ScalarEvolutionExpanderTest.cpp
35.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
//=== ScalarEvolutionExpanderTest.cpp - ScalarEvolutionExpander unit tests ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Verifier.h"
#include "gtest/gtest.h"
namespace llvm {
using namespace PatternMatch;
// We use this fixture to ensure that we clean up ScalarEvolution before
// deleting the PassManager.
class ScalarEvolutionExpanderTest : public testing::Test {
protected:
LLVMContext Context;
Module M;
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI;
std::unique_ptr<AssumptionCache> AC;
std::unique_ptr<DominatorTree> DT;
std::unique_ptr<LoopInfo> LI;
ScalarEvolutionExpanderTest() : M("", Context), TLII(), TLI(TLII) {}
ScalarEvolution buildSE(Function &F) {
AC.reset(new AssumptionCache(F));
DT.reset(new DominatorTree(F));
LI.reset(new LoopInfo(*DT));
return ScalarEvolution(F, TLI, *AC, *DT, *LI);
}
void runWithSE(
Module &M, StringRef FuncName,
function_ref<void(Function &F, LoopInfo &LI, ScalarEvolution &SE)> Test) {
auto *F = M.getFunction(FuncName);
ASSERT_NE(F, nullptr) << "Could not find " << FuncName;
ScalarEvolution SE = buildSE(*F);
Test(*F, *LI, SE);
}
};
static Instruction &GetInstByName(Function &F, StringRef Name) {
for (auto &I : instructions(F))
if (I.getName() == Name)
return I;
llvm_unreachable("Could not find instructions!");
}
TEST_F(ScalarEvolutionExpanderTest, ExpandPtrTypeSCEV) {
// It is to test the fix for PR30213. It exercises the branch in scev
// expansion when the value in ValueOffsetPair is a ptr and the offset
// is not divisible by the elem type size of value.
auto *I8Ty = Type::getInt8Ty(Context);
auto *I8PtrTy = Type::getInt8PtrTy(Context);
auto *I32Ty = Type::getInt32Ty(Context);
auto *I32PtrTy = Type::getInt32PtrTy(Context);
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false);
Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F);
BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F);
BranchInst::Create(LoopBB, EntryBB);
ReturnInst::Create(Context, nullptr, ExitBB);
// loop: ; preds = %loop, %entry
// %alloca = alloca i32
// %gep0 = getelementptr i32, i32* %alloca, i32 1
// %bitcast1 = bitcast i32* %gep0 to i8*
// %gep1 = getelementptr i8, i8* %bitcast1, i32 1
// %gep2 = getelementptr i8, i8* undef, i32 1
// %cmp = icmp ult i8* undef, %bitcast1
// %select = select i1 %cmp, i8* %gep1, i8* %gep2
// %bitcast2 = bitcast i8* %select to i32*
// br i1 undef, label %loop, label %exit
const DataLayout &DL = F->getParent()->getDataLayout();
BranchInst *Br = BranchInst::Create(
LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB);
AllocaInst *Alloca =
new AllocaInst(I32Ty, DL.getAllocaAddrSpace(), "alloca", Br);
ConstantInt *Ci32 = ConstantInt::get(Context, APInt(32, 1));
GetElementPtrInst *Gep0 =
GetElementPtrInst::Create(I32Ty, Alloca, Ci32, "gep0", Br);
CastInst *CastA =
CastInst::CreateBitOrPointerCast(Gep0, I8PtrTy, "bitcast1", Br);
GetElementPtrInst *Gep1 =
GetElementPtrInst::Create(I8Ty, CastA, Ci32, "gep1", Br);
GetElementPtrInst *Gep2 = GetElementPtrInst::Create(
I8Ty, UndefValue::get(I8PtrTy), Ci32, "gep2", Br);
CmpInst *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULT,
UndefValue::get(I8PtrTy), CastA, "cmp", Br);
SelectInst *Sel = SelectInst::Create(Cmp, Gep1, Gep2, "select", Br);
CastInst *CastB =
CastInst::CreateBitOrPointerCast(Sel, I32PtrTy, "bitcast2", Br);
ScalarEvolution SE = buildSE(*F);
auto *S = SE.getSCEV(CastB);
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
Value *V =
Exp.expandCodeFor(cast<SCEVAddExpr>(S)->getOperand(1), nullptr, Br);
// Expect the expansion code contains:
// %0 = bitcast i32* %bitcast2 to i8*
// %uglygep = getelementptr i8, i8* %0, i64 -1
// %1 = bitcast i8* %uglygep to i32*
EXPECT_TRUE(isa<BitCastInst>(V));
Instruction *Gep = cast<Instruction>(V)->getPrevNode();
EXPECT_TRUE(isa<GetElementPtrInst>(Gep));
EXPECT_TRUE(isa<ConstantInt>(Gep->getOperand(1)));
EXPECT_EQ(cast<ConstantInt>(Gep->getOperand(1))->getSExtValue(), -1);
EXPECT_TRUE(isa<BitCastInst>(Gep->getPrevNode()));
}
// Make sure that SCEV doesn't introduce illegal ptrtoint/inttoptr instructions
TEST_F(ScalarEvolutionExpanderTest, SCEVZeroExtendExprNonIntegral) {
/*
* Create the following code:
* func(i64 addrspace(10)* %arg)
* top:
* br label %L.ph
* L.ph:
* br label %L
* L:
* %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ]
* %add = add i64 %phi2, 1
* br i1 undef, label %post, label %L2
* post:
* %gepbase = getelementptr i64 addrspace(10)* %arg, i64 1
* #= %gep = getelementptr i64 addrspace(10)* %gepbase, i64 %add =#
* ret void
*
* We will create the appropriate SCEV expression for %gep and expand it,
* then check that no inttoptr/ptrtoint instructions got inserted.
