kmp_runtime.cpp 293 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
/*
 * kmp_runtime.cpp -- KPTS runtime support library
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "kmp.h"
#include "kmp_affinity.h"
#include "kmp_atomic.h"
#include "kmp_environment.h"
#include "kmp_error.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_itt.h"
#include "kmp_settings.h"
#include "kmp_stats.h"
#include "kmp_str.h"
#include "kmp_wait_release.h"
#include "kmp_wrapper_getpid.h"
#include "kmp_dispatch.h"
#if KMP_USE_HIER_SCHED
#include "kmp_dispatch_hier.h"
#endif

#if OMPT_SUPPORT
#include "ompt-specific.h"
#endif

/* these are temporary issues to be dealt with */
#define KMP_USE_PRCTL 0

#if KMP_OS_WINDOWS
#include <process.h>
#endif

#include "tsan_annotations.h"

#if defined(KMP_GOMP_COMPAT)
char const __kmp_version_alt_comp[] =
    KMP_VERSION_PREFIX "alternative compiler support: yes";
#endif /* defined(KMP_GOMP_COMPAT) */

char const __kmp_version_omp_api[] =
    KMP_VERSION_PREFIX "API version: 5.0 (201611)";

#ifdef KMP_DEBUG
char const __kmp_version_lock[] =
    KMP_VERSION_PREFIX "lock type: run time selectable";
#endif /* KMP_DEBUG */

#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))

/* ------------------------------------------------------------------------ */

#if KMP_USE_MONITOR
kmp_info_t __kmp_monitor;
#endif

/* Forward declarations */

void __kmp_cleanup(void);

static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid,
                                  int gtid);
static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
                                  kmp_internal_control_t *new_icvs,
                                  ident_t *loc);
#if KMP_AFFINITY_SUPPORTED
static void __kmp_partition_places(kmp_team_t *team,
                                   int update_master_only = 0);
#endif
static void __kmp_do_serial_initialize(void);
void __kmp_fork_barrier(int gtid, int tid);
void __kmp_join_barrier(int gtid);
void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc,
                          kmp_internal_control_t *new_icvs, ident_t *loc);

#ifdef USE_LOAD_BALANCE
static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc);
#endif

static int __kmp_expand_threads(int nNeed);
#if KMP_OS_WINDOWS
static int __kmp_unregister_root_other_thread(int gtid);
#endif
static void __kmp_unregister_library(void); // called by __kmp_internal_end()
static void __kmp_reap_thread(kmp_info_t *thread, int is_root);
kmp_info_t *__kmp_thread_pool_insert_pt = NULL;

/* Calculate the identifier of the current thread */
/* fast (and somewhat portable) way to get unique identifier of executing
   thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */
int __kmp_get_global_thread_id() {
  int i;
  kmp_info_t **other_threads;
  size_t stack_data;
  char *stack_addr;
  size_t stack_size;
  char *stack_base;

  KA_TRACE(
      1000,
      ("*** __kmp_get_global_thread_id: entering, nproc=%d  all_nproc=%d\n",
       __kmp_nth, __kmp_all_nth));

  /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to
     a parallel region, made it return KMP_GTID_DNE to force serial_initialize
     by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee
     __kmp_init_gtid for this to work. */

  if (!TCR_4(__kmp_init_gtid))
    return KMP_GTID_DNE;

#ifdef KMP_TDATA_GTID
  if (TCR_4(__kmp_gtid_mode) >= 3) {
    KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n"));
    return __kmp_gtid;
  }
#endif
  if (TCR_4(__kmp_gtid_mode) >= 2) {
    KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n"));
    return __kmp_gtid_get_specific();
  }
  KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n"));

  stack_addr = (char *)&stack_data;
  other_threads = __kmp_threads;

  /* ATT: The code below is a source of potential bugs due to unsynchronized
     access to __kmp_threads array. For example:
     1. Current thread loads other_threads[i] to thr and checks it, it is
        non-NULL.
     2. Current thread is suspended by OS.
     3. Another thread unregisters and finishes (debug versions of free()
        may fill memory with something like 0xEF).
     4. Current thread is resumed.
     5. Current thread reads junk from *thr.
     TODO: Fix it.  --ln  */

  for (i = 0; i < __kmp_threads_capacity; i++) {

    kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]);
    if (!thr)
      continue;

    stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize);
    stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase);

    /* stack grows down -- search through all of the active threads */

    if (stack_addr <= stack_base) {
      size_t stack_diff = stack_base - stack_addr;

      if (stack_diff <= stack_size) {
        /* The only way we can be closer than the allocated */
        /* stack size is if we are running on this thread. */
        KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i);
        return i;
      }
    }
  }

  /* get specific to try and determine our gtid */
  KA_TRACE(1000,
           ("*** __kmp_get_global_thread_id: internal alg. failed to find "
            "thread, using TLS\n"));
  i = __kmp_gtid_get_specific();

  /*fprintf( stderr, "=== %d\n", i );  */ /* GROO */

  /* if we havn't been assigned a gtid, then return code */
  if (i < 0)
    return i;

  /* dynamically updated stack window for uber threads to avoid get_specific
     call */
  if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) {
    KMP_FATAL(StackOverflow, i);
  }

  stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
  if (stack_addr > stack_base) {
    TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr);
    TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
            other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr -
                stack_base);
  } else {
    TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
            stack_base - stack_addr);
  }

  /* Reprint stack bounds for ubermaster since they have been refined */
  if (__kmp_storage_map) {
    char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
    char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize;
    __kmp_print_storage_map_gtid(i, stack_beg, stack_end,
                                 other_threads[i]->th.th_info.ds.ds_stacksize,
                                 "th_%d stack (refinement)", i);
  }
  return i;
}

int __kmp_get_global_thread_id_reg() {
  int gtid;

  if (!__kmp_init_serial) {
    gtid = KMP_GTID_DNE;
  } else
#ifdef KMP_TDATA_GTID
      if (TCR_4(__kmp_gtid_mode) >= 3) {
    KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n"));
    gtid = __kmp_gtid;
  } else
#endif
      if (TCR_4(__kmp_gtid_mode) >= 2) {
    KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n"));
    gtid = __kmp_gtid_get_specific();
  } else {
    KA_TRACE(1000,
             ("*** __kmp_get_global_thread_id_reg: using internal alg.\n"));
    gtid = __kmp_get_global_thread_id();
  }

  /* we must be a new uber master sibling thread */
  if (gtid == KMP_GTID_DNE) {
    KA_TRACE(10,
             ("__kmp_get_global_thread_id_reg: Encountered new root thread. "
              "Registering a new gtid.\n"));
    __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
    if (!__kmp_init_serial) {
      __kmp_do_serial_initialize();
      gtid = __kmp_gtid_get_specific();
    } else {
      gtid = __kmp_register_root(FALSE);
    }
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */
  }

  KMP_DEBUG_ASSERT(gtid >= 0);

  return gtid;
}

/* caller must hold forkjoin_lock */
void __kmp_check_stack_overlap(kmp_info_t *th) {
  int f;
  char *stack_beg = NULL;
  char *stack_end = NULL;
  int gtid;

  KA_TRACE(10, ("__kmp_check_stack_overlap: called\n"));
  if (__kmp_storage_map) {
    stack_end = (char *)th->th.th_info.ds.ds_stackbase;
    stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;

    gtid = __kmp_gtid_from_thread(th);

    if (gtid == KMP_GTID_MONITOR) {
      __kmp_print_storage_map_gtid(
          gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
          "th_%s stack (%s)", "mon",
          (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
    } else {
      __kmp_print_storage_map_gtid(
          gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
          "th_%d stack (%s)", gtid,
          (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
    }
  }

  /* No point in checking ubermaster threads since they use refinement and
   * cannot overlap */
  gtid = __kmp_gtid_from_thread(th);
  if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) {
    KA_TRACE(10,
             ("__kmp_check_stack_overlap: performing extensive checking\n"));
    if (stack_beg == NULL) {
      stack_end = (char *)th->th.th_info.ds.ds_stackbase;
      stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;
    }

    for (f = 0; f < __kmp_threads_capacity; f++) {
      kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]);

      if (f_th && f_th != th) {
        char *other_stack_end =
            (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase);
        char *other_stack_beg =
            other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize);
        if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) ||
            (stack_end > other_stack_beg && stack_end < other_stack_end)) {

          /* Print the other stack values before the abort */
          if (__kmp_storage_map)
            __kmp_print_storage_map_gtid(
                -1, other_stack_beg, other_stack_end,
                (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize),
                "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th));

          __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit),
                      __kmp_msg_null);
        }
      }
    }
  }
  KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n"));
}

/* ------------------------------------------------------------------------ */

void __kmp_infinite_loop(void) {
  static int done = FALSE;

  while (!done) {
    KMP_YIELD(TRUE);
  }
}

#define MAX_MESSAGE 512

void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size,
                                  char const *format, ...) {
  char buffer[MAX_MESSAGE];
  va_list ap;

  va_start(ap, format);
  KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1,
               p2, (unsigned long)size, format);
  __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
  __kmp_vprintf(kmp_err, buffer, ap);
#if KMP_PRINT_DATA_PLACEMENT
  int node;
  if (gtid >= 0) {
    if (p1 <= p2 && (char *)p2 - (char *)p1 == size) {
      if (__kmp_storage_map_verbose) {
        node = __kmp_get_host_node(p1);
        if (node < 0) /* doesn't work, so don't try this next time */
          __kmp_storage_map_verbose = FALSE;
        else {
          char *last;
          int lastNode;
          int localProc = __kmp_get_cpu_from_gtid(gtid);

          const int page_size = KMP_GET_PAGE_SIZE();

          p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1));
          p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1));
          if (localProc >= 0)
            __kmp_printf_no_lock("  GTID %d localNode %d\n", gtid,
                                 localProc >> 1);
          else
            __kmp_printf_no_lock("  GTID %d\n", gtid);
#if KMP_USE_PRCTL
          /* The more elaborate format is disabled for now because of the prctl
           * hanging bug. */
          do {
            last = p1;
            lastNode = node;
            /* This loop collates adjacent pages with the same host node. */
            do {
              (char *)p1 += page_size;
            } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode);
            __kmp_printf_no_lock("    %p-%p memNode %d\n", last, (char *)p1 - 1,
                                 lastNode);
          } while (p1 <= p2);
#else
          __kmp_printf_no_lock("    %p-%p memNode %d\n", p1,
                               (char *)p1 + (page_size - 1),
                               __kmp_get_host_node(p1));
          if (p1 < p2) {
            __kmp_printf_no_lock("    %p-%p memNode %d\n", p2,
                                 (char *)p2 + (page_size - 1),
                                 __kmp_get_host_node(p2));
          }
#endif
        }
      }
    } else
      __kmp_printf_no_lock("  %s\n", KMP_I18N_STR(StorageMapWarning));
  }
#endif /* KMP_PRINT_DATA_PLACEMENT */
  __kmp_release_bootstrap_lock(&__kmp_stdio_lock);
}

void __kmp_warn(char const *format, ...) {
  char buffer[MAX_MESSAGE];
  va_list ap;

  if (__kmp_generate_warnings == kmp_warnings_off) {
    return;
  }

  va_start(ap, format);

  KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format);
  __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
  __kmp_vprintf(kmp_err, buffer, ap);
  __kmp_release_bootstrap_lock(&__kmp_stdio_lock);

  va_end(ap);
}

void __kmp_abort_process() {
  // Later threads may stall here, but that's ok because abort() will kill them.
  __kmp_acquire_bootstrap_lock(&__kmp_exit_lock);

  if (__kmp_debug_buf) {
    __kmp_dump_debug_buffer();
  }

  if (KMP_OS_WINDOWS) {
    // Let other threads know of abnormal termination and prevent deadlock
    // if abort happened during library initialization or shutdown
    __kmp_global.g.g_abort = SIGABRT;

    /* On Windows* OS by default abort() causes pop-up error box, which stalls
       nightly testing. Unfortunately, we cannot reliably suppress pop-up error
       boxes. _set_abort_behavior() works well, but this function is not
       available in VS7 (this is not problem for DLL, but it is a problem for
       static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not
       help, at least in some versions of MS C RTL.

