in a specific stack, accumulated across the traces.
///
/// Example output for the kind of data we'd like to provide looks like the
/// following:
///
///   Total time: 3.33234 s
///   Stack ID: ...
///   Stack Count: 2093
///   #     Function                  Local Time     (%)      Stack Time     (%)
///   0     main                         2.34 ms   0.07%      3.33234  s    100%
///   1     foo()                     3.30000  s  99.02%         3.33  s  99.92%
///   2     bar()                          30 ms   0.90%           30 ms   0.90%
///
/// We can also show distributions of the function call durations with
/// statistics at each level of the stack. This works by doing the following
/// algorithm:
///
///   1. When unwinding, record the duration of each unwound function associated
///   with the path up to which the unwinding stops. For example:
///
///        Step                         Duration (? means has start time)
///
///        push a <start time>           a = ?
///        push b <start time>           a = ?, a->b = ?
///        push c <start time>           a = ?, a->b = ?, a->b->c = ?
///        pop  c <end time>             a = ?, a->b = ?, emit duration(a->b->c)
///        pop  b <end time>             a = ?, emit duration(a->b)
///        push c <start time>           a = ?, a->c = ?
///        pop  c <end time>             a = ?, emit duration(a->c)
///        pop  a <end time>             emit duration(a)
///
///   2. We then account for the various stacks we've collected, and for each of
///      them will have measurements that look like the following (continuing
///      with the above simple example):
///
///        c : [<id("a->b->c"), [durations]>, <id("a->c"), [durations]>]
///        b : [<id("a->b"), [durations]>]
///        a : [<id("a"), [durations]>]
///
///      This allows us to compute, for each stack id, and each function that
///      shows up in the stack,  some important statistics like:
///
///        - median
///        - 99th percentile
///        - mean + stddev
///        - count
///
///   3. For cases where we don't have durations for some of the higher levels
///   of the stack (perhaps instrumentation wasn't activated when the stack was
///   entered), we can mark them appropriately.
///
///  Computing this data also allows us to implement lookup by call stack nodes,
///  so that we can find functions that show up in multiple stack traces and
///  show the statistical properties of that function in various contexts. We
///  can compute information similar to the following:
///
///    Function: 'c'
///    Stacks: 2 / 2
///    Stack ID: ...
///    Stack Count: ...
///    #     Function  ...
///    0     a         ...
///    1     b         ...
///    2     c         ...
///
///    Stack ID: ...
///    Stack Count: ...
///    #     Function  ...
///    0     a         ...
///    1     c         ...
///    ----------------...
///
///    Function: 'b'
///    Stacks:  1 / 2
///    Stack ID: ...
///    Stack Count: ...
///    #     Function  ...
///    0     a         ...
///    1     b         ...
///    2     c         ...
///
///
/// To do this we require a Trie data structure that will allow us to represent
/// all the call stacks of instrumented functions in an easily traversible
/// manner when we do the aggregations and lookups. For instrumented call
/// sequences like the following:
///
///   a()
///    b()
///     c()
///     d()
///    c()
///
/// We will have a representation like so:
///
///   a -> b -> c
///   |    |
///   |    +--> d
///   |
///   +--> c
///
/// We maintain a sequence of durations on the leaves and in the internal nodes
/// as we go through and process every record from the XRay trace. We also
/// maintain an index of unique functions, and provide a means of iterating
/// through all the instrumented call stacks which we know about.

namespace {
struct StackDuration {
  llvm::SmallVector<int64_t, 4> TerminalDurations;
  llvm::SmallVector<int64_t, 4> IntermediateDurations;
};
} // namespace

static StackDuration mergeStackDuration(const StackDuration &Left,
                                        const StackDuration &Right) {
  StackDuration Data{};
  Data.TerminalDurations.reserve(Left.TerminalDurations.size() +
                                 Right.TerminalDurations.size());
  Data.IntermediateDurations.reserve(Left.IntermediateDurations.size() +
                                     Right.IntermediateDurations.size());
  // Aggregate the durations.
  for (auto duration : Left.TerminalDurations)
    Data.TerminalDurations.push_back(duration);
  for (auto duration : Right.TerminalDurations)
    Data.TerminalDurations.push_back(duration);

  for (auto duration : Left.IntermediateDurations)
    Data.IntermediateDurations.push_back(duration);
  for (auto duration : Right.IntermediateDurations)
    Data.IntermediateDurations.push_back(duration);
  return Data;
}

using StackTrieNode = TrieNode<StackDuration>;

template <AggregationType AggType>
static std::size_t GetValueForStack(const StackTrieNode *Node);