*/
// Create a module with non-integral pointers in it's datalayout
Module NIM("nonintegral", Context);
std::string DataLayout = M.getDataLayoutStr();
if (!DataLayout.empty())
DataLayout += "-";
DataLayout += "ni:10";
NIM.setDataLayout(DataLayout);
Type *T_int1 = Type::getInt1Ty(Context);
Type *T_int64 = Type::getInt64Ty(Context);
Type *T_pint64 = T_int64->getPointerTo(10);
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false);
Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM);
Argument *Arg = &*F->arg_begin();
BasicBlock *Top = BasicBlock::Create(Context, "top", F);
BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F);
BasicBlock *L = BasicBlock::Create(Context, "L", F);
BasicBlock *Post = BasicBlock::Create(Context, "post", F);
IRBuilder<> Builder(Top);
Builder.CreateBr(LPh);
Builder.SetInsertPoint(LPh);
Builder.CreateBr(L);
Builder.SetInsertPoint(L);
PHINode *Phi = Builder.CreatePHI(T_int64, 2);
Value *Add = Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add");
Builder.CreateCondBr(UndefValue::get(T_int1), L, Post);
Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh);
Phi->addIncoming(Add, L);
Builder.SetInsertPoint(Post);
Value *GepBase =
Builder.CreateGEP(T_int64, Arg, ConstantInt::get(T_int64, 1));
Instruction *Ret = Builder.CreateRetVoid();
ScalarEvolution SE = buildSE(*F);
auto *AddRec =
SE.getAddRecExpr(SE.getUnknown(GepBase), SE.getConstant(T_int64, 1),
LI->getLoopFor(L), SCEV::FlagNUW);
SCEVExpander Exp(SE, NIM.getDataLayout(), "expander");
Exp.disableCanonicalMode();
Exp.expandCodeFor(AddRec, T_pint64, Ret);
// Make sure none of the instructions inserted were inttoptr/ptrtoint.
// The verifier will check this.
EXPECT_FALSE(verifyFunction(*F, &errs()));
}
// Check that we can correctly identify the points at which the SCEV of the
// AddRec can be expanded.
TEST_F(ScalarEvolutionExpanderTest, SCEVExpanderIsSafeToExpandAt) {
/*
* Create the following code:
* func(i64 addrspace(10)* %arg)
* top:
* br label %L.ph
* L.ph:
* br label %L
* L:
* %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ]
* %add = add i64 %phi2, 1
* %cond = icmp slt i64 %add, 1000; then becomes 2000.