       It seems following sequence is the only way to simulate abort() and
       avoid pop-up error box. */
    raise(SIGABRT);
    _exit(3); // Just in case, if signal ignored, exit anyway.
  } else {
    abort();
  }

  __kmp_infinite_loop();
  __kmp_release_bootstrap_lock(&__kmp_exit_lock);

} // __kmp_abort_process

void __kmp_abort_thread(void) {
  // TODO: Eliminate g_abort global variable and this function.
  // In case of abort just call abort(), it will kill all the threads.
  __kmp_infinite_loop();
} // __kmp_abort_thread

/* Print out the storage map for the major kmp_info_t thread data structures
   that are allocated together. */

static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) {
  __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d",
                               gtid);

  __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team,
                               sizeof(kmp_desc_t), "th_%d.th_info", gtid);

  __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head,
                               sizeof(kmp_local_t), "th_%d.th_local", gtid);

  __kmp_print_storage_map_gtid(
      gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier],
      sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid);

  __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier],
                               &thr->th.th_bar[bs_plain_barrier + 1],
                               sizeof(kmp_balign_t), "th_%d.th_bar[plain]",
                               gtid);

  __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier],
                               &thr->th.th_bar[bs_forkjoin_barrier + 1],
                               sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]",
                               gtid);

#if KMP_FAST_REDUCTION_BARRIER
  __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier],
                               &thr->th.th_bar[bs_reduction_barrier + 1],
                               sizeof(kmp_balign_t), "th_%d.th_bar[reduction]",
                               gtid);
#endif // KMP_FAST_REDUCTION_BARRIER
}

/* Print out the storage map for the major kmp_team_t team data structures
   that are allocated together. */

static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team,
                                         int team_id, int num_thr) {
  int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2;
  __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d",
                               header, team_id);

  __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0],
                               &team->t.t_bar[bs_last_barrier],
                               sizeof(kmp_balign_team_t) * bs_last_barrier,
                               "%s_%d.t_bar", header, team_id);

  __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier],
                               &team->t.t_bar[bs_plain_barrier + 1],
                               sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]",
                               header, team_id);

  __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier],
                               &team->t.t_bar[bs_forkjoin_barrier + 1],
                               sizeof(kmp_balign_team_t),
                               "%s_%d.t_bar[forkjoin]", header, team_id);

#if KMP_FAST_REDUCTION_BARRIER
  __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier],
                               &team->t.t_bar[bs_reduction_barrier + 1],
                               sizeof(kmp_balign_team_t),
                               "%s_%d.t_bar[reduction]", header, team_id);
#endif // KMP_FAST_REDUCTION_BARRIER

  __kmp_print_storage_map_gtid(
      -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr],
      sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id);

  __kmp_print_storage_map_gtid(
      -1, &team->t.t_threads[0], &team->t.t_threads[num_thr],
      sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id);

  __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0],
                               &team->t.t_disp_buffer[num_disp_buff],
                               sizeof(dispatch_shared_info_t) * num_disp_buff,
                               "%s_%d.t_disp_buffer", header, team_id);
}

static void __kmp_init_allocator() { __kmp_init_memkind(); }
static void __kmp_fini_allocator() { __kmp_fini_memkind(); }

/* ------------------------------------------------------------------------ */

#if KMP_DYNAMIC_LIB
#if KMP_OS_WINDOWS

static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) {
  // TODO: Change to __kmp_break_bootstrap_lock().
  __kmp_init_bootstrap_lock(lck); // make the lock released
}

static void __kmp_reset_locks_on_process_detach(int gtid_req) {
  int i;
  int thread_count;

  // PROCESS_DETACH is expected to be called by a thread that executes
  // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one
  // calling ProcessExit or FreeLibrary). So, it might be safe to access the
  // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some
  // threads can be still alive here, although being about to be terminated. The
  // threads in the array with ds_thread==0 are most suspicious. Actually, it
  // can be not safe to access the __kmp_threads[].

  // TODO: does it make sense to check __kmp_roots[] ?

  // Let's check that there are no other alive threads registered with the OMP
  // lib.
  while (1) {
    thread_count = 0;
    for (i = 0; i < __kmp_threads_capacity; ++i) {
      if (!__kmp_threads)
        continue;
      kmp_info_t *th = __kmp_threads[i];
      if (th == NULL)
        continue;
      int gtid = th->th.th_info.ds.ds_gtid;
      if (gtid == gtid_req)
        continue;
      if (gtid < 0)
        continue;
      DWORD exit_val;
      int alive = __kmp_is_thread_alive(th, &exit_val);
      if (alive) {
        ++thread_count;
      }
    }
    if (thread_count == 0)
      break; // success
  }

  // Assume that I'm alone. Now it might be safe to check and reset locks.
  // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset.
  __kmp_reset_lock(&__kmp_forkjoin_lock);
#ifdef KMP_DEBUG
  __kmp_reset_lock(&__kmp_stdio_lock);
#endif // KMP_DEBUG
}

BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) {
  //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock );

  switch (fdwReason) {

  case DLL_PROCESS_ATTACH:
    KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n"));

    return TRUE;

  case DLL_PROCESS_DETACH:
    KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific()));

    if (lpReserved != NULL) {
      // lpReserved is used for telling the difference:
      //   lpReserved == NULL when FreeLibrary() was called,
      //   lpReserved != NULL when the process terminates.
      // When FreeLibrary() is called, worker threads remain alive. So they will
      // release the forkjoin lock by themselves. When the process terminates,
      // worker threads disappear triggering the problem of unreleased forkjoin
      // lock as described below.

      // A worker thread can take the forkjoin lock. The problem comes up if
      // that worker thread becomes dead before it releases the forkjoin lock.
      // The forkjoin lock remains taken, while the thread executing
      // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try
      // to take the forkjoin lock and will always fail, so that the application
      // will never finish [normally]. This scenario is possible if
      // __kmpc_end() has not been executed. It looks like it's not a corner
      // case, but common cases:
      // - the main function was compiled by an alternative compiler;
      // - the main function was compiled by icl but without /Qopenmp
      //   (application with plugins);
      // - application terminates by calling C exit(), Fortran CALL EXIT() or
      //   Fortran STOP.
      // - alive foreign thread prevented __kmpc_end from doing cleanup.
      //
      // This is a hack to work around the problem.
      // TODO: !!! figure out something better.
      __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific());
    }

    __kmp_internal_end_library(__kmp_gtid_get_specific());

    return TRUE;

  case DLL_THREAD_ATTACH:
    KA_TRACE(10, ("DllMain: THREAD_ATTACH\n"));

    /* if we want to register new siblings all the time here call
     * __kmp_get_gtid(); */
    return TRUE;

  case DLL_THREAD_DETACH:
    KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific()));

    __kmp_internal_end_thread(__kmp_gtid_get_specific());
    return TRUE;
  }

  return TRUE;
}

#endif /* KMP_OS_WINDOWS */
#endif /* KMP_DYNAMIC_LIB */

/* __kmp_parallel_deo -- Wait until it's our turn. */
void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
  int gtid = *gtid_ref;
#ifdef BUILD_PARALLEL_ORDERED
  kmp_team_t *team = __kmp_team_from_gtid(gtid);
#endif /* BUILD_PARALLEL_ORDERED */

  if (__kmp_env_consistency_check) {
    if (__kmp_threads[gtid]->th.th_root->r.r_active)
#if KMP_USE_DYNAMIC_LOCK
      __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0);
#else
      __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL);
#endif
  }
#ifdef BUILD_PARALLEL_ORDERED
  if (!team->t.t_serialized) {
    KMP_MB();
    KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ,
             NULL);
    KMP_MB();
  }
#endif /* BUILD_PARALLEL_ORDERED */
}

/* __kmp_parallel_dxo -- Signal the next task. */
void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
  int gtid = *gtid_ref;
#ifdef BUILD_PARALLEL_ORDERED
  int tid = __kmp_tid_from_gtid(gtid);
  kmp_team_t *team = __kmp_team_from_gtid(gtid);
#endif /* BUILD_PARALLEL_ORDERED */

  if (__kmp_env_consistency_check) {
    if (__kmp_threads[gtid]->th.th_root->r.r_active)
      __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref);
  }
#ifdef BUILD_PARALLEL_ORDERED
  if (!team->t.t_serialized) {
    KMP_MB(); /* Flush all pending memory write invalidates.  */

    /* use the tid of the next thread in this team */
    /* TODO replace with general release procedure */
    team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc);

    KMP_MB(); /* Flush all pending memory write invalidates.  */
  }
#endif /* BUILD_PARALLEL_ORDERED */
}

/* ------------------------------------------------------------------------ */
/* The BARRIER for a SINGLE process section is always explicit   */

int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) {
  int status;
  kmp_info_t *th;
  kmp_team_t *team;

  if (!TCR_4(__kmp_init_parallel))
    __kmp_parallel_initialize();
  __kmp_resume_if_soft_paused();

  th = __kmp_threads[gtid];
  team = th->th.th_team;
  status = 0;

  th->th.th_ident = id_ref;

  if (team->t.t_serialized) {
    status = 1;
  } else {
    kmp_int32 old_this = th->th.th_local.this_construct;

    ++th->th.th_local.this_construct;
    /* try to set team count to thread count--success means thread got the
       single block */
    /* TODO: Should this be acquire or release? */
    if (team->t.t_construct == old_this) {
      status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this,
                                              th->th.th_local.this_construct);
    }
#if USE_ITT_BUILD
    if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
        KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL &&
        team->t.t_active_level ==
            1) { // Only report metadata by master of active team at level 1
      __kmp_itt_metadata_single(id_ref);
    }
#endif /* USE_ITT_BUILD */
  }

  if (__kmp_env_consistency_check) {
    if (status && push_ws) {
      __kmp_push_workshare(gtid, ct_psingle, id_ref);
    } else {
      __kmp_check_workshare(gtid, ct_psingle, id_ref);
    }
  }
#if USE_ITT_BUILD
  if (status) {
    __kmp_itt_single_start(gtid);
  }
#endif /* USE_ITT_BUILD */
  return status;
}

void __kmp_exit_single(int gtid) {
#if USE_ITT_BUILD
  __kmp_itt_single_end(gtid);
#endif /* USE_ITT_BUILD */
  if (__kmp_env_consistency_check)
    __kmp_pop_workshare(gtid, ct_psingle, NULL);
}

/* determine if we can go parallel or must use a serialized parallel region and
 * how many threads we can use
 * set_nproc is the number of threads requested for the team
 * returns 0 if we should serialize or only use one thread,
 * otherwise the number of threads to use
 * The forkjoin lock is held by the caller. */
static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team,
                                 int master_tid, int set_nthreads,
                                 int enter_teams) {
  int capacity;
  int new_nthreads;
  KMP_DEBUG_ASSERT(__kmp_init_serial);
  KMP_DEBUG_ASSERT(root && parent_team);
  kmp_info_t *this_thr = parent_team->t.t_threads[master_tid];

