AttributeTest.cpp
6.08 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
//===- AttributeTest.cpp - Attribute unit tests ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/StandardTypes.h"
#include "gtest/gtest.h"
using namespace mlir;
using namespace mlir::detail;
template <typename EltTy>
static void testSplat(Type eltType, const EltTy &splatElt) {
RankedTensorType shape = RankedTensorType::get({2, 1}, eltType);
// Check that the generated splat is the same for 1 element and N elements.
DenseElementsAttr splat = DenseElementsAttr::get(shape, splatElt);
EXPECT_TRUE(splat.isSplat());
auto detectedSplat =
DenseElementsAttr::get(shape, llvm::makeArrayRef({splatElt, splatElt}));
EXPECT_EQ(detectedSplat, splat);
for (auto newValue : detectedSplat.template getValues<EltTy>())
EXPECT_TRUE(newValue == splatElt);
}
namespace {
TEST(DenseSplatTest, BoolSplat) {
MLIRContext context(false);
IntegerType boolTy = IntegerType::get(1, &context);
RankedTensorType shape = RankedTensorType::get({2, 2}, boolTy);
// Check that splat is automatically detected for boolean values.
/// True.
DenseElementsAttr trueSplat = DenseElementsAttr::get(shape, true);
EXPECT_TRUE(trueSplat.isSplat());
/// False.
DenseElementsAttr falseSplat = DenseElementsAttr::get(shape, false);
EXPECT_TRUE(falseSplat.isSplat());
EXPECT_NE(falseSplat, trueSplat);
/// Detect and handle splat within 8 elements (bool values are bit-packed).
/// True.
auto detectedSplat = DenseElementsAttr::get(shape, {true, true, true, true});
EXPECT_EQ(detectedSplat, trueSplat);
/// False.
detectedSplat = DenseElementsAttr::get(shape, {false, false, false, false});
EXPECT_EQ(detectedSplat, falseSplat);
}
TEST(DenseSplatTest, LargeBoolSplat) {
constexpr int64_t boolCount = 56;
MLIRContext context(false);
IntegerType boolTy = IntegerType::get(1, &context);
RankedTensorType shape = RankedTensorType::get({boolCount}, boolTy);
// Check that splat is automatically detected for boolean values.
/// True.
DenseElementsAttr trueSplat = DenseElementsAttr::get(shape, true);
DenseElementsAttr falseSplat = DenseElementsAttr::get(shape, false);
EXPECT_TRUE(trueSplat.isSplat());
EXPECT_TRUE(falseSplat.isSplat());
/// Detect that the large boolean arrays are properly splatted.
/// True.
SmallVector<bool, 64> trueValues(boolCount, true);
auto detectedSplat = DenseElementsAttr::get(shape, trueValues);
EXPECT_EQ(detectedSplat, trueSplat);
/// False.
SmallVector<bool, 64> falseValues(boolCount, false);
detectedSplat = DenseElementsAttr::get(shape, falseValues);
EXPECT_EQ(detectedSplat, falseSplat);
}
TEST(DenseSplatTest, BoolNonSplat) {
MLIRContext context(false);
IntegerType boolTy = IntegerType::get(1, &context);
RankedTensorType shape = RankedTensorType::get({6}, boolTy);
// Check that we properly handle non-splat values.
DenseElementsAttr nonSplat =
DenseElementsAttr::get(shape, {false, false, true, false, false, true});
EXPECT_FALSE(nonSplat.isSplat());
}
TEST(DenseSplatTest, OddIntSplat) {
// Test detecting a splat with an odd(non 8-bit) integer bitwidth.
MLIRContext context(false);
constexpr size_t intWidth = 19;
IntegerType intTy = IntegerType::get(intWidth, &context);
APInt value(intWidth, 10);
testSplat(intTy, value);
}
TEST(DenseSplatTest, Int32Splat) {
MLIRContext context(false);
IntegerType intTy = IntegerType::get(32, &context);
int value = 64;
testSplat(intTy, value);
}
TEST(DenseSplatTest, IntAttrSplat) {
MLIRContext context(false);
IntegerType intTy = IntegerType::get(85, &context);
Attribute value = IntegerAttr::get(intTy, 109);
testSplat(intTy, value);
}
TEST(DenseSplatTest, F32Splat) {
MLIRContext context(false);
FloatType floatTy = FloatType::getF32(&context);
float value = 10.0;
testSplat(floatTy, value);
}
TEST(DenseSplatTest, F64Splat) {
MLIRContext context(false);
FloatType floatTy = FloatType::getF64(&context);
double value = 10.0;
testSplat(floatTy, APFloat(value));
}
TEST(DenseSplatTest, FloatAttrSplat) {
MLIRContext context(false);
FloatType floatTy = FloatType::getF32(&context);
Attribute value = FloatAttr::get(floatTy, 10.0);
testSplat(floatTy, value);
}
TEST(DenseSplatTest, BF16Splat) {
MLIRContext context(false);
FloatType floatTy = FloatType::getBF16(&context);
Attribute value = FloatAttr::get(floatTy, 10.0);
testSplat(floatTy, value);
}
TEST(DenseSplatTest, StringSplat) {
MLIRContext context(false);
Type stringType =
OpaqueType::get(Identifier::get("test", &context), "string", &context);
StringRef value = "test-string";
testSplat(stringType, value);
}
TEST(DenseSplatTest, StringAttrSplat) {
MLIRContext context(false);
Type stringType =
OpaqueType::get(Identifier::get("test", &context), "string", &context);
Attribute stringAttr = StringAttr::get("test-string", stringType);
testSplat(stringType, stringAttr);
}
TEST(DenseComplexTest, ComplexFloatSplat) {
MLIRContext context(false);
ComplexType complexType = ComplexType::get(FloatType::getF32(&context));
std::complex<float> value(10.0, 15.0);
testSplat(complexType, value);
}
TEST(DenseComplexTest, ComplexIntSplat) {
MLIRContext context(false);
ComplexType complexType = ComplexType::get(IntegerType::get(64, &context));
std::complex<int64_t> value(10, 15);
testSplat(complexType, value);
}
TEST(DenseComplexTest, ComplexAPFloatSplat) {
MLIRContext context(false);
ComplexType complexType = ComplexType::get(FloatType::getF32(&context));
std::complex<APFloat> value(APFloat(10.0f), APFloat(15.0f));
testSplat(complexType, value);
}
TEST(DenseComplexTest, ComplexAPIntSplat) {
MLIRContext context(false);
ComplexType complexType = ComplexType::get(IntegerType::get(64, &context));
std::complex<APInt> value(APInt(64, 10), APInt(64, 15));
testSplat(complexType, value);
}
} // end namespace