* br i1 %cond, label %post, label %L2
* post:
* ret void
*
*/
// Create a module with non-integral pointers in it's datalayout
Module NIM("nonintegral", Context);
std::string DataLayout = M.getDataLayoutStr();
if (!DataLayout.empty())
DataLayout += "-";
DataLayout += "ni:10";
NIM.setDataLayout(DataLayout);
Type *T_int64 = Type::getInt64Ty(Context);
Type *T_pint64 = T_int64->getPointerTo(10);
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false);
Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM);
BasicBlock *Top = BasicBlock::Create(Context, "top", F);
BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F);
BasicBlock *L = BasicBlock::Create(Context, "L", F);
BasicBlock *Post = BasicBlock::Create(Context, "post", F);
IRBuilder<> Builder(Top);
Builder.CreateBr(LPh);
Builder.SetInsertPoint(LPh);
Builder.CreateBr(L);
Builder.SetInsertPoint(L);
PHINode *Phi = Builder.CreatePHI(T_int64, 2);
auto *Add = cast<Instruction>(
Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add"));
auto *Limit = ConstantInt::get(T_int64, 1000);
auto *Cond = cast<Instruction>(
Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Limit, "cond"));
Builder.CreateCondBr(Cond, L, Post);
Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh);
Phi->addIncoming(Add, L);
Builder.SetInsertPoint(Post);
Instruction *Ret = Builder.CreateRetVoid();
ScalarEvolution SE = buildSE(*F);
const SCEV *S = SE.getSCEV(Phi);
EXPECT_TRUE(isa<SCEVAddRecExpr>(S));
const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
EXPECT_TRUE(AR->isAffine());
EXPECT_FALSE(isSafeToExpandAt(AR, Top->getTerminator(), SE));
EXPECT_FALSE(isSafeToExpandAt(AR, LPh->getTerminator(), SE));
EXPECT_TRUE(isSafeToExpandAt(AR, L->getTerminator(), SE));
EXPECT_TRUE(isSafeToExpandAt(AR, Post->getTerminator(), SE));
EXPECT_TRUE(LI->getLoopFor(L)->isLCSSAForm(*DT));
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
Exp.expandCodeFor(SE.getSCEV(Add), nullptr, Ret);
EXPECT_TRUE(LI->getLoopFor(L)->isLCSSAForm(*DT));
}
// Check that SCEV expander does not use the nuw instruction
// for expansion.
TEST_F(ScalarEvolutionExpanderTest, SCEVExpanderNUW) {
/*
* Create the following code:
* func(i64 %a)
* entry:
* br false, label %exit, label %body
* body:
* %s1 = add i64 %a, -1
* br label %exit
* exit:
* %s = add nuw i64 %a, -1
* ret %s
*/
// Create a module.
Module M("SCEVExpanderNUW", Context);
Type *T_int64 = Type::getInt64Ty(Context);
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Context), {T_int64}, false);
Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M);
Argument *Arg = &*F->arg_begin();
ConstantInt *C = ConstantInt::get(Context, APInt(64, -1));
BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
BasicBlock *Body = BasicBlock::Create(Context, "body", F);
BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
IRBuilder<> Builder(Entry);
ConstantInt *Cond = ConstantInt::get(Context, APInt(1, 0));
Builder.CreateCondBr(Cond, Exit, Body);
Builder.SetInsertPoint(Body);
auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
Builder.CreateBr(Exit);
Builder.SetInsertPoint(Exit);
auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
S2->setHasNoUnsignedWrap(true);
auto *R = cast<Instruction>(Builder.CreateRetVoid());
ScalarEvolution SE = buildSE(*F);
const SCEV *S = SE.getSCEV(S1);
EXPECT_TRUE(isa<SCEVAddExpr>(S));
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
auto *I = cast<Instruction>(Exp.expandCodeFor(S, nullptr, R));
EXPECT_FALSE(I->hasNoUnsignedWrap());
}
// Check that SCEV expander does not use the nsw instruction
// for expansion.
TEST_F(ScalarEvolutionExpanderTest, SCEVExpanderNSW) {
/*
* Create the following code:
* func(i64 %a)
* entry:
* br false, label %exit, label %body
* body:
* %s1 = add i64 %a, -1
* br label %exit
* exit:
* %s = add nsw i64 %a, -1
* ret %s
*/
// Create a module.
Module M("SCEVExpanderNSW", Context);
Type *T_int64 = Type::getInt64Ty(Context);
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Context), {T_int64}, false);
Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M);
Argument *Arg = &*F->arg_begin();
ConstantInt *C = ConstantInt::get(Context, APInt(64, -1));
BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
BasicBlock *Body = BasicBlock::Create(Context, "body", F);
BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
IRBuilder<> Builder(Entry);
ConstantInt *Cond = ConstantInt::get(Context, APInt(1, 0));
Builder.CreateCondBr(Cond, Exit, Body);
Builder.SetInsertPoint(Body);
auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
Builder.CreateBr(Exit);
Builder.SetInsertPoint(Exit);
auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
S2->setHasNoSignedWrap(true);
auto *R = cast<Instruction>(Builder.CreateRetVoid());
ScalarEvolution SE = buildSE(*F);
const SCEV *S = SE.getSCEV(S1);
EXPECT_TRUE(isa<SCEVAddExpr>(S));
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
auto *I = cast<Instruction>(Exp.expandCodeFor(S, nullptr, R));
EXPECT_FALSE(I->hasNoSignedWrap());
}
// Check that SCEV does not save the SCEV -> V
// mapping of SCEV differ from V in NUW flag.