  // If dyn-var is set, dynamically adjust the number of desired threads,
  // according to the method specified by dynamic_mode.
  new_nthreads = set_nthreads;
  if (!get__dynamic_2(parent_team, master_tid)) {
    ;
  }
#ifdef USE_LOAD_BALANCE
  else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) {
    new_nthreads = __kmp_load_balance_nproc(root, set_nthreads);
    if (new_nthreads == 1) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
                    "reservation to 1 thread\n",
                    master_tid));
      return 1;
    }
    if (new_nthreads < set_nthreads) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
                    "reservation to %d threads\n",
                    master_tid, new_nthreads));
    }
  }
#endif /* USE_LOAD_BALANCE */
  else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) {
    new_nthreads = __kmp_avail_proc - __kmp_nth +
                   (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
    if (new_nthreads <= 1) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
                    "reservation to 1 thread\n",
                    master_tid));
      return 1;
    }
    if (new_nthreads < set_nthreads) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
                    "reservation to %d threads\n",
                    master_tid, new_nthreads));
    } else {
      new_nthreads = set_nthreads;
    }
  } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) {
    if (set_nthreads > 2) {
      new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]);
      new_nthreads = (new_nthreads % set_nthreads) + 1;
      if (new_nthreads == 1) {
        KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
                      "reservation to 1 thread\n",
                      master_tid));
        return 1;
      }
      if (new_nthreads < set_nthreads) {
        KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
                      "reservation to %d threads\n",
                      master_tid, new_nthreads));
      }
    }
  } else {
    KMP_ASSERT(0);
  }

  // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT.
  if (__kmp_nth + new_nthreads -
          (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
      __kmp_max_nth) {
    int tl_nthreads = __kmp_max_nth - __kmp_nth +
                      (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
    if (tl_nthreads <= 0) {
      tl_nthreads = 1;
    }

    // If dyn-var is false, emit a 1-time warning.
    if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
      __kmp_reserve_warn = 1;
      __kmp_msg(kmp_ms_warning,
                KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
                KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
    }
    if (tl_nthreads == 1) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT "
                    "reduced reservation to 1 thread\n",
                    master_tid));
      return 1;
    }
    KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced "
                  "reservation to %d threads\n",
                  master_tid, tl_nthreads));
    new_nthreads = tl_nthreads;
  }

  // Respect OMP_THREAD_LIMIT
  int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads;
  int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit;
  if (cg_nthreads + new_nthreads -
          (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
      max_cg_threads) {
    int tl_nthreads = max_cg_threads - cg_nthreads +
                      (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
    if (tl_nthreads <= 0) {
      tl_nthreads = 1;
    }

    // If dyn-var is false, emit a 1-time warning.
    if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
      __kmp_reserve_warn = 1;
      __kmp_msg(kmp_ms_warning,
                KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
                KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
    }
    if (tl_nthreads == 1) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT "
                    "reduced reservation to 1 thread\n",
                    master_tid));
      return 1;
    }
    KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced "
                  "reservation to %d threads\n",
                  master_tid, tl_nthreads));
    new_nthreads = tl_nthreads;
  }

  // Check if the threads array is large enough, or needs expanding.
  // See comment in __kmp_register_root() about the adjustment if
  // __kmp_threads[0] == NULL.
  capacity = __kmp_threads_capacity;
  if (TCR_PTR(__kmp_threads[0]) == NULL) {
    --capacity;
  }
  if (__kmp_nth + new_nthreads -
          (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
      capacity) {
    // Expand the threads array.
    int slotsRequired = __kmp_nth + new_nthreads -
                        (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) -
                        capacity;
    int slotsAdded = __kmp_expand_threads(slotsRequired);
    if (slotsAdded < slotsRequired) {
      // The threads array was not expanded enough.
      new_nthreads -= (slotsRequired - slotsAdded);
      KMP_ASSERT(new_nthreads >= 1);

      // If dyn-var is false, emit a 1-time warning.
      if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
        __kmp_reserve_warn = 1;
        if (__kmp_tp_cached) {
          __kmp_msg(kmp_ms_warning,
                    KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
                    KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
                    KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
        } else {
          __kmp_msg(kmp_ms_warning,
                    KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
                    KMP_HNT(SystemLimitOnThreads), __kmp_msg_null);
        }
      }
    }
  }

#ifdef KMP_DEBUG
  if (new_nthreads == 1) {
    KC_TRACE(10,
             ("__kmp_reserve_threads: T#%d serializing team after reclaiming "
              "dead roots and rechecking; requested %d threads\n",
              __kmp_get_gtid(), set_nthreads));
  } else {
    KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested"
                  " %d threads\n",
                  __kmp_get_gtid(), new_nthreads, set_nthreads));
  }
#endif // KMP_DEBUG
  return new_nthreads;
}

/* Allocate threads from the thread pool and assign them to the new team. We are
   assured that there are enough threads available, because we checked on that
   earlier within critical section forkjoin */
static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team,
                                    kmp_info_t *master_th, int master_gtid) {
  int i;
  int use_hot_team;

  KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc));
  KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid());
  KMP_MB();

  /* first, let's setup the master thread */
  master_th->th.th_info.ds.ds_tid = 0;
  master_th->th.th_team = team;
  master_th->th.th_team_nproc = team->t.t_nproc;
  master_th->th.th_team_master = master_th;
  master_th->th.th_team_serialized = FALSE;
  master_th->th.th_dispatch = &team->t.t_dispatch[0];

/* make sure we are not the optimized hot team */
#if KMP_NESTED_HOT_TEAMS
  use_hot_team = 0;
  kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams;
  if (hot_teams) { // hot teams array is not allocated if
    // KMP_HOT_TEAMS_MAX_LEVEL=0
    int level = team->t.t_active_level - 1; // index in array of hot teams
    if (master_th->th.th_teams_microtask) { // are we inside the teams?
      if (master_th->th.th_teams_size.nteams > 1) {
        ++level; // level was not increased in teams construct for
        // team_of_masters
      }
      if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
          master_th->th.th_teams_level == team->t.t_level) {
        ++level; // level was not increased in teams construct for
        // team_of_workers before the parallel
      } // team->t.t_level will be increased inside parallel
    }
    if (level < __kmp_hot_teams_max_level) {
      if (hot_teams[level].hot_team) {
        // hot team has already been allocated for given level
        KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team);
        use_hot_team = 1; // the team is ready to use
      } else {
        use_hot_team = 0; // AC: threads are not allocated yet
        hot_teams[level].hot_team = team; // remember new hot team
        hot_teams[level].hot_team_nth = team->t.t_nproc;
      }
    } else {
      use_hot_team = 0;
    }
  }
#else
  use_hot_team = team == root->r.r_hot_team;
#endif
  if (!use_hot_team) {

    /* install the master thread */
    team->t.t_threads[0] = master_th;
    __kmp_initialize_info(master_th, team, 0, master_gtid);

    /* now, install the worker threads */
    for (i = 1; i < team->t.t_nproc; i++) {

      /* fork or reallocate a new thread and install it in team */
      kmp_info_t *thr = __kmp_allocate_thread(root, team, i);
      team->t.t_threads[i] = thr;
      KMP_DEBUG_ASSERT(thr);
      KMP_DEBUG_ASSERT(thr->th.th_team == team);
      /* align team and thread arrived states */
      KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived "
                    "T#%d(%d:%d) join =%llu, plain=%llu\n",
                    __kmp_gtid_from_tid(0, team), team->t.t_id, 0,
                    __kmp_gtid_from_tid(i, team), team->t.t_id, i,
                    team->t.t_bar[bs_forkjoin_barrier].b_arrived,
                    team->t.t_bar[bs_plain_barrier].b_arrived));
      thr->th.th_teams_microtask = master_th->th.th_teams_microtask;
      thr->th.th_teams_level = master_th->th.th_teams_level;
      thr->th.th_teams_size = master_th->th.th_teams_size;
      { // Initialize threads' barrier data.
        int b;
        kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar;
        for (b = 0; b < bs_last_barrier; ++b) {
          balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
          KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
#if USE_DEBUGGER
          balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
#endif
        }
      }
    }

#if KMP_AFFINITY_SUPPORTED
    __kmp_partition_places(team);
#endif
  }

  if (__kmp_display_affinity && team->t.t_display_affinity != 1) {
    for (i = 0; i < team->t.t_nproc; i++) {
      kmp_info_t *thr = team->t.t_threads[i];
      if (thr->th.th_prev_num_threads != team->t.t_nproc ||
          thr->th.th_prev_level != team->t.t_level) {
        team->t.t_display_affinity = 1;
        break;
      }
    }
  }

  KMP_MB();
}

#if KMP_ARCH_X86 || KMP_ARCH_X86_64
// Propagate any changes to the floating point control registers out to the team
// We try to avoid unnecessary writes to the relevant cache line in the team
// structure, so we don't make changes unless they are needed.
inline static void propagateFPControl(kmp_team_t *team) {
  if (__kmp_inherit_fp_control) {
    kmp_int16 x87_fpu_control_word;
    kmp_uint32 mxcsr;

    // Get master values of FPU control flags (both X87 and vector)
    __kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
    __kmp_store_mxcsr(&mxcsr);
    mxcsr &= KMP_X86_MXCSR_MASK;

    // There is no point looking at t_fp_control_saved here.
    // If it is TRUE, we still have to update the values if they are different
    // from those we now have. If it is FALSE we didn't save anything yet, but
    // our objective is the same. We have to ensure that the values in the team
    // are the same as those we have.
    // So, this code achieves what we need whether or not t_fp_control_saved is
    // true. By checking whether the value needs updating we avoid unnecessary
    // writes that would put the cache-line into a written state, causing all
    // threads in the team to have to read it again.
    KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word);
    KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr);
    // Although we don't use this value, other code in the runtime wants to know
    // whether it should restore them. So we must ensure it is correct.
    KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE);
  } else {
    // Similarly here. Don't write to this cache-line in the team structure
    // unless we have to.
    KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE);
  }
}

// Do the opposite, setting the hardware registers to the updated values from
// the team.
inline static void updateHWFPControl(kmp_team_t *team) {
  if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) {
    // Only reset the fp control regs if they have been changed in the team.
    // the parallel region that we are exiting.
    kmp_int16 x87_fpu_control_word;
    kmp_uint32 mxcsr;
    __kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
    __kmp_store_mxcsr(&mxcsr);
    mxcsr &= KMP_X86_MXCSR_MASK;

    if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) {
      __kmp_clear_x87_fpu_status_word();
      __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word);
    }

    if (team->t.t_mxcsr != mxcsr) {
      __kmp_load_mxcsr(&team->t.t_mxcsr);
    }
  }
}
#else
#define propagateFPControl(x) ((void)0)
#define updateHWFPControl(x) ((void)0)
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */

static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team,
                                     int realloc); // forward declaration

/* Run a parallel region that has been serialized, so runs only in a team of the
   single master thread. */
void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) {
  kmp_info_t *this_thr;
  kmp_team_t *serial_team;

  KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid));

  /* Skip all this code for autopar serialized loops since it results in
     unacceptable overhead */
  if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR))
    return;

  if (!TCR_4(__kmp_init_parallel))
    __kmp_parallel_initialize();
  __kmp_resume_if_soft_paused();

  this_thr = __kmp_threads[global_tid];
  serial_team = this_thr->th.th_serial_team;