// When computing total time spent in a stack, we're adding the timings from
// its callees and the timings from when it was a leaf.
template <>
std::size_t
GetValueForStack<AggregationType::TOTAL_TIME>(const StackTrieNode *Node) {
  auto TopSum = std::accumulate(Node->ExtraData.TerminalDurations.begin(),
                                Node->ExtraData.TerminalDurations.end(), 0uLL);
  return std::accumulate(Node->ExtraData.IntermediateDurations.begin(),
                         Node->ExtraData.IntermediateDurations.end(), TopSum);
}

// Calculates how many times a function was invoked.
// TODO: Hook up option to produce stacks
template <>
std::size_t
GetValueForStack<AggregationType::INVOCATION_COUNT>(const StackTrieNode *Node) {
  return Node->ExtraData.TerminalDurations.size() +
         Node->ExtraData.IntermediateDurations.size();
}

// Make sure there are implementations for each enum value.
template <AggregationType T> struct DependentFalseType : std::false_type {};

template <AggregationType AggType>
std::size_t GetValueForStack(const StackTrieNode *Node) {
  static_assert(DependentFalseType<AggType>::value,
                "No implementation found for aggregation type provided.");
  return 0;
}

class StackTrie {
  // Avoid the magic number of 4 propagated through the code with an alias.
  // We use this SmallVector to track the root nodes in a call graph.
  using RootVector = SmallVector<StackTrieNode *, 4>;

  // We maintain pointers to the roots of the tries we see.
  DenseMap<uint32_t, RootVector> Roots;

  // We make sure all the nodes are accounted for in this list.
  std::forward_list<StackTrieNode> NodeStore;

  // A map of thread ids to pairs call stack trie nodes and their start times.
  DenseMap<uint32_t, SmallVector<std::pair<StackTrieNode *, uint64_t>, 8>>
      ThreadStackMap;

  StackTrieNode *createTrieNode(uint32_t ThreadId, int32_t FuncId,
                                StackTrieNode *Parent) {
    NodeStore.push_front(StackTrieNode{FuncId, Parent, {}, {{}, {}}});
    auto I = NodeStore.begin();
    auto *Node = &*I;
    if (!Parent)
      Roots[ThreadId].push_back(Node);
    return Node;
  }

  StackTrieNode *findRootNode(uint32_t ThreadId, int32_t FuncId) {
    const auto &RootsByThread = Roots[ThreadId];
    auto I = find_if(RootsByThread,
                     [&](StackTrieNode *N) { return N->FuncId == FuncId; });
    return (I == RootsByThread.end()) ? nullptr : *I;
  }

public:
  enum class AccountRecordStatus {
    OK,              // Successfully processed
    ENTRY_NOT_FOUND, // An exit record had no matching call stack entry
    UNKNOWN_RECORD_TYPE
  };

  struct AccountRecordState {
    // We keep track of whether the call stack is currently unwinding.
    bool wasLastRecordExit;

    static AccountRecordState CreateInitialState() { return {false}; }
  };

  AccountRecordStatus accountRecord(const XRayRecord &R,
                                    AccountRecordState *state) {
    auto &TS = ThreadStackMap[R.TId];
    switch (R.Type) {
    case RecordTypes::CUSTOM_EVENT:
    case RecordTypes::TYPED_EVENT:
      return AccountRecordStatus::OK;
    case RecordTypes::ENTER:
    case RecordTypes::ENTER_ARG: {
      state->wasLastRecordExit = false;
      // When we encounter a new function entry, we want to record the TSC for
      // that entry, and the function id. Before doing so we check the top of
      // the stack to see if there are callees that already represent this
      // function.
      if (TS.empty()) {
        auto *Root = findRootNode(R.TId, R.FuncId);
        TS.emplace_back(Root ? Root : createTrieNode(R.TId, R.FuncId, nullptr),
                        R.TSC);
        return AccountRecordStatus::OK;
      }

      auto &Top = TS.back();
      auto I = find_if(Top.first->Callees,
                       [&](StackTrieNode *N) { return N->FuncId == R.FuncId; });
      if (I == Top.first->Callees.end()) {
        // We didn't find the callee in the stack trie, so we're going to
        // add to the stack then set up the pointers properly.
        auto N = createTrieNode(R.TId, R.FuncId, Top.first);
        Top.first->Callees.emplace_back(N);