TEST_F(ScalarEvolutionExpanderTest, SCEVCacheNUW) {
/*
* Create the following code:
* func(i64 %a)
* entry:
* %s1 = add i64 %a, -1
* %s2 = add nuw i64 %a, -1
* br label %exit
* exit:
* ret %s
*/
// Create a module.
Module M("SCEVCacheNUW", Context);
Type *T_int64 = Type::getInt64Ty(Context);
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Context), {T_int64}, false);
Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M);
Argument *Arg = &*F->arg_begin();
ConstantInt *C = ConstantInt::get(Context, APInt(64, -1));
BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
IRBuilder<> Builder(Entry);
auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
S2->setHasNoUnsignedWrap(true);
Builder.CreateBr(Exit);
Builder.SetInsertPoint(Exit);
auto *R = cast<Instruction>(Builder.CreateRetVoid());
ScalarEvolution SE = buildSE(*F);
// Get S2 first to move it to cache.
const SCEV *SC2 = SE.getSCEV(S2);
EXPECT_TRUE(isa<SCEVAddExpr>(SC2));
// Now get S1.
const SCEV *SC1 = SE.getSCEV(S1);
EXPECT_TRUE(isa<SCEVAddExpr>(SC1));
// Expand for S1, it should use S1 not S2 in spite S2
// first in the cache.
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
auto *I = cast<Instruction>(Exp.expandCodeFor(SC1, nullptr, R));
EXPECT_FALSE(I->hasNoUnsignedWrap());
}
// Check that SCEV does not save the SCEV -> V
// mapping of SCEV differ from V in NSW flag.
TEST_F(ScalarEvolutionExpanderTest, SCEVCacheNSW) {
/*
* Create the following code:
* func(i64 %a)
* entry:
* %s1 = add i64 %a, -1
* %s2 = add nsw i64 %a, -1
* br label %exit
* exit:
* ret %s
*/
// Create a module.
Module M("SCEVCacheNUW", Context);
Type *T_int64 = Type::getInt64Ty(Context);
FunctionType *FTy =
FunctionType::get(Type::getVoidTy(Context), {T_int64}, false);
Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M);
Argument *Arg = &*F->arg_begin();
ConstantInt *C = ConstantInt::get(Context, APInt(64, -1));
BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
IRBuilder<> Builder(Entry);
auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
S2->setHasNoSignedWrap(true);
Builder.CreateBr(Exit);
Builder.SetInsertPoint(Exit);
auto *R = cast<Instruction>(Builder.CreateRetVoid());
ScalarEvolution SE = buildSE(*F);
// Get S2 first to move it to cache.
const SCEV *SC2 = SE.getSCEV(S2);
EXPECT_TRUE(isa<SCEVAddExpr>(SC2));
// Now get S1.
const SCEV *SC1 = SE.getSCEV(S1);
EXPECT_TRUE(isa<SCEVAddExpr>(SC1));
// Expand for S1, it should use S1 not S2 in spite S2
// first in the cache.
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
auto *I = cast<Instruction>(Exp.expandCodeFor(SC1, nullptr, R));
EXPECT_FALSE(I->hasNoSignedWrap());
}
TEST_F(ScalarEvolutionExpanderTest, SCEVExpandInsertCanonicalIV) {
LLVMContext C;
SMDiagnostic Err;
// Expand the addrec produced by GetAddRec into a loop without a canonical IV.
// SCEVExpander will insert one.
auto TestNoCanonicalIV =
[&](std::function<const SCEV *(ScalarEvolution & SE, Loop * L)>
GetAddRec) {
std::unique_ptr<Module> M = parseAssemblyString(
"define i32 @test(i32 %limit) { "
"entry: "
" br label %loop "
"loop: "
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
" %i.inc = add nsw i32 %i, 1 "
" %cont = icmp slt i32 %i.inc, %limit "
" br i1 %cont, label %loop, label %exit "
"exit: "
" ret i32 %i.inc "
"}",
Err, C);
assert(M && "Could not parse module?");
assert(!verifyModule(*M) && "Must have been well formed!");
runWithSE(
*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
auto &I = GetInstByName(F, "i");
auto *Loop = LI.getLoopFor(I.getParent());
EXPECT_FALSE(Loop->getCanonicalInductionVariable());
auto *AR = GetAddRec(SE, Loop);
unsigned ExpectedCanonicalIVWidth =
SE.getTypeSizeInBits(AR->getType());
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
auto *InsertAt = I.getNextNode();
Exp.expandCodeFor(AR, nullptr, InsertAt);
PHINode *CanonicalIV = Loop->getCanonicalInductionVariable();
unsigned CanonicalIVBitWidth =
cast<IntegerType>(CanonicalIV->getType())->getBitWidth();
EXPECT_EQ(CanonicalIVBitWidth, ExpectedCanonicalIVWidth);
});
};
// Expand the addrec produced by GetAddRec into a loop with a canonical IV
// which is narrower than addrec type.