  /* utilize the serialized team held by this thread */
  KMP_DEBUG_ASSERT(serial_team);
  KMP_MB();

  if (__kmp_tasking_mode != tskm_immediate_exec) {
    KMP_DEBUG_ASSERT(
        this_thr->th.th_task_team ==
        this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]);
    KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] ==
                     NULL);
    KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / "
                  "team %p, new task_team = NULL\n",
                  global_tid, this_thr->th.th_task_team, this_thr->th.th_team));
    this_thr->th.th_task_team = NULL;
  }

  kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind;
  if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
    proc_bind = proc_bind_false;
  } else if (proc_bind == proc_bind_default) {
    // No proc_bind clause was specified, so use the current value
    // of proc-bind-var for this parallel region.
    proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind;
  }
  // Reset for next parallel region
  this_thr->th.th_set_proc_bind = proc_bind_default;

#if OMPT_SUPPORT
  ompt_data_t ompt_parallel_data = ompt_data_none;
  ompt_data_t *implicit_task_data;
  void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid);
  if (ompt_enabled.enabled &&
      this_thr->th.ompt_thread_info.state != ompt_state_overhead) {

    ompt_task_info_t *parent_task_info;
    parent_task_info = OMPT_CUR_TASK_INFO(this_thr);

    parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
    if (ompt_enabled.ompt_callback_parallel_begin) {
      int team_size = 1;

      ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
          &(parent_task_info->task_data), &(parent_task_info->frame),
          &ompt_parallel_data, team_size,
          ompt_parallel_invoker_program | ompt_parallel_team, codeptr);
    }
  }
#endif // OMPT_SUPPORT

  if (this_thr->th.th_team != serial_team) {
    // Nested level will be an index in the nested nthreads array
    int level = this_thr->th.th_team->t.t_level;

    if (serial_team->t.t_serialized) {
      /* this serial team was already used
         TODO increase performance by making this locks more specific */
      kmp_team_t *new_team;

      __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);

      new_team =
          __kmp_allocate_team(this_thr->th.th_root, 1, 1,
#if OMPT_SUPPORT
                              ompt_parallel_data,
#endif
                              proc_bind, &this_thr->th.th_current_task->td_icvs,
                              0 USE_NESTED_HOT_ARG(NULL));
      __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
      KMP_ASSERT(new_team);

      /* setup new serialized team and install it */
      new_team->t.t_threads[0] = this_thr;
      new_team->t.t_parent = this_thr->th.th_team;
      serial_team = new_team;
      this_thr->th.th_serial_team = serial_team;

      KF_TRACE(
          10,
          ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n",
           global_tid, serial_team));

      /* TODO the above breaks the requirement that if we run out of resources,
         then we can still guarantee that serialized teams are ok, since we may
         need to allocate a new one */
    } else {
      KF_TRACE(
          10,
          ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n",
           global_tid, serial_team));
    }

    /* we have to initialize this serial team */
    KMP_DEBUG_ASSERT(serial_team->t.t_threads);
    KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
    KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team);
    serial_team->t.t_ident = loc;
    serial_team->t.t_serialized = 1;
    serial_team->t.t_nproc = 1;
    serial_team->t.t_parent = this_thr->th.th_team;
    serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched;
    this_thr->th.th_team = serial_team;
    serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid;

    KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid,
                  this_thr->th.th_current_task));
    KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1);
    this_thr->th.th_current_task->td_flags.executing = 0;

    __kmp_push_current_task_to_thread(this_thr, serial_team, 0);

    /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an
       implicit task for each serialized task represented by
       team->t.t_serialized? */
    copy_icvs(&this_thr->th.th_current_task->td_icvs,
              &this_thr->th.th_current_task->td_parent->td_icvs);

    // Thread value exists in the nested nthreads array for the next nested
    // level
    if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
      this_thr->th.th_current_task->td_icvs.nproc =
          __kmp_nested_nth.nth[level + 1];
    }

    if (__kmp_nested_proc_bind.used &&
        (level + 1 < __kmp_nested_proc_bind.used)) {
      this_thr->th.th_current_task->td_icvs.proc_bind =
          __kmp_nested_proc_bind.bind_types[level + 1];
    }

#if USE_DEBUGGER
    serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger.
#endif
    this_thr->th.th_info.ds.ds_tid = 0;

    /* set thread cache values */
    this_thr->th.th_team_nproc = 1;
    this_thr->th.th_team_master = this_thr;
    this_thr->th.th_team_serialized = 1;

    serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1;
    serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level;
    serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save

    propagateFPControl(serial_team);

    /* check if we need to allocate dispatch buffers stack */
    KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
    if (!serial_team->t.t_dispatch->th_disp_buffer) {
      serial_team->t.t_dispatch->th_disp_buffer =
          (dispatch_private_info_t *)__kmp_allocate(
              sizeof(dispatch_private_info_t));
    }
    this_thr->th.th_dispatch = serial_team->t.t_dispatch;

    KMP_MB();

  } else {
    /* this serialized team is already being used,
     * that's fine, just add another nested level */
    KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team);
    KMP_DEBUG_ASSERT(serial_team->t.t_threads);
    KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
    ++serial_team->t.t_serialized;
    this_thr->th.th_team_serialized = serial_team->t.t_serialized;

    // Nested level will be an index in the nested nthreads array
    int level = this_thr->th.th_team->t.t_level;
    // Thread value exists in the nested nthreads array for the next nested
    // level
    if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
      this_thr->th.th_current_task->td_icvs.nproc =
          __kmp_nested_nth.nth[level + 1];
    }
    serial_team->t.t_level++;
    KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level "
                  "of serial team %p to %d\n",
                  global_tid, serial_team, serial_team->t.t_level));

    /* allocate/push dispatch buffers stack */
    KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
    {
      dispatch_private_info_t *disp_buffer =
          (dispatch_private_info_t *)__kmp_allocate(
              sizeof(dispatch_private_info_t));
      disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer;
      serial_team->t.t_dispatch->th_disp_buffer = disp_buffer;
    }
    this_thr->th.th_dispatch = serial_team->t.t_dispatch;

    KMP_MB();
  }
  KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq);

  // Perform the display affinity functionality for
  // serialized parallel regions
  if (__kmp_display_affinity) {
    if (this_thr->th.th_prev_level != serial_team->t.t_level ||
        this_thr->th.th_prev_num_threads != 1) {
      // NULL means use the affinity-format-var ICV
      __kmp_aux_display_affinity(global_tid, NULL);
      this_thr->th.th_prev_level = serial_team->t.t_level;
      this_thr->th.th_prev_num_threads = 1;
    }
  }

  if (__kmp_env_consistency_check)
    __kmp_push_parallel(global_tid, NULL);
#if OMPT_SUPPORT
  serial_team->t.ompt_team_info.master_return_address = codeptr;
  if (ompt_enabled.enabled &&
      this_thr->th.ompt_thread_info.state != ompt_state_overhead) {
    OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);

    ompt_lw_taskteam_t lw_taskteam;
    __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid,
                            &ompt_parallel_data, codeptr);

    __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1);
    // don't use lw_taskteam after linking. content was swaped

    /* OMPT implicit task begin */
    implicit_task_data = OMPT_CUR_TASK_DATA(this_thr);
    if (ompt_enabled.ompt_callback_implicit_task) {
      ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
          ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr),
          OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), ompt_task_implicit); // TODO: Can this be ompt_task_initial?
      OMPT_CUR_TASK_INFO(this_thr)
          ->thread_num = __kmp_tid_from_gtid(global_tid);
    }

    /* OMPT state */
    this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
    OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
  }
#endif
}

/* most of the work for a fork */
/* return true if we really went parallel, false if serialized */
int __kmp_fork_call(ident_t *loc, int gtid,
                    enum fork_context_e call_context, // Intel, GNU, ...
                    kmp_int32 argc, microtask_t microtask, launch_t invoker,
                    kmp_va_list ap) {
  void **argv;
  int i;
  int master_tid;
  int master_this_cons;
  kmp_team_t *team;
  kmp_team_t *parent_team;
  kmp_info_t *master_th;
  kmp_root_t *root;
  int nthreads;
  int master_active;
  int master_set_numthreads;
  int level;
  int active_level;
  int teams_level;
#if KMP_NESTED_HOT_TEAMS
  kmp_hot_team_ptr_t **p_hot_teams;
#endif
  { // KMP_TIME_BLOCK
    KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call);
    KMP_COUNT_VALUE(OMP_PARALLEL_args, argc);

    KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid));
    if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) {
      /* Some systems prefer the stack for the root thread(s) to start with */
      /* some gap from the parent stack to prevent false sharing. */
      void *dummy = KMP_ALLOCA(__kmp_stkpadding);
      /* These 2 lines below are so this does not get optimized out */
      if (__kmp_stkpadding > KMP_MAX_STKPADDING)
        __kmp_stkpadding += (short)((kmp_int64)dummy);
    }

    /* initialize if needed */
    KMP_DEBUG_ASSERT(
        __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown
    if (!TCR_4(__kmp_init_parallel))
      __kmp_parallel_initialize();
    __kmp_resume_if_soft_paused();

    /* setup current data */
    master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with
    // shutdown
    parent_team = master_th->th.th_team;
    master_tid = master_th->th.th_info.ds.ds_tid;
    master_this_cons = master_th->th.th_local.this_construct;
    root = master_th->th.th_root;
    master_active = root->r.r_active;
    master_set_numthreads = master_th->th.th_set_nproc;

#if OMPT_SUPPORT
    ompt_data_t ompt_parallel_data = ompt_data_none;
    ompt_data_t *parent_task_data;
    ompt_frame_t *ompt_frame;
    ompt_data_t *implicit_task_data;
    void *return_address = NULL;

    if (ompt_enabled.enabled) {
      __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame,
                                    NULL, NULL);
      return_address = OMPT_LOAD_RETURN_ADDRESS(gtid);
    }
#endif

    // Nested level will be an index in the nested nthreads array
    level = parent_team->t.t_level;
    // used to launch non-serial teams even if nested is not allowed
    active_level = parent_team->t.t_active_level;
    // needed to check nesting inside the teams
    teams_level = master_th->th.th_teams_level;
#if KMP_NESTED_HOT_TEAMS
    p_hot_teams = &master_th->th.th_hot_teams;
    if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) {
      *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate(
          sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level);
      (*p_hot_teams)[0].hot_team = root->r.r_hot_team;
      // it is either actual or not needed (when active_level > 0)
      (*p_hot_teams)[0].hot_team_nth = 1;
    }
#endif

#if OMPT_SUPPORT
    if (ompt_enabled.enabled) {
      if (ompt_enabled.ompt_callback_parallel_begin) {
        int team_size = master_set_numthreads
                            ? master_set_numthreads
                            : get__nproc_2(parent_team, master_tid);
        int flags = OMPT_INVOKER(call_context) |
                    ((microtask == (microtask_t)__kmp_teams_master)
                         ? ompt_parallel_league
                         : ompt_parallel_team);
        ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
            parent_task_data, ompt_frame, &ompt_parallel_data, team_size, flags,
            return_address);
      }
      master_th->th.ompt_thread_info.state = ompt_state_overhead;
    }
#endif

    master_th->th.th_ident = loc;

    if (master_th->th.th_teams_microtask && ap &&
        microtask != (microtask_t)__kmp_teams_master && level == teams_level) {
      // AC: This is start of parallel that is nested inside teams construct.
      // The team is actual (hot), all workers are ready at the fork barrier.
      // No lock needed to initialize the team a bit, then free workers.
      parent_team->t.t_ident = loc;
      __kmp_alloc_argv_entries(argc, parent_team, TRUE);
      parent_team->t.t_argc = argc;
      argv = (void **)parent_team->t.t_argv;
      for (i = argc - 1; i >= 0; --i)
        *argv++ = va_arg(kmp_va_deref(ap), void *);
      // Increment our nested depth levels, but not increase the serialization
      if (parent_team == master_th->th.th_serial_team) {
        // AC: we are in serialized parallel
        __kmpc_serialized_parallel(loc, gtid);
        KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1);

        if (call_context == fork_context_gnu) {
          // AC: need to decrement t_serialized for enquiry functions to work
          // correctly, will restore at join time
          parent_team->t.t_serialized--;
          return TRUE;
        }