        // Top may be invalidated after this statement.
        TS.emplace_back(N, R.TSC);
      } else {
        // We found the callee in the stack trie, so we'll use that pointer
        // instead, add it to the stack associated with the TSC.
        TS.emplace_back(*I, R.TSC);
      }
      return AccountRecordStatus::OK;
    }
    case RecordTypes::EXIT:
    case RecordTypes::TAIL_EXIT: {
      bool wasLastRecordExit = state->wasLastRecordExit;
      state->wasLastRecordExit = true;
      // The exit case is more interesting, since we want to be able to deduce
      // missing exit records. To do that properly, we need to look up the stack
      // and see whether the exit record matches any of the entry records. If it
      // does match, we attempt to record the durations as we pop the stack to
      // where we see the parent.
      if (TS.empty()) {
        // Short circuit, and say we can't find it.

        return AccountRecordStatus::ENTRY_NOT_FOUND;
      }

      auto FunctionEntryMatch = find_if(
          reverse(TS), [&](const std::pair<StackTrieNode *, uint64_t> &E) {
            return E.first->FuncId == R.FuncId;
          });
      auto status = AccountRecordStatus::OK;
      if (FunctionEntryMatch == TS.rend()) {
        status = AccountRecordStatus::ENTRY_NOT_FOUND;
      } else {
        // Account for offset of 1 between reverse and forward iterators. We
        // want the forward iterator to include the function that is exited.
        ++FunctionEntryMatch;
      }
      auto I = FunctionEntryMatch.base();
      for (auto &E : make_range(I, TS.end() - 1))
        E.first->ExtraData.IntermediateDurations.push_back(
            std::max(E.second, R.TSC) - std::min(E.second, R.TSC));
      auto &Deepest = TS.back();
      if (wasLastRecordExit)
        Deepest.first->ExtraData.IntermediateDurations.push_back(
            std::max(Deepest.second, R.TSC) - std::min(Deepest.second, R.TSC));
      else
        Deepest.first->ExtraData.TerminalDurations.push_back(
            std::max(Deepest.second, R.TSC) - std::min(Deepest.second, R.TSC));
      TS.erase(I, TS.end());
      return status;
    }
    }
    return AccountRecordStatus::UNKNOWN_RECORD_TYPE;
  }

  bool isEmpty() const { return Roots.empty(); }

  void printStack(raw_ostream &OS, const StackTrieNode *Top,
                  FuncIdConversionHelper &FN) {
    // Traverse the pointers up to the parent, noting the sums, then print
    // in reverse order (callers at top, callees down bottom).
    SmallVector<const StackTrieNode *, 8> CurrentStack;
    for (auto *F = Top; F != nullptr; F = F->Parent)
      CurrentStack.push_back(F);
    int Level = 0;
    OS << formatv("{0,-5} {1,-60} {2,+12} {3,+16}\n", "lvl", "function",
                  "count", "sum");
    for (auto *F :
         reverse(make_range(CurrentStack.begin() + 1, CurrentStack.end()))) {
      auto Sum = std::accumulate(F->ExtraData.IntermediateDurations.begin(),
                                 F->ExtraData.IntermediateDurations.end(), 0LL);
      auto FuncId = FN.SymbolOrNumber(F->FuncId);
      OS << formatv("#{0,-4} {1,-60} {2,+12} {3,+16}\n", Level++,
                    FuncId.size() > 60 ? FuncId.substr(0, 57) + "..." : FuncId,
                    F->ExtraData.IntermediateDurations.size(), Sum);
    }
    auto *Leaf = *CurrentStack.begin();
    auto LeafSum =
        std::accumulate(Leaf->ExtraData.TerminalDurations.begin(),
                        Leaf->ExtraData.TerminalDurations.end(), 0LL);
    auto LeafFuncId = FN.SymbolOrNumber(Leaf->FuncId);
    OS << formatv("#{0,-4} {1,-60} {2,+12} {3,+16}\n", Level++,
                  LeafFuncId.size() > 60 ? LeafFuncId.substr(0, 57) + "..."
                                         : LeafFuncId,
                  Leaf->ExtraData.TerminalDurations.size(), LeafSum);
    OS << "\n";
  }