// SCEVExpander will insert a canonical IV of a wider type to expand the
// addrec.
auto TestNarrowCanonicalIV = [&](std::function<const SCEV *(
ScalarEvolution & SE, Loop * L)>
GetAddRec) {
std::unique_ptr<Module> M = parseAssemblyString(
"define i32 @test(i32 %limit) { "
"entry: "
" br label %loop "
"loop: "
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
" %canonical.iv = phi i8 [ 0, %entry ], [ %canonical.iv.inc, %loop ] "
" %i.inc = add nsw i32 %i, 1 "
" %canonical.iv.inc = add i8 %canonical.iv, 1 "
" %cont = icmp slt i32 %i.inc, %limit "
" br i1 %cont, label %loop, label %exit "
"exit: "
" ret i32 %i.inc "
"}",
Err, C);
assert(M && "Could not parse module?");
assert(!verifyModule(*M) && "Must have been well formed!");
runWithSE(*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
auto &I = GetInstByName(F, "i");
auto *LoopHeaderBB = I.getParent();
auto *Loop = LI.getLoopFor(LoopHeaderBB);
PHINode *CanonicalIV = Loop->getCanonicalInductionVariable();
EXPECT_EQ(CanonicalIV, &GetInstByName(F, "canonical.iv"));
auto *AR = GetAddRec(SE, Loop);
unsigned ExpectedCanonicalIVWidth = SE.getTypeSizeInBits(AR->getType());
unsigned CanonicalIVBitWidth =
cast<IntegerType>(CanonicalIV->getType())->getBitWidth();
EXPECT_LT(CanonicalIVBitWidth, ExpectedCanonicalIVWidth);
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
auto *InsertAt = I.getNextNode();
Exp.expandCodeFor(AR, nullptr, InsertAt);
// Loop over all of the PHI nodes, looking for the new canonical indvar.
PHINode *NewCanonicalIV = nullptr;
for (BasicBlock::iterator i = LoopHeaderBB->begin(); isa<PHINode>(i);
++i) {
PHINode *PN = cast<PHINode>(i);
if (PN == &I || PN == CanonicalIV)
continue;
// We expect that the only PHI added is the new canonical IV
EXPECT_FALSE(NewCanonicalIV);
NewCanonicalIV = PN;
}
// Check that NewCanonicalIV is a canonical IV, i.e {0,+,1}
BasicBlock *Incoming = nullptr, *Backedge = nullptr;
EXPECT_TRUE(Loop->getIncomingAndBackEdge(Incoming, Backedge));
auto *Start = NewCanonicalIV->getIncomingValueForBlock(Incoming);
EXPECT_TRUE(isa<ConstantInt>(Start));
EXPECT_TRUE(dyn_cast<ConstantInt>(Start)->isZero());
auto *Next = NewCanonicalIV->getIncomingValueForBlock(Backedge);
EXPECT_TRUE(isa<BinaryOperator>(Next));
auto *NextBinOp = dyn_cast<BinaryOperator>(Next);
EXPECT_EQ(NextBinOp->getOpcode(), Instruction::Add);
EXPECT_EQ(NextBinOp->getOperand(0), NewCanonicalIV);
auto *Step = NextBinOp->getOperand(1);
EXPECT_TRUE(isa<ConstantInt>(Step));
EXPECT_TRUE(dyn_cast<ConstantInt>(Step)->isOne());
unsigned NewCanonicalIVBitWidth =
cast<IntegerType>(NewCanonicalIV->getType())->getBitWidth();
EXPECT_EQ(NewCanonicalIVBitWidth, ExpectedCanonicalIVWidth);
});
};
// Expand the addrec produced by GetAddRec into a loop with a canonical IV
// of addrec width.