#if OMPT_SUPPORT
        void *dummy;
        void **exit_frame_p;

        ompt_lw_taskteam_t lw_taskteam;

        if (ompt_enabled.enabled) {
          __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
                                  &ompt_parallel_data, return_address);
          exit_frame_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr);

          __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
          // don't use lw_taskteam after linking. content was swaped

          /* OMPT implicit task begin */
          implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
          if (ompt_enabled.ompt_callback_implicit_task) {
            OMPT_CUR_TASK_INFO(master_th)
                ->thread_num = __kmp_tid_from_gtid(gtid);
            ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
                implicit_task_data, 1,
                OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
          }

          /* OMPT state */
          master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
        } else {
          exit_frame_p = &dummy;
        }
#endif
        // AC: need to decrement t_serialized for enquiry functions to work
        // correctly, will restore at join time
        parent_team->t.t_serialized--;

        {
          KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
          KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
          __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv
#if OMPT_SUPPORT
                                 ,
                                 exit_frame_p
#endif
                                 );
        }

#if OMPT_SUPPORT
        if (ompt_enabled.enabled) {
          *exit_frame_p = NULL;
          OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none;
          if (ompt_enabled.ompt_callback_implicit_task) {
            ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                ompt_scope_end, NULL, implicit_task_data, 1,
                OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
          }
          ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
          __ompt_lw_taskteam_unlink(master_th);
          if (ompt_enabled.ompt_callback_parallel_end) {
            ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
                &ompt_parallel_data, OMPT_CUR_TASK_DATA(master_th),
                OMPT_INVOKER(call_context) | ompt_parallel_team,
                return_address);
          }
          master_th->th.ompt_thread_info.state = ompt_state_overhead;
        }
#endif
        return TRUE;
      }

      parent_team->t.t_pkfn = microtask;
      parent_team->t.t_invoke = invoker;
      KMP_ATOMIC_INC(&root->r.r_in_parallel);
      parent_team->t.t_active_level++;
      parent_team->t.t_level++;
      parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save

#if OMPT_SUPPORT
      if (ompt_enabled.enabled) {
        ompt_lw_taskteam_t lw_taskteam;
        __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
                                &ompt_parallel_data, return_address);
        __ompt_lw_taskteam_link(&lw_taskteam, master_th, 1, true);
      }
#endif

      /* Change number of threads in the team if requested */
      if (master_set_numthreads) { // The parallel has num_threads clause
        if (master_set_numthreads < master_th->th.th_teams_size.nth) {
          // AC: only can reduce number of threads dynamically, can't increase
          kmp_info_t **other_threads = parent_team->t.t_threads;
          parent_team->t.t_nproc = master_set_numthreads;
          for (i = 0; i < master_set_numthreads; ++i) {
            other_threads[i]->th.th_team_nproc = master_set_numthreads;
          }
          // Keep extra threads hot in the team for possible next parallels
        }
        master_th->th.th_set_nproc = 0;
      }

#if USE_DEBUGGER
      if (__kmp_debugging) { // Let debugger override number of threads.
        int nth = __kmp_omp_num_threads(loc);
        if (nth > 0) { // 0 means debugger doesn't want to change num threads
          master_set_numthreads = nth;
        }
      }
#endif

#if USE_ITT_BUILD
      if (((__itt_frame_submit_v3_ptr && __itt_get_timestamp_ptr) ||
           KMP_ITT_DEBUG) &&
          __kmp_forkjoin_frames_mode == 3 &&
          parent_team->t.t_active_level == 1 // only report frames at level 1
          && master_th->th.th_teams_size.nteams == 1) {
        kmp_uint64 tmp_time = __itt_get_timestamp();
        master_th->th.th_frame_time = tmp_time;
        parent_team->t.t_region_time = tmp_time;
      }
      if (__itt_stack_caller_create_ptr) {
        // create new stack stitching id before entering fork barrier
        parent_team->t.t_stack_id = __kmp_itt_stack_caller_create();
      }
#endif /* USE_ITT_BUILD */

      KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, "
                    "master_th=%p, gtid=%d\n",
                    root, parent_team, master_th, gtid));
      __kmp_internal_fork(loc, gtid, parent_team);
      KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, "
                    "master_th=%p, gtid=%d\n",
                    root, parent_team, master_th, gtid));

      if (call_context == fork_context_gnu)
        return TRUE;

      /* Invoke microtask for MASTER thread */
      KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid,
                    parent_team->t.t_id, parent_team->t.t_pkfn));

      if (!parent_team->t.t_invoke(gtid)) {
        KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread");
      }
      KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid,
                    parent_team->t.t_id, parent_team->t.t_pkfn));
      KMP_MB(); /* Flush all pending memory write invalidates.  */

      KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));

      return TRUE;
    } // Parallel closely nested in teams construct

#if KMP_DEBUG
    if (__kmp_tasking_mode != tskm_immediate_exec) {
      KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
                       parent_team->t.t_task_team[master_th->th.th_task_state]);
    }
#endif

    if (parent_team->t.t_active_level >=
        master_th->th.th_current_task->td_icvs.max_active_levels) {
      nthreads = 1;
    } else {
      int enter_teams = ((ap == NULL && active_level == 0) ||
                         (ap && teams_level > 0 && teams_level == level));
      nthreads =
          master_set_numthreads
              ? master_set_numthreads
              : get__nproc_2(
                    parent_team,
                    master_tid); // TODO: get nproc directly from current task

      // Check if we need to take forkjoin lock? (no need for serialized
      // parallel out of teams construct). This code moved here from
      // __kmp_reserve_threads() to speedup nested serialized parallels.
      if (nthreads > 1) {
        if ((get__max_active_levels(master_th) == 1 &&
             (root->r.r_in_parallel && !enter_teams)) ||
            (__kmp_library == library_serial)) {
          KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d"
                        " threads\n",
                        gtid, nthreads));
          nthreads = 1;
        }
      }
      if (nthreads > 1) {
        /* determine how many new threads we can use */
        __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
        /* AC: If we execute teams from parallel region (on host), then teams
           should be created but each can only have 1 thread if nesting is
           disabled. If teams called from serial region, then teams and their
           threads should be created regardless of the nesting setting. */
        nthreads = __kmp_reserve_threads(root, parent_team, master_tid,
                                         nthreads, enter_teams);
        if (nthreads == 1) {
          // Free lock for single thread execution here; for multi-thread
          // execution it will be freed later after team of threads created
          // and initialized
          __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
        }
      }
    }
    KMP_DEBUG_ASSERT(nthreads > 0);

    // If we temporarily changed the set number of threads then restore it now
    master_th->th.th_set_nproc = 0;

    /* create a serialized parallel region? */
    if (nthreads == 1) {
/* josh todo: hypothetical question: what do we do for OS X*? */
#if KMP_OS_LINUX &&                                                            \
    (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
      void *args[argc];
#else
      void **args = (void **)KMP_ALLOCA(argc * sizeof(void *));
#endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \
          KMP_ARCH_AARCH64) */

      KA_TRACE(20,
               ("__kmp_fork_call: T#%d serializing parallel region\n", gtid));

      __kmpc_serialized_parallel(loc, gtid);

      if (call_context == fork_context_intel) {
        /* TODO this sucks, use the compiler itself to pass args! :) */
        master_th->th.th_serial_team->t.t_ident = loc;
        if (!ap) {
          // revert change made in __kmpc_serialized_parallel()
          master_th->th.th_serial_team->t.t_level--;
// Get args from parent team for teams construct

#if OMPT_SUPPORT
          void *dummy;
          void **exit_frame_p;
          ompt_task_info_t *task_info;

          ompt_lw_taskteam_t lw_taskteam;

          if (ompt_enabled.enabled) {
            __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
                                    &ompt_parallel_data, return_address);

            __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
            // don't use lw_taskteam after linking. content was swaped

            task_info = OMPT_CUR_TASK_INFO(master_th);
            exit_frame_p = &(task_info->frame.exit_frame.ptr);
            if (ompt_enabled.ompt_callback_implicit_task) {
              OMPT_CUR_TASK_INFO(master_th)
                  ->thread_num = __kmp_tid_from_gtid(gtid);
              ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                  ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
                  &(task_info->task_data), 1,
                  OMPT_CUR_TASK_INFO(master_th)->thread_num,
                  ompt_task_implicit);
            }

            /* OMPT state */
            master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
          } else {
            exit_frame_p = &dummy;
          }
#endif

          {
            KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
            KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
            __kmp_invoke_microtask(microtask, gtid, 0, argc,
                                   parent_team->t.t_argv
#if OMPT_SUPPORT
                                   ,
                                   exit_frame_p
#endif
                                   );
          }

#if OMPT_SUPPORT
          if (ompt_enabled.enabled) {
            *exit_frame_p = NULL;
            if (ompt_enabled.ompt_callback_implicit_task) {
              ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                  ompt_scope_end, NULL, &(task_info->task_data), 1,
                  OMPT_CUR_TASK_INFO(master_th)->thread_num,
                  ompt_task_implicit);
            }
            ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
            __ompt_lw_taskteam_unlink(master_th);
            if (ompt_enabled.ompt_callback_parallel_end) {
              ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
                  &ompt_parallel_data, parent_task_data,
                  OMPT_INVOKER(call_context) | ompt_parallel_team,
                  return_address);
            }
            master_th->th.ompt_thread_info.state = ompt_state_overhead;
          }
#endif
        } else if (microtask == (microtask_t)__kmp_teams_master) {
          KMP_DEBUG_ASSERT(master_th->th.th_team ==
                           master_th->th.th_serial_team);
          team = master_th->th.th_team;
          // team->t.t_pkfn = microtask;
          team->t.t_invoke = invoker;
          __kmp_alloc_argv_entries(argc, team, TRUE);
          team->t.t_argc = argc;
          argv = (void **)team->t.t_argv;
          if (ap) {
            for (i = argc - 1; i >= 0; --i)
              *argv++ = va_arg(kmp_va_deref(ap), void *);
          } else {
            for (i = 0; i < argc; ++i)
              // Get args from parent team for teams construct
              argv[i] = parent_team->t.t_argv[i];
          }
          // AC: revert change made in __kmpc_serialized_parallel()
          //     because initial code in teams should have level=0
          team->t.t_level--;
          // AC: call special invoker for outer "parallel" of teams construct
          invoker(gtid);
#if OMPT_SUPPORT
          if (ompt_enabled.enabled) {
            ompt_task_info_t *task_info = OMPT_CUR_TASK_INFO(master_th);
            if (ompt_enabled.ompt_callback_implicit_task) {
              ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                  ompt_scope_end, NULL, &(task_info->task_data), 0,
                  OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_initial);
            }
            if (ompt_enabled.ompt_callback_parallel_end) {
              ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
                  &ompt_parallel_data, parent_task_data,
                  OMPT_INVOKER(call_context) | ompt_parallel_league,
                  return_address);
            }
            master_th->th.ompt_thread_info.state = ompt_state_overhead;
          }
#endif
        } else {
          argv = args;
          for (i = argc - 1; i >= 0; --i)
            *argv++ = va_arg(kmp_va_deref(ap), void *);
          KMP_MB();

#if OMPT_SUPPORT
          void *dummy;
          void **exit_frame_p;
          ompt_task_info_t *task_info;

          ompt_lw_taskteam_t lw_taskteam;

          if (ompt_enabled.enabled) {
            __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
                                    &ompt_parallel_data, return_address);
            __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
            // don't use lw_taskteam after linking. content was swaped
            task_info = OMPT_CUR_TASK_INFO(master_th);
            exit_frame_p = &(task_info->frame.exit_frame.ptr);