  /// Prints top stacks for each thread.
  void printPerThread(raw_ostream &OS, FuncIdConversionHelper &FN) {
    for (auto iter : Roots) {
      OS << "Thread " << iter.first << ":\n";
      print(OS, FN, iter.second);
      OS << "\n";
    }
  }

  /// Prints timing sums for each stack in each threads.
  template <AggregationType AggType>
  void printAllPerThread(raw_ostream &OS, FuncIdConversionHelper &FN,
                         StackOutputFormat format) {
    for (auto iter : Roots) {
      uint32_t threadId = iter.first;
      RootVector &perThreadRoots = iter.second;
      bool reportThreadId = true;
      printAll<AggType>(OS, FN, perThreadRoots, threadId, reportThreadId);
    }
  }

  /// Prints top stacks from looking at all the leaves and ignoring thread IDs.
  /// Stacks that consist of the same function IDs but were called in different
  /// thread IDs are not considered unique in this printout.
  void printIgnoringThreads(raw_ostream &OS, FuncIdConversionHelper &FN) {
    RootVector RootValues;

    // Function to pull the values out of a map iterator.
    using RootsType = decltype(Roots.begin())::value_type;
    auto MapValueFn = [](const RootsType &Value) { return Value.second; };

    for (const auto &RootNodeRange :
         make_range(map_iterator(Roots.begin(), MapValueFn),
                    map_iterator(Roots.end(), MapValueFn))) {
      for (auto *RootNode : RootNodeRange)
        RootValues.push_back(RootNode);
    }

    print(OS, FN, RootValues);
  }

  /// Creates a merged list of Tries for unique stacks that disregards their
  /// thread IDs.
  RootVector mergeAcrossThreads(std::forward_list<StackTrieNode> &NodeStore) {
    RootVector MergedByThreadRoots;
    for (auto MapIter : Roots) {
      const auto &RootNodeVector = MapIter.second;
      for (auto *Node : RootNodeVector) {
        auto MaybeFoundIter =
            find_if(MergedByThreadRoots, [Node](StackTrieNode *elem) {
              return Node->FuncId == elem->FuncId;
            });
        if (MaybeFoundIter == MergedByThreadRoots.end()) {
          MergedByThreadRoots.push_back(Node);
        } else {
          MergedByThreadRoots.push_back(mergeTrieNodes(
              **MaybeFoundIter, *Node, nullptr, NodeStore, mergeStackDuration));
          MergedByThreadRoots.erase(MaybeFoundIter);
        }
      }
    }
    return MergedByThreadRoots;
  }

  /// Print timing sums for all stacks merged by Thread ID.
  template <AggregationType AggType>
  void printAllAggregatingThreads(raw_ostream &OS, FuncIdConversionHelper &FN,
                                  StackOutputFormat format) {
    std::forward_list<StackTrieNode> AggregatedNodeStore;
    RootVector MergedByThreadRoots = mergeAcrossThreads(AggregatedNodeStore);
    bool reportThreadId = false;
    printAll<AggType>(OS, FN, MergedByThreadRoots,
                      /*threadId*/ 0, reportThreadId);
  }

  /// Merges the trie by thread id before printing top stacks.
  void printAggregatingThreads(raw_ostream &OS, FuncIdConversionHelper &FN) {
    std::forward_list<StackTrieNode> AggregatedNodeStore;
    RootVector MergedByThreadRoots = mergeAcrossThreads(AggregatedNodeStore);
    print(OS, FN, MergedByThreadRoots);
  }

  // TODO: Add a format option when more than one are supported.
  template <AggregationType AggType>
  void printAll(raw_ostream &OS, FuncIdConversionHelper &FN,
                RootVector RootValues, uint32_t ThreadId, bool ReportThread) {
    SmallVector<const StackTrieNode *, 16> S;
    for (const auto *N : RootValues) {
      S.clear();
      S.push_back(N);
      while (!S.empty()) {
        auto *Top = S.pop_back_val();
        printSingleStack<AggType>(OS, FN, ReportThread, ThreadId, Top);
        for (const auto *C : Top->Callees)
          S.push_back(C);
      }
    }
  }