// To expand the addrec SCEVExpander should use the existing canonical IV.
auto TestMatchingCanonicalIV =
[&](std::function<const SCEV *(ScalarEvolution & SE, Loop * L)> GetAddRec,
unsigned ARBitWidth) {
auto ARBitWidthTypeStr = "i" + std::to_string(ARBitWidth);
std::unique_ptr<Module> M = parseAssemblyString(
"define i32 @test(i32 %limit) { "
"entry: "
" br label %loop "
"loop: "
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
" %canonical.iv = phi " +
ARBitWidthTypeStr +
" [ 0, %entry ], [ %canonical.iv.inc, %loop ] "
" %i.inc = add nsw i32 %i, 1 "
" %canonical.iv.inc = add " +
ARBitWidthTypeStr +
" %canonical.iv, 1 "
" %cont = icmp slt i32 %i.inc, %limit "
" br i1 %cont, label %loop, label %exit "
"exit: "
" ret i32 %i.inc "
"}",
Err, C);
assert(M && "Could not parse module?");
assert(!verifyModule(*M) && "Must have been well formed!");
runWithSE(
*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
auto &I = GetInstByName(F, "i");
auto &CanonicalIV = GetInstByName(F, "canonical.iv");
auto *LoopHeaderBB = I.getParent();
auto *Loop = LI.getLoopFor(LoopHeaderBB);
EXPECT_EQ(&CanonicalIV, Loop->getCanonicalInductionVariable());
unsigned CanonicalIVBitWidth =
cast<IntegerType>(CanonicalIV.getType())->getBitWidth();
auto *AR = GetAddRec(SE, Loop);
EXPECT_EQ(ARBitWidth, SE.getTypeSizeInBits(AR->getType()));
EXPECT_EQ(CanonicalIVBitWidth, ARBitWidth);
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
auto *InsertAt = I.getNextNode();
Exp.expandCodeFor(AR, nullptr, InsertAt);
// Loop over all of the PHI nodes, looking if a new canonical
// indvar was introduced.
PHINode *NewCanonicalIV = nullptr;
for (BasicBlock::iterator i = LoopHeaderBB->begin();
isa<PHINode>(i); ++i) {
PHINode *PN = cast<PHINode>(i);
if (PN == &I || PN == &CanonicalIV)
continue;
NewCanonicalIV = PN;
}
EXPECT_FALSE(NewCanonicalIV);
});
};
unsigned ARBitWidth = 16;
Type *ARType = IntegerType::get(C, ARBitWidth);
// Expand {5,+,1}
auto GetAR2 = [&](ScalarEvolution &SE, Loop *L) -> const SCEV * {
return SE.getAddRecExpr(SE.getConstant(APInt(ARBitWidth, 5)),
SE.getOne(ARType), L, SCEV::FlagAnyWrap);
};
TestNoCanonicalIV(GetAR2);
TestNarrowCanonicalIV(GetAR2);
TestMatchingCanonicalIV(GetAR2, ARBitWidth);
}
TEST_F(ScalarEvolutionExpanderTest, SCEVExpanderShlNSW) {
auto checkOneCase = [this](std::string &&str) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(str, Err, C);
assert(M && "Could not parse module?");
assert(!verifyModule(*M) && "Must have been well formed!");
Function *F = M->getFunction("f");
ASSERT_NE(F, nullptr) << "Could not find function 'f'";
BasicBlock &Entry = F->getEntryBlock();
LoadInst *Load = cast<LoadInst>(&Entry.front());
BinaryOperator *And = cast<BinaryOperator>(*Load->user_begin());
ScalarEvolution SE = buildSE(*F);
const SCEV *AndSCEV = SE.getSCEV(And);
EXPECT_TRUE(isa<SCEVMulExpr>(AndSCEV));
EXPECT_TRUE(cast<SCEVMulExpr>(AndSCEV)->hasNoSignedWrap());
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
auto *I = cast<Instruction>(Exp.expandCodeFor(AndSCEV, nullptr, And));
EXPECT_EQ(I->getOpcode(), Instruction::Shl);
EXPECT_FALSE(I->hasNoSignedWrap());
};
checkOneCase("define void @f(i16* %arrayidx) { "
" %1 = load i16, i16* %arrayidx "
" %2 = and i16 %1, -32768 "
" ret void "
"} ");
checkOneCase("define void @f(i8* %arrayidx) { "
" %1 = load i8, i8* %arrayidx "
" %2 = and i8 %1, -128 "
" ret void "
"} ");
}
// Test expansion of nested addrecs in CanonicalMode.
// Expanding nested addrecs in canonical mode requiers a canonical IV of a
// type wider than the type of the addrec itself. Currently, SCEVExpander
// just falls back to literal mode for nested addrecs.