            /* OMPT implicit task begin */
            implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
            if (ompt_enabled.ompt_callback_implicit_task) {
              ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                  ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
                  implicit_task_data, 1, __kmp_tid_from_gtid(gtid),
                  ompt_task_implicit);
              OMPT_CUR_TASK_INFO(master_th)
                  ->thread_num = __kmp_tid_from_gtid(gtid);
            }

            /* OMPT state */
            master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
          } else {
            exit_frame_p = &dummy;
          }
#endif

          {
            KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
            KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
            __kmp_invoke_microtask(microtask, gtid, 0, argc, args
#if OMPT_SUPPORT
                                   ,
                                   exit_frame_p
#endif
                                   );
          }

#if OMPT_SUPPORT
          if (ompt_enabled.enabled) {
            *exit_frame_p = NULL;
            if (ompt_enabled.ompt_callback_implicit_task) {
              ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                  ompt_scope_end, NULL, &(task_info->task_data), 1,
                  OMPT_CUR_TASK_INFO(master_th)->thread_num,
                  ompt_task_implicit);
            }

            ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
            __ompt_lw_taskteam_unlink(master_th);
            if (ompt_enabled.ompt_callback_parallel_end) {
              ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
                  &ompt_parallel_data, parent_task_data,
                  OMPT_INVOKER(call_context) | ompt_parallel_team,
                  return_address);
            }
            master_th->th.ompt_thread_info.state = ompt_state_overhead;
          }
#endif
        }
      } else if (call_context == fork_context_gnu) {
#if OMPT_SUPPORT
        ompt_lw_taskteam_t lwt;
        __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data,
                                return_address);

        lwt.ompt_task_info.frame.exit_frame = ompt_data_none;
        __ompt_lw_taskteam_link(&lwt, master_th, 1);
// don't use lw_taskteam after linking. content was swaped
#endif

        // we were called from GNU native code
        KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid));
        return FALSE;
      } else {
        KMP_ASSERT2(call_context < fork_context_last,
                    "__kmp_fork_call: unknown fork_context parameter");
      }

      KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid));
      KMP_MB();
      return FALSE;
    } // if (nthreads == 1)

    // GEH: only modify the executing flag in the case when not serialized
    //      serialized case is handled in kmpc_serialized_parallel
    KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, "
                  "curtask=%p, curtask_max_aclevel=%d\n",
                  parent_team->t.t_active_level, master_th,
                  master_th->th.th_current_task,
                  master_th->th.th_current_task->td_icvs.max_active_levels));
    // TODO: GEH - cannot do this assertion because root thread not set up as
    // executing
    // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 );
    master_th->th.th_current_task->td_flags.executing = 0;

    if (!master_th->th.th_teams_microtask || level > teams_level) {
      /* Increment our nested depth level */
      KMP_ATOMIC_INC(&root->r.r_in_parallel);
    }

    // See if we need to make a copy of the ICVs.
    int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc;
    if ((level + 1 < __kmp_nested_nth.used) &&
        (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) {
      nthreads_icv = __kmp_nested_nth.nth[level + 1];
    } else {
      nthreads_icv = 0; // don't update
    }

    // Figure out the proc_bind_policy for the new team.
    kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind;
    kmp_proc_bind_t proc_bind_icv =
        proc_bind_default; // proc_bind_default means don't update
    if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
      proc_bind = proc_bind_false;
    } else {
      if (proc_bind == proc_bind_default) {
        // No proc_bind clause specified; use current proc-bind-var for this
        // parallel region
        proc_bind = master_th->th.th_current_task->td_icvs.proc_bind;
      }
      /* else: The proc_bind policy was specified explicitly on parallel clause.
         This overrides proc-bind-var for this parallel region, but does not
         change proc-bind-var. */
      // Figure the value of proc-bind-var for the child threads.
      if ((level + 1 < __kmp_nested_proc_bind.used) &&
          (__kmp_nested_proc_bind.bind_types[level + 1] !=
           master_th->th.th_current_task->td_icvs.proc_bind)) {
        proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1];
      }
    }

    // Reset for next parallel region
    master_th->th.th_set_proc_bind = proc_bind_default;

    if ((nthreads_icv > 0) || (proc_bind_icv != proc_bind_default)) {
      kmp_internal_control_t new_icvs;
      copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs);
      new_icvs.next = NULL;
      if (nthreads_icv > 0) {
        new_icvs.nproc = nthreads_icv;
      }
      if (proc_bind_icv != proc_bind_default) {
        new_icvs.proc_bind = proc_bind_icv;
      }

      /* allocate a new parallel team */
      KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
      team = __kmp_allocate_team(root, nthreads, nthreads,
#if OMPT_SUPPORT
                                 ompt_parallel_data,
#endif
                                 proc_bind, &new_icvs,
                                 argc USE_NESTED_HOT_ARG(master_th));
    } else {
      /* allocate a new parallel team */
      KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
      team = __kmp_allocate_team(root, nthreads, nthreads,
#if OMPT_SUPPORT
                                 ompt_parallel_data,
#endif
                                 proc_bind,
                                 &master_th->th.th_current_task->td_icvs,
                                 argc USE_NESTED_HOT_ARG(master_th));
    }
    KF_TRACE(
        10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team));

    /* setup the new team */
    KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid);
    KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons);
    KMP_CHECK_UPDATE(team->t.t_ident, loc);
    KMP_CHECK_UPDATE(team->t.t_parent, parent_team);
    KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask);
#if OMPT_SUPPORT
    KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address,
                          return_address);
#endif
    KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe
    // TODO: parent_team->t.t_level == INT_MAX ???
    if (!master_th->th.th_teams_microtask || level > teams_level) {
      int new_level = parent_team->t.t_level + 1;
      KMP_CHECK_UPDATE(team->t.t_level, new_level);
      new_level = parent_team->t.t_active_level + 1;
      KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
    } else {
      // AC: Do not increase parallel level at start of the teams construct
      int new_level = parent_team->t.t_level;
      KMP_CHECK_UPDATE(team->t.t_level, new_level);
      new_level = parent_team->t.t_active_level;
      KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
    }
    kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid);
    // set master's schedule as new run-time schedule
    KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);

    KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq);
    KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator);

    // Update the floating point rounding in the team if required.
    propagateFPControl(team);

    if (__kmp_tasking_mode != tskm_immediate_exec) {
      // Set master's task team to team's task team. Unless this is hot team, it
      // should be NULL.
      KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
                       parent_team->t.t_task_team[master_th->th.th_task_state]);
      KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team "
                    "%p, new task_team %p / team %p\n",
                    __kmp_gtid_from_thread(master_th),
                    master_th->th.th_task_team, parent_team,
                    team->t.t_task_team[master_th->th.th_task_state], team));

      if (active_level || master_th->th.th_task_team) {
        // Take a memo of master's task_state
        KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
        if (master_th->th.th_task_state_top >=
            master_th->th.th_task_state_stack_sz) { // increase size
          kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz;
          kmp_uint8 *old_stack, *new_stack;
          kmp_uint32 i;
          new_stack = (kmp_uint8 *)__kmp_allocate(new_size);
          for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) {
            new_stack[i] = master_th->th.th_task_state_memo_stack[i];
          }
          for (i = master_th->th.th_task_state_stack_sz; i < new_size;
               ++i) { // zero-init rest of stack
            new_stack[i] = 0;
          }
          old_stack = master_th->th.th_task_state_memo_stack;
          master_th->th.th_task_state_memo_stack = new_stack;
          master_th->th.th_task_state_stack_sz = new_size;
          __kmp_free(old_stack);
        }
        // Store master's task_state on stack
        master_th->th
            .th_task_state_memo_stack[master_th->th.th_task_state_top] =
            master_th->th.th_task_state;
        master_th->th.th_task_state_top++;
#if KMP_NESTED_HOT_TEAMS
        if (master_th->th.th_hot_teams &&
            active_level < __kmp_hot_teams_max_level &&
            team == master_th->th.th_hot_teams[active_level].hot_team) {
          // Restore master's nested state if nested hot team
          master_th->th.th_task_state =
              master_th->th
                  .th_task_state_memo_stack[master_th->th.th_task_state_top];
        } else {
#endif
          master_th->th.th_task_state = 0;
#if KMP_NESTED_HOT_TEAMS
        }
#endif
      }
#if !KMP_NESTED_HOT_TEAMS
      KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) ||
                       (team == root->r.r_hot_team));
#endif
    }

    KA_TRACE(
        20,
        ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n",
         gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id,
         team->t.t_nproc));
    KMP_DEBUG_ASSERT(team != root->r.r_hot_team ||
                     (team->t.t_master_tid == 0 &&
                      (team->t.t_parent == root->r.r_root_team ||
                       team->t.t_parent->t.t_serialized)));
    KMP_MB();

    /* now, setup the arguments */
    argv = (void **)team->t.t_argv;
    if (ap) {
      for (i = argc - 1; i >= 0; --i) {
        void *new_argv = va_arg(kmp_va_deref(ap), void *);
        KMP_CHECK_UPDATE(*argv, new_argv);
        argv++;
      }
    } else {
      for (i = 0; i < argc; ++i) {
        // Get args from parent team for teams construct
        KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]);
      }
    }

    /* now actually fork the threads */
    KMP_CHECK_UPDATE(team->t.t_master_active, master_active);
    if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong
      root->r.r_active = TRUE;

    __kmp_fork_team_threads(root, team, master_th, gtid);
    __kmp_setup_icv_copy(team, nthreads,
                         &master_th->th.th_current_task->td_icvs, loc);

#if OMPT_SUPPORT
    master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
#endif

    __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);

#if USE_ITT_BUILD
    if (team->t.t_active_level == 1 // only report frames at level 1
        && !master_th->th.th_teams_microtask) { // not in teams construct
#if USE_ITT_NOTIFY
      if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
          (__kmp_forkjoin_frames_mode == 3 ||
           __kmp_forkjoin_frames_mode == 1)) {
        kmp_uint64 tmp_time = 0;
        if (__itt_get_timestamp_ptr)
          tmp_time = __itt_get_timestamp();
        // Internal fork - report frame begin
        master_th->th.th_frame_time = tmp_time;
        if (__kmp_forkjoin_frames_mode == 3)
          team->t.t_region_time = tmp_time;
      } else
// only one notification scheme (either "submit" or "forking/joined", not both)
#endif /* USE_ITT_NOTIFY */
          if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) &&
              __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) {
        // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer.
        __kmp_itt_region_forking(gtid, team->t.t_nproc, 0);
      }
    }
#endif /* USE_ITT_BUILD */

    /* now go on and do the work */
    KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team);
    KMP_MB();
    KF_TRACE(10,
             ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n",
              root, team, master_th, gtid));

#if USE_ITT_BUILD
    if (__itt_stack_caller_create_ptr) {
      team->t.t_stack_id =
          __kmp_itt_stack_caller_create(); // create new stack stitching id
      // before entering fork barrier
    }
#endif /* USE_ITT_BUILD */

    // AC: skip __kmp_internal_fork at teams construct, let only master
    // threads execute
    if (ap) {
      __kmp_internal_fork(loc, gtid, team);
      KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, "
                    "master_th=%p, gtid=%d\n",
                    root, team, master_th, gtid));
    }

    if (call_context == fork_context_gnu) {
      KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
      return TRUE;
    }

    /* Invoke microtask for MASTER thread */
    KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid,
                  team->t.t_id, team->t.t_pkfn));
  } // END of timer KMP_fork_call block