  /// Prints values for stacks in a format consumable for the flamegraph.pl
  /// tool. This is a line based format that lists each level in the stack
  /// hierarchy in a semicolon delimited form followed by a space and a numeric
  /// value. If breaking down by thread, the thread ID will be added as the
  /// root level of the stack.
  template <AggregationType AggType>
  void printSingleStack(raw_ostream &OS, FuncIdConversionHelper &Converter,
                        bool ReportThread, uint32_t ThreadId,
                        const StackTrieNode *Node) {
    if (ReportThread)
      OS << "thread_" << ThreadId << ";";
    SmallVector<const StackTrieNode *, 5> lineage{};
    lineage.push_back(Node);
    while (lineage.back()->Parent != nullptr)
      lineage.push_back(lineage.back()->Parent);
    while (!lineage.empty()) {
      OS << Converter.SymbolOrNumber(lineage.back()->FuncId) << ";";
      lineage.pop_back();
    }
    OS << " " << GetValueForStack<AggType>(Node) << "\n";
  }

  void print(raw_ostream &OS, FuncIdConversionHelper &FN,
             RootVector RootValues) {
    // Go through each of the roots, and traverse the call stack, producing the
    // aggregates as you go along. Remember these aggregates and stacks, and
    // show summary statistics about:
    //
    //   - Total number of unique stacks
    //   - Top 10 stacks by count
    //   - Top 10 stacks by aggregate duration
    SmallVector<std::pair<const StackTrieNode *, uint64_t>, 11>
        TopStacksByCount;
    SmallVector<std::pair<const StackTrieNode *, uint64_t>, 11> TopStacksBySum;
    auto greater_second =
        [](const std::pair<const StackTrieNode *, uint64_t> &A,
           const std::pair<const StackTrieNode *, uint64_t> &B) {
          return A.second > B.second;
        };
    uint64_t UniqueStacks = 0;
    for (const auto *N : RootValues) {
      SmallVector<const StackTrieNode *, 16> S;
      S.emplace_back(N);

      while (!S.empty()) {
        auto *Top = S.pop_back_val();

        // We only start printing the stack (by walking up the parent pointers)
        // when we get to a leaf function.
        if (!Top->ExtraData.TerminalDurations.empty()) {
          ++UniqueStacks;
          auto TopSum =
              std::accumulate(Top->ExtraData.TerminalDurations.begin(),
                              Top->ExtraData.TerminalDurations.end(), 0uLL);
          {
            auto E = std::make_pair(Top, TopSum);
            TopStacksBySum.insert(
                llvm::lower_bound(TopStacksBySum, E, greater_second), E);
            if (TopStacksBySum.size() == 11)
              TopStacksBySum.pop_back();
          }
          {
            auto E =
                std::make_pair(Top, Top->ExtraData.TerminalDurations.size());
            TopStacksByCount.insert(std::lower_bound(TopStacksByCount.begin(),
                                                     TopStacksByCount.end(), E,
                                                     greater_second),
                                    E);
            if (TopStacksByCount.size() == 11)
              TopStacksByCount.pop_back();
          }
        }
        for (const auto *C : Top->Callees)
          S.push_back(C);
      }
    }

    // Now print the statistics in the end.
    OS << "\n";
    OS << "Unique Stacks: " << UniqueStacks << "\n";
    OS << "Top 10 Stacks by leaf sum:\n\n";
    for (const auto &P : TopStacksBySum) {
      OS << "Sum: " << P.second << "\n";
      printStack(OS, P.first, FN);
    }
    OS << "\n";
    OS << "Top 10 Stacks by leaf count:\n\n";
    for (const auto &P : TopStacksByCount) {
      OS << "Count: " << P.second << "\n";
      printStack(OS, P.first, FN);
    }
    OS << "\n";
  }
};

static std::string CreateErrorMessage(StackTrie::AccountRecordStatus Error,
                                      const XRayRecord &Record,
                                      const FuncIdConversionHelper &Converter) {
  switch (Error) {
  case StackTrie::AccountRecordStatus::ENTRY_NOT_FOUND:
    return std::string(
        formatv("Found record {0} with no matching function entry\n",
                format_xray_record(Record, Converter)));
  default:
    return std::string(formatv("Unknown error type for record {0}\n",
                               format_xray_record(Record, Converter)));
  }
}