TEST_F(ScalarEvolutionExpanderTest, SCEVExpandNonAffineAddRec) {
LLVMContext C;
SMDiagnostic Err;
// Expand the addrec produced by GetAddRec into a loop without a canonical IV.
auto TestNoCanonicalIV =
[&](std::function<const SCEVAddRecExpr *(ScalarEvolution & SE, Loop * L)>
GetAddRec) {
std::unique_ptr<Module> M = parseAssemblyString(
"define i32 @test(i32 %limit) { "
"entry: "
" br label %loop "
"loop: "
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
" %i.inc = add nsw i32 %i, 1 "
" %cont = icmp slt i32 %i.inc, %limit "
" br i1 %cont, label %loop, label %exit "
"exit: "
" ret i32 %i.inc "
"}",
Err, C);
assert(M && "Could not parse module?");
assert(!verifyModule(*M) && "Must have been well formed!");
runWithSE(*M, "test",
[&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
auto &I = GetInstByName(F, "i");
auto *Loop = LI.getLoopFor(I.getParent());
EXPECT_FALSE(Loop->getCanonicalInductionVariable());
auto *AR = GetAddRec(SE, Loop);
EXPECT_FALSE(AR->isAffine());
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
auto *InsertAt = I.getNextNode();
Value *V = Exp.expandCodeFor(AR, nullptr, InsertAt);
auto *ExpandedAR = SE.getSCEV(V);
// Check that the expansion happened literally.
EXPECT_EQ(AR, ExpandedAR);
});
};
// Expand the addrec produced by GetAddRec into a loop with a canonical IV
// which is narrower than addrec type.
auto TestNarrowCanonicalIV = [&](std::function<const SCEVAddRecExpr *(
ScalarEvolution & SE, Loop * L)>
GetAddRec) {
std::unique_ptr<Module> M = parseAssemblyString(
"define i32 @test(i32 %limit) { "
"entry: "
" br label %loop "
"loop: "
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
" %canonical.iv = phi i8 [ 0, %entry ], [ %canonical.iv.inc, %loop ] "
" %i.inc = add nsw i32 %i, 1 "
" %canonical.iv.inc = add i8 %canonical.iv, 1 "
" %cont = icmp slt i32 %i.inc, %limit "
" br i1 %cont, label %loop, label %exit "
"exit: "
" ret i32 %i.inc "
"}",
Err, C);
assert(M && "Could not parse module?");
assert(!verifyModule(*M) && "Must have been well formed!");
runWithSE(*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
auto &I = GetInstByName(F, "i");
auto *LoopHeaderBB = I.getParent();
auto *Loop = LI.getLoopFor(LoopHeaderBB);
PHINode *CanonicalIV = Loop->getCanonicalInductionVariable();
EXPECT_EQ(CanonicalIV, &GetInstByName(F, "canonical.iv"));
auto *AR = GetAddRec(SE, Loop);
EXPECT_FALSE(AR->isAffine());
unsigned ExpectedCanonicalIVWidth = SE.getTypeSizeInBits(AR->getType());
unsigned CanonicalIVBitWidth =
cast<IntegerType>(CanonicalIV->getType())->getBitWidth();
EXPECT_LT(CanonicalIVBitWidth, ExpectedCanonicalIVWidth);
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
auto *InsertAt = I.getNextNode();
Value *V = Exp.expandCodeFor(AR, nullptr, InsertAt);
auto *ExpandedAR = SE.getSCEV(V);
// Check that the expansion happened literally.
EXPECT_EQ(AR, ExpandedAR);
});
};
// Expand the addrec produced by GetAddRec into a loop with a canonical IV
// of addrec width.
auto TestMatchingCanonicalIV =
[&](std::function<const SCEVAddRecExpr *(ScalarEvolution & SE, Loop * L)>
GetAddRec,
unsigned ARBitWidth) {
auto ARBitWidthTypeStr = "i" + std::to_string(ARBitWidth);
std::unique_ptr<Module> M = parseAssemblyString(
"define i32 @test(i32 %limit) { "
"entry: "
" br label %loop "
"loop: "
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
" %canonical.iv = phi " +
ARBitWidthTypeStr +
" [ 0, %entry ], [ %canonical.iv.inc, %loop ] "
" %i.inc = add nsw i32 %i, 1 "
" %canonical.iv.inc = add " +
ARBitWidthTypeStr +
" %canonical.iv, 1 "
" %cont = icmp slt i32 %i.inc, %limit "
" br i1 %cont, label %loop, label %exit "
"exit: "
" ret i32 %i.inc "
"}",
Err, C);
assert(M && "Could not parse module?");
assert(!verifyModule(*M) && "Must have been well formed!");
runWithSE(
*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
auto &I = GetInstByName(F, "i");
auto &CanonicalIV = GetInstByName(F, "canonical.iv");
auto *LoopHeaderBB = I.getParent();
auto *Loop = LI.getLoopFor(LoopHeaderBB);
EXPECT_EQ(&CanonicalIV, Loop->getCanonicalInductionVariable());
unsigned CanonicalIVBitWidth =
cast<IntegerType>(CanonicalIV.getType())->getBitWidth();
auto *AR = GetAddRec(SE, Loop);
EXPECT_FALSE(AR->isAffine());
EXPECT_EQ(ARBitWidth, SE.getTypeSizeInBits(AR->getType()));
EXPECT_EQ(CanonicalIVBitWidth, ARBitWidth);
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
auto *InsertAt = I.getNextNode();
Value *V = Exp.expandCodeFor(AR, nullptr, InsertAt);
auto *ExpandedAR = SE.getSCEV(V);
// Check that the expansion happened literally.