#if KMP_STATS_ENABLED
  // If beginning a teams construct, then change thread state
  stats_state_e previous_state = KMP_GET_THREAD_STATE();
  if (!ap) {
    KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION);
  }
#endif

  if (!team->t.t_invoke(gtid)) {
    KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread");
  }

#if KMP_STATS_ENABLED
  // If was beginning of a teams construct, then reset thread state
  if (!ap) {
    KMP_SET_THREAD_STATE(previous_state);
  }
#endif

  KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid,
                team->t.t_id, team->t.t_pkfn));
  KMP_MB(); /* Flush all pending memory write invalidates.  */

  KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));

#if OMPT_SUPPORT
  if (ompt_enabled.enabled) {
    master_th->th.ompt_thread_info.state = ompt_state_overhead;
  }
#endif

  return TRUE;
}

#if OMPT_SUPPORT
static inline void __kmp_join_restore_state(kmp_info_t *thread,
                                            kmp_team_t *team) {
  // restore state outside the region
  thread->th.ompt_thread_info.state =
      ((team->t.t_serialized) ? ompt_state_work_serial
                              : ompt_state_work_parallel);
}

static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread,
                                   kmp_team_t *team, ompt_data_t *parallel_data,
                                   int flags, void *codeptr) {
  ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
  if (ompt_enabled.ompt_callback_parallel_end) {
    ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
        parallel_data, &(task_info->task_data), flags, codeptr);
  }

  task_info->frame.enter_frame = ompt_data_none;
  __kmp_join_restore_state(thread, team);
}
#endif

void __kmp_join_call(ident_t *loc, int gtid
#if OMPT_SUPPORT
                     ,
                     enum fork_context_e fork_context
#endif
                     ,
                     int exit_teams) {
  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call);
  kmp_team_t *team;
  kmp_team_t *parent_team;
  kmp_info_t *master_th;
  kmp_root_t *root;
  int master_active;

  KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid));

  /* setup current data */
  master_th = __kmp_threads[gtid];
  root = master_th->th.th_root;
  team = master_th->th.th_team;
  parent_team = team->t.t_parent;

  master_th->th.th_ident = loc;

#if OMPT_SUPPORT
  void *team_microtask = (void *)team->t.t_pkfn;
  // For GOMP interface with serialized parallel, need the
  // __kmpc_end_serialized_parallel to call hooks for OMPT end-implicit-task
  // and end-parallel events.
  if (ompt_enabled.enabled &&
      !(team->t.t_serialized && fork_context == fork_context_gnu)) {
    master_th->th.ompt_thread_info.state = ompt_state_overhead;
  }
#endif

#if KMP_DEBUG
  if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) {
    KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, "
                  "th_task_team = %p\n",
                  __kmp_gtid_from_thread(master_th), team,
                  team->t.t_task_team[master_th->th.th_task_state],
                  master_th->th.th_task_team));
    KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
                     team->t.t_task_team[master_th->th.th_task_state]);
  }
#endif

  if (team->t.t_serialized) {
    if (master_th->th.th_teams_microtask) {
      // We are in teams construct
      int level = team->t.t_level;
      int tlevel = master_th->th.th_teams_level;
      if (level == tlevel) {
        // AC: we haven't incremented it earlier at start of teams construct,
        //     so do it here - at the end of teams construct
        team->t.t_level++;
      } else if (level == tlevel + 1) {
        // AC: we are exiting parallel inside teams, need to increment
        // serialization in order to restore it in the next call to
        // __kmpc_end_serialized_parallel
        team->t.t_serialized++;
      }
    }
    __kmpc_end_serialized_parallel(loc, gtid);

#if OMPT_SUPPORT
    if (ompt_enabled.enabled) {
      __kmp_join_restore_state(master_th, parent_team);
    }
#endif

    return;
  }

  master_active = team->t.t_master_active;

  if (!exit_teams) {
    // AC: No barrier for internal teams at exit from teams construct.
    //     But there is barrier for external team (league).
    __kmp_internal_join(loc, gtid, team);
  } else {
    master_th->th.th_task_state =
        0; // AC: no tasking in teams (out of any parallel)
  }

  KMP_MB();

#if OMPT_SUPPORT
  ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data);
  void *codeptr = team->t.ompt_team_info.master_return_address;
#endif

#if USE_ITT_BUILD
  if (__itt_stack_caller_create_ptr) {
    // destroy the stack stitching id after join barrier
    __kmp_itt_stack_caller_destroy((__itt_caller)team->t.t_stack_id);
  }
  // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer.
  if (team->t.t_active_level == 1 &&
      (!master_th->th.th_teams_microtask || /* not in teams construct */
       master_th->th.th_teams_size.nteams == 1)) {
    master_th->th.th_ident = loc;
    // only one notification scheme (either "submit" or "forking/joined", not
    // both)
    if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
        __kmp_forkjoin_frames_mode == 3)
      __kmp_itt_frame_submit(gtid, team->t.t_region_time,
                             master_th->th.th_frame_time, 0, loc,
                             master_th->th.th_team_nproc, 1);
    else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) &&
             !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames)
      __kmp_itt_region_joined(gtid);
  } // active_level == 1
#endif /* USE_ITT_BUILD */

  if (master_th->th.th_teams_microtask && !exit_teams &&
      team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
      team->t.t_level == master_th->th.th_teams_level + 1) {
// AC: We need to leave the team structure intact at the end of parallel
// inside the teams construct, so that at the next parallel same (hot) team
// works, only adjust nesting levels
#if OMPT_SUPPORT
    ompt_data_t ompt_parallel_data = ompt_data_none;
    if (ompt_enabled.enabled) {
      ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
      if (ompt_enabled.ompt_callback_implicit_task) {
        int ompt_team_size = team->t.t_nproc;
        ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
            ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size,
            OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
      }
      task_info->frame.exit_frame = ompt_data_none;
      task_info->task_data = ompt_data_none;
      ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
      __ompt_lw_taskteam_unlink(master_th);
    }
#endif
    /* Decrement our nested depth level */
    team->t.t_level--;
    team->t.t_active_level--;
    KMP_ATOMIC_DEC(&root->r.r_in_parallel);

    // Restore number of threads in the team if needed. This code relies on
    // the proper adjustment of th_teams_size.nth after the fork in
    // __kmp_teams_master on each teams master in the case that
    // __kmp_reserve_threads reduced it.
    if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) {
      int old_num = master_th->th.th_team_nproc;
      int new_num = master_th->th.th_teams_size.nth;
      kmp_info_t **other_threads = team->t.t_threads;
      team->t.t_nproc = new_num;
      for (int i = 0; i < old_num; ++i) {
        other_threads[i]->th.th_team_nproc = new_num;
      }
      // Adjust states of non-used threads of the team
      for (int i = old_num; i < new_num; ++i) {
        // Re-initialize thread's barrier data.
        KMP_DEBUG_ASSERT(other_threads[i]);
        kmp_balign_t *balign = other_threads[i]->th.th_bar;
        for (int b = 0; b < bs_last_barrier; ++b) {
          balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
          KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
#if USE_DEBUGGER
          balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
#endif
        }
        if (__kmp_tasking_mode != tskm_immediate_exec) {
          // Synchronize thread's task state
          other_threads[i]->th.th_task_state = master_th->th.th_task_state;
        }
      }
    }

#if OMPT_SUPPORT
    if (ompt_enabled.enabled) {
      __kmp_join_ompt(gtid, master_th, parent_team, &ompt_parallel_data,
                      OMPT_INVOKER(fork_context) | ompt_parallel_team, codeptr);
    }
#endif

    return;
  }

  /* do cleanup and restore the parent team */
  master_th->th.th_info.ds.ds_tid = team->t.t_master_tid;
  master_th->th.th_local.this_construct = team->t.t_master_this_cons;

  master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid];

  /* jc: The following lock has instructions with REL and ACQ semantics,
     separating the parallel user code called in this parallel region
     from the serial user code called after this function returns. */
  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);

  if (!master_th->th.th_teams_microtask ||
      team->t.t_level > master_th->th.th_teams_level) {
    /* Decrement our nested depth level */
    KMP_ATOMIC_DEC(&root->r.r_in_parallel);
  }
  KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0);

#if OMPT_SUPPORT
  if (ompt_enabled.enabled) {
    ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
    if (ompt_enabled.ompt_callback_implicit_task) {
      int flags = (team_microtask == (void *)__kmp_teams_master)
                      ? ompt_task_initial
                      : ompt_task_implicit;
      int ompt_team_size = (flags == ompt_task_initial) ? 0 : team->t.t_nproc;
      ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
          ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size,
          OMPT_CUR_TASK_INFO(master_th)->thread_num, flags);
    }
    task_info->frame.exit_frame = ompt_data_none;
    task_info->task_data = ompt_data_none;
  }
#endif

  KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0,
                master_th, team));
  __kmp_pop_current_task_from_thread(master_th);

#if KMP_AFFINITY_SUPPORTED
  // Restore master thread's partition.
  master_th->th.th_first_place = team->t.t_first_place;
  master_th->th.th_last_place = team->t.t_last_place;
#endif // KMP_AFFINITY_SUPPORTED
  master_th->th.th_def_allocator = team->t.t_def_allocator;

  updateHWFPControl(team);

  if (root->r.r_active != master_active)
    root->r.r_active = master_active;

  __kmp_free_team(root, team USE_NESTED_HOT_ARG(
                            master_th)); // this will free worker threads

  /* this race was fun to find. make sure the following is in the critical
     region otherwise assertions may fail occasionally since the old team may be
     reallocated and the hierarchy appears inconsistent. it is actually safe to
     run and won't cause any bugs, but will cause those assertion failures. it's
     only one deref&assign so might as well put this in the critical region */
  master_th->th.th_team = parent_team;
  master_th->th.th_team_nproc = parent_team->t.t_nproc;
  master_th->th.th_team_master = parent_team->t.t_threads[0];
  master_th->th.th_team_serialized = parent_team->t.t_serialized;

  /* restore serialized team, if need be */
  if (parent_team->t.t_serialized &&
      parent_team != master_th->th.th_serial_team &&
      parent_team != root->r.r_root_team) {
    __kmp_free_team(root,
                    master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL));
    master_th->th.th_serial_team = parent_team;
  }

  if (__kmp_tasking_mode != tskm_immediate_exec) {
    if (master_th->th.th_task_state_top >
        0) { // Restore task state from memo stack
      KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
      // Remember master's state if we re-use this nested hot team
      master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] =
          master_th->th.th_task_state;
      --master_th->th.th_task_state_top; // pop
      // Now restore state at this level
      master_th->th.th_task_state =
          master_th->th
              .th_task_state_memo_stack[master_th->th.th_task_state_top];
    }
    // Copy the task team from the parent team to the master thread
    master_th->th.th_task_team =
        parent_team->t.t_task_team[master_th->th.th_task_state];
    KA_TRACE(20,
             ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n",
              __kmp_gtid_from_thread(master_th), master_th->th.th_task_team,
              parent_team));
  }

  // TODO: GEH - cannot do this assertion because root thread not set up as
  // executing
  // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 );
  master_th->th.th_current_task->td_flags.executing = 1;

  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);

#if OMPT_SUPPORT
  int flags =
      OMPT_INVOKER(fork_context) |
      ((team_microtask == (void *)__kmp_teams_master) ? ompt_parallel_league
                                                      : ompt_parallel_team);
  if (ompt_enabled.enabled) {
    __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, flags,
                    codeptr);
  }
#endif