static CommandRegistration Unused(&Stack, []() -> Error {
  // Load each file provided as a command-line argument. For each one of them
  // account to a single StackTrie, and just print the whole trie for now.
  StackTrie ST;
  InstrumentationMap Map;
  if (!StacksInstrMap.empty()) {
    auto InstrumentationMapOrError = loadInstrumentationMap(StacksInstrMap);
    if (!InstrumentationMapOrError)
      return joinErrors(
          make_error<StringError>(
              Twine("Cannot open instrumentation map: ") + StacksInstrMap,
              std::make_error_code(std::errc::invalid_argument)),
          InstrumentationMapOrError.takeError());
    Map = std::move(*InstrumentationMapOrError);
  }

  if (SeparateThreadStacks && AggregateThreads)
    return make_error<StringError>(
        Twine("Can't specify options for per thread reporting and reporting "
              "that aggregates threads."),
        std::make_error_code(std::errc::invalid_argument));

  if (!DumpAllStacks && StacksOutputFormat != HUMAN)
    return make_error<StringError>(
        Twine("Can't specify a non-human format without -all-stacks."),
        std::make_error_code(std::errc::invalid_argument));

  if (DumpAllStacks && StacksOutputFormat == HUMAN)
    return make_error<StringError>(
        Twine("You must specify a non-human format when reporting with "
              "-all-stacks."),
        std::make_error_code(std::errc::invalid_argument));

  symbolize::LLVMSymbolizer Symbolizer;
  FuncIdConversionHelper FuncIdHelper(StacksInstrMap, Symbolizer,
                                      Map.getFunctionAddresses());
  // TODO: Someday, support output to files instead of just directly to
  // standard output.
  for (const auto &Filename : StackInputs) {
    auto TraceOrErr = loadTraceFile(Filename);
    if (!TraceOrErr) {
      if (!StackKeepGoing)
        return joinErrors(
            make_error<StringError>(
                Twine("Failed loading input file '") + Filename + "'",
                std::make_error_code(std::errc::invalid_argument)),
            TraceOrErr.takeError());
      logAllUnhandledErrors(TraceOrErr.takeError(), errs());
      continue;
    }
    auto &T = *TraceOrErr;
    StackTrie::AccountRecordState AccountRecordState =
        StackTrie::AccountRecordState::CreateInitialState();
    for (const auto &Record : T) {
      auto error = ST.accountRecord(Record, &AccountRecordState);
      if (error != StackTrie::AccountRecordStatus::OK) {
        if (!StackKeepGoing)
          return make_error<StringError>(
              CreateErrorMessage(error, Record, FuncIdHelper),
              make_error_code(errc::illegal_byte_sequence));
        errs() << CreateErrorMessage(error, Record, FuncIdHelper);
      }
    }
  }
  if (ST.isEmpty()) {
    return make_error<StringError>(
        "No instrumented calls were accounted in the input file.",
        make_error_code(errc::result_out_of_range));
  }

  // Report the stacks in a long form mode for another tool to analyze.
  if (DumpAllStacks) {
    if (AggregateThreads) {
      switch (RequestedAggregation) {
      case AggregationType::TOTAL_TIME:
        ST.printAllAggregatingThreads<AggregationType::TOTAL_TIME>(
            outs(), FuncIdHelper, StacksOutputFormat);
        break;
      case AggregationType::INVOCATION_COUNT:
        ST.printAllAggregatingThreads<AggregationType::INVOCATION_COUNT>(
            outs(), FuncIdHelper, StacksOutputFormat);
        break;
      }
    } else {
      switch (RequestedAggregation) {
      case AggregationType::TOTAL_TIME:
        ST.printAllPerThread<AggregationType::TOTAL_TIME>(outs(), FuncIdHelper,
                                                          StacksOutputFormat);
        break;
      case AggregationType::INVOCATION_COUNT:
        ST.printAllPerThread<AggregationType::INVOCATION_COUNT>(
            outs(), FuncIdHelper, StacksOutputFormat);
        break;
      }
    }
    return Error::success();
  }

  // We're only outputting top stacks.
  if (AggregateThreads) {
    ST.printAggregatingThreads(outs(), FuncIdHelper);
  } else if (SeparateThreadStacks) {
    ST.printPerThread(outs(), FuncIdHelper);
  } else {
    ST.printIgnoringThreads(outs(), FuncIdHelper);
  }
  return Error::success();
});