EXPECT_EQ(AR, ExpandedAR);
});
};
unsigned ARBitWidth = 16;
Type *ARType = IntegerType::get(C, ARBitWidth);
// Expand {5,+,1,+,1}
auto GetAR3 = [&](ScalarEvolution &SE, Loop *L) -> const SCEVAddRecExpr * {
SmallVector<const SCEV *, 3> Ops = {SE.getConstant(APInt(ARBitWidth, 5)),
SE.getOne(ARType), SE.getOne(ARType)};
return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, L, SCEV::FlagAnyWrap));
};
TestNoCanonicalIV(GetAR3);
TestNarrowCanonicalIV(GetAR3);
TestMatchingCanonicalIV(GetAR3, ARBitWidth);
// Expand {5,+,1,+,1,+,1}
auto GetAR4 = [&](ScalarEvolution &SE, Loop *L) -> const SCEVAddRecExpr * {
SmallVector<const SCEV *, 4> Ops = {SE.getConstant(APInt(ARBitWidth, 5)),
SE.getOne(ARType), SE.getOne(ARType),
SE.getOne(ARType)};
return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, L, SCEV::FlagAnyWrap));
};
TestNoCanonicalIV(GetAR4);
TestNarrowCanonicalIV(GetAR4);
TestMatchingCanonicalIV(GetAR4, ARBitWidth);
// Expand {5,+,1,+,1,+,1,+,1}
auto GetAR5 = [&](ScalarEvolution &SE, Loop *L) -> const SCEVAddRecExpr * {
SmallVector<const SCEV *, 5> Ops = {SE.getConstant(APInt(ARBitWidth, 5)),
SE.getOne(ARType), SE.getOne(ARType),
SE.getOne(ARType), SE.getOne(ARType)};
return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, L, SCEV::FlagAnyWrap));
};
TestNoCanonicalIV(GetAR5);
TestNarrowCanonicalIV(GetAR5);
TestMatchingCanonicalIV(GetAR5, ARBitWidth);
}
TEST_F(ScalarEvolutionExpanderTest, ExpandNonIntegralPtrWithNullBase) {
LLVMContext C;
SMDiagnostic Err;
std::unique_ptr<Module> M =
parseAssemblyString("target datalayout = "
"\"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:"
"128-n8:16:32:64-S128-ni:1-p2:32:8:8:32-ni:2\""
"define float addrspace(1)* @test(i64 %offset) { "
" %ptr = getelementptr inbounds float, float "
"addrspace(1)* null, i64 %offset"
" ret float addrspace(1)* %ptr"
"}",
Err, C);
assert(M && "Could not parse module?");
assert(!verifyModule(*M) && "Must have been well formed!");
runWithSE(*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
auto &I = GetInstByName(F, "ptr");
auto PtrPlus1 =
SE.getAddExpr(SE.getSCEV(&I), SE.getConstant(I.getType(), 1));
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
Value *V = Exp.expandCodeFor(PtrPlus1, I.getType(), &I);
I.replaceAllUsesWith(V);
// Check the expander created bitcast (gep i8* null, %offset).
auto *Cast = dyn_cast<BitCastInst>(V);
EXPECT_TRUE(Cast);
EXPECT_EQ(Cast->getType(), I.getType());
auto *GEP = dyn_cast<GetElementPtrInst>(Cast->getOperand(0));
EXPECT_TRUE(GEP);
EXPECT_TRUE(cast<Constant>(GEP->getPointerOperand())->isNullValue());
EXPECT_EQ(cast<PointerType>(GEP->getPointerOperand()->getType())
->getAddressSpace(),
cast<PointerType>(I.getType())->getAddressSpace());
// Check the expander created the expected index computation: add (shl
// %offset, 2), 1.
Value *Arg;
EXPECT_TRUE(
match(GEP->getOperand(1),
m_Add(m_Shl(m_Value(Arg), m_SpecificInt(2)), m_SpecificInt(1))));
EXPECT_EQ(Arg, &*F.arg_begin());
EXPECT_FALSE(verifyFunction(F, &errs()));
});
}
} // end namespace llvm