  KMP_MB();
  KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid));
}

/* Check whether we should push an internal control record onto the
   serial team stack.  If so, do it.  */
void __kmp_save_internal_controls(kmp_info_t *thread) {

  if (thread->th.th_team != thread->th.th_serial_team) {
    return;
  }
  if (thread->th.th_team->t.t_serialized > 1) {
    int push = 0;

    if (thread->th.th_team->t.t_control_stack_top == NULL) {
      push = 1;
    } else {
      if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level !=
          thread->th.th_team->t.t_serialized) {
        push = 1;
      }
    }
    if (push) { /* push a record on the serial team's stack */
      kmp_internal_control_t *control =
          (kmp_internal_control_t *)__kmp_allocate(
              sizeof(kmp_internal_control_t));

      copy_icvs(control, &thread->th.th_current_task->td_icvs);

      control->serial_nesting_level = thread->th.th_team->t.t_serialized;

      control->next = thread->th.th_team->t.t_control_stack_top;
      thread->th.th_team->t.t_control_stack_top = control;
    }
  }
}

/* Changes set_nproc */
void __kmp_set_num_threads(int new_nth, int gtid) {
  kmp_info_t *thread;
  kmp_root_t *root;

  KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  if (new_nth < 1)
    new_nth = 1;
  else if (new_nth > __kmp_max_nth)
    new_nth = __kmp_max_nth;

  KMP_COUNT_VALUE(OMP_set_numthreads, new_nth);
  thread = __kmp_threads[gtid];
  if (thread->th.th_current_task->td_icvs.nproc == new_nth)
    return; // nothing to do

  __kmp_save_internal_controls(thread);

  set__nproc(thread, new_nth);

  // If this omp_set_num_threads() call will cause the hot team size to be
  // reduced (in the absence of a num_threads clause), then reduce it now,
  // rather than waiting for the next parallel region.
  root = thread->th.th_root;
  if (__kmp_init_parallel && (!root->r.r_active) &&
      (root->r.r_hot_team->t.t_nproc > new_nth)
#if KMP_NESTED_HOT_TEAMS
      && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode
#endif
      ) {
    kmp_team_t *hot_team = root->r.r_hot_team;
    int f;

    __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);

    // Release the extra threads we don't need any more.
    for (f = new_nth; f < hot_team->t.t_nproc; f++) {
      KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
      if (__kmp_tasking_mode != tskm_immediate_exec) {
        // When decreasing team size, threads no longer in the team should unref
        // task team.
        hot_team->t.t_threads[f]->th.th_task_team = NULL;
      }
      __kmp_free_thread(hot_team->t.t_threads[f]);
      hot_team->t.t_threads[f] = NULL;
    }
    hot_team->t.t_nproc = new_nth;
#if KMP_NESTED_HOT_TEAMS
    if (thread->th.th_hot_teams) {
      KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team);
      thread->th.th_hot_teams[0].hot_team_nth = new_nth;
    }
#endif

    __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);

    // Update the t_nproc field in the threads that are still active.
    for (f = 0; f < new_nth; f++) {
      KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
      hot_team->t.t_threads[f]->th.th_team_nproc = new_nth;
    }
    // Special flag in case omp_set_num_threads() call
    hot_team->t.t_size_changed = -1;
  }
}

/* Changes max_active_levels */
void __kmp_set_max_active_levels(int gtid, int max_active_levels) {
  kmp_info_t *thread;

  KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread "
                "%d = (%d)\n",
                gtid, max_active_levels));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  // validate max_active_levels
  if (max_active_levels < 0) {
    KMP_WARNING(ActiveLevelsNegative, max_active_levels);
    // We ignore this call if the user has specified a negative value.
    // The current setting won't be changed. The last valid setting will be
    // used. A warning will be issued (if warnings are allowed as controlled by
    // the KMP_WARNINGS env var).
    KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new "
                  "max_active_levels for thread %d = (%d)\n",
                  gtid, max_active_levels));
    return;
  }
  if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) {
    // it's OK, the max_active_levels is within the valid range: [ 0;
    // KMP_MAX_ACTIVE_LEVELS_LIMIT ]
    // We allow a zero value. (implementation defined behavior)
  } else {
    KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels,
                KMP_MAX_ACTIVE_LEVELS_LIMIT);
    max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
    // Current upper limit is MAX_INT. (implementation defined behavior)
    // If the input exceeds the upper limit, we correct the input to be the
    // upper limit. (implementation defined behavior)
    // Actually, the flow should never get here until we use MAX_INT limit.
  }
  KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new "
                "max_active_levels for thread %d = (%d)\n",
                gtid, max_active_levels));

  thread = __kmp_threads[gtid];

  __kmp_save_internal_controls(thread);

  set__max_active_levels(thread, max_active_levels);
}

/* Gets max_active_levels */
int __kmp_get_max_active_levels(int gtid) {
  kmp_info_t *thread;

  KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  thread = __kmp_threads[gtid];
  KMP_DEBUG_ASSERT(thread->th.th_current_task);
  KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, "
                "curtask_maxaclevel=%d\n",
                gtid, thread->th.th_current_task,
                thread->th.th_current_task->td_icvs.max_active_levels));
  return thread->th.th_current_task->td_icvs.max_active_levels;
}

KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int));
KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int));

/* Changes def_sched_var ICV values (run-time schedule kind and chunk) */
void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) {
  kmp_info_t *thread;
  kmp_sched_t orig_kind;
  //    kmp_team_t *team;

  KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n",
                gtid, (int)kind, chunk));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  // Check if the kind parameter is valid, correct if needed.
  // Valid parameters should fit in one of two intervals - standard or extended:
  //       <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper>
  // 2008-01-25: 0,  1 - 4,       5,         100,     101 - 102, 103
  orig_kind = kind;
  kind = __kmp_sched_without_mods(kind);

  if (kind <= kmp_sched_lower || kind >= kmp_sched_upper ||
      (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) {
    // TODO: Hint needs attention in case we change the default schedule.
    __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind),
              KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"),
              __kmp_msg_null);
    kind = kmp_sched_default;
    chunk = 0; // ignore chunk value in case of bad kind
  }

  thread = __kmp_threads[gtid];

  __kmp_save_internal_controls(thread);

  if (kind < kmp_sched_upper_std) {
    if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) {
      // differ static chunked vs. unchunked:  chunk should be invalid to
      // indicate unchunked schedule (which is the default)
      thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static;
    } else {
      thread->th.th_current_task->td_icvs.sched.r_sched_type =
          __kmp_sch_map[kind - kmp_sched_lower - 1];
    }
  } else {
    //    __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std -
    //    kmp_sched_lower - 2 ];
    thread->th.th_current_task->td_icvs.sched.r_sched_type =
        __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std -
                      kmp_sched_lower - 2];
  }
  __kmp_sched_apply_mods_intkind(
      orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type));
  if (kind == kmp_sched_auto || chunk < 1) {
    // ignore parameter chunk for schedule auto
    thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK;
  } else {
    thread->th.th_current_task->td_icvs.sched.chunk = chunk;
  }
}

/* Gets def_sched_var ICV values */
void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) {
  kmp_info_t *thread;
  enum sched_type th_type;

  KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  thread = __kmp_threads[gtid];

  th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type;
  switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) {
  case kmp_sch_static:
  case kmp_sch_static_greedy:
  case kmp_sch_static_balanced:
    *kind = kmp_sched_static;
    __kmp_sched_apply_mods_stdkind(kind, th_type);
    *chunk = 0; // chunk was not set, try to show this fact via zero value
    return;
  case kmp_sch_static_chunked:
    *kind = kmp_sched_static;
    break;
  case kmp_sch_dynamic_chunked:
    *kind = kmp_sched_dynamic;
    break;
  case kmp_sch_guided_chunked:
  case kmp_sch_guided_iterative_chunked:
  case kmp_sch_guided_analytical_chunked:
    *kind = kmp_sched_guided;
    break;
  case kmp_sch_auto:
    *kind = kmp_sched_auto;
    break;
  case kmp_sch_trapezoidal:
    *kind = kmp_sched_trapezoidal;
    break;
#if KMP_STATIC_STEAL_ENABLED
  case kmp_sch_static_steal:
    *kind = kmp_sched_static_steal;
    break;
#endif
  default:
    KMP_FATAL(UnknownSchedulingType, th_type);
  }

  __kmp_sched_apply_mods_stdkind(kind, th_type);
  *chunk = thread->th.th_current_task->td_icvs.sched.chunk;
}

int __kmp_get_ancestor_thread_num(int gtid, int level) {

  int ii, dd;
  kmp_team_t *team;
  kmp_info_t *thr;

  KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  // validate level
  if (level == 0)
    return 0;
  if (level < 0)
    return -1;
  thr = __kmp_threads[gtid];
  team = thr->th.th_team;
  ii = team->t.t_level;
  if (level > ii)
    return -1;

  if (thr->th.th_teams_microtask) {
    // AC: we are in teams region where multiple nested teams have same level
    int tlevel = thr->th.th_teams_level; // the level of the teams construct
    if (level <=
        tlevel) { // otherwise usual algorithm works (will not touch the teams)
      KMP_DEBUG_ASSERT(ii >= tlevel);
      // AC: As we need to pass by the teams league, we need to artificially
      // increase ii
      if (ii == tlevel) {
        ii += 2; // three teams have same level
      } else {
        ii++; // two teams have same level
      }
    }
  }

  if (ii == level)
    return __kmp_tid_from_gtid(gtid);

  dd = team->t.t_serialized;
  level++;
  while (ii > level) {
    for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
    }
    if ((team->t.t_serialized) && (!dd)) {
      team = team->t.t_parent;
      continue;
    }
    if (ii > level) {
      team = team->t.t_parent;
      dd = team->t.t_serialized;
      ii--;
    }
  }

  return (dd > 1) ? (0) : (team->t.t_master_tid);
}

int __kmp_get_team_size(int gtid, int level) {

  int ii, dd;
  kmp_team_t *team;
  kmp_info_t *thr;

  KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  // validate level
  if (level == 0)
    return 1;
  if (level < 0)
    return -1;
  thr = __kmp_threads[gtid];
  team = thr->th.th_team;
  ii = team->t.t_level;
  if (level > ii)
    return -1;

  if (thr->th.th_teams_microtask) {
    // AC: we are in teams region where multiple nested teams have same level
    int tlevel = thr->th.th_teams_level; // the level of the teams construct
    if (level <=
        tlevel) { // otherwise usual algorithm works (will not touch the teams)
      KMP_DEBUG_ASSERT(ii >= tlevel);
      // AC: As we need to pass by the teams league, we need to artificially
      // increase ii
      if (ii == tlevel) {
        ii += 2; // three teams have same level
      } else {
        ii++; // two teams have same level
      }
    }
  }

  while (ii > level) {
    for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
    }
    if (team->t.t_serialized && (!dd)) {
      team = team->t.t_parent;
      continue;
    }
    if (ii > level) {
      team = team->t.t_parent;
      ii--;
    }
  }

  return team->t.t_nproc;
}

kmp_r_sched_t __kmp_get_schedule_global() {
  // This routine created because pairs (__kmp_sched, __kmp_chunk) and
  // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults
  // independently. So one can get the updated schedule here.

  kmp_r_sched_t r_sched;

  // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static,
  // __kmp_guided. __kmp_sched should keep original value, so that user can set
  // KMP_SCHEDULE multiple times, and thus have different run-time schedules in
  // different roots (even in OMP 2.5)
  enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched);
  enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched);
  if (s == kmp_sch_static) {
    // replace STATIC with more detailed schedule (balanced or greedy)
    r_sched.r_sched_type = __kmp_static;
  } else if (s == kmp_sch_guided_chunked) {
    // replace GUIDED with more detailed schedule (iterative or analytical)
    r_sched.r_sched_type = __kmp_guided;
  } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other
    r_sched.r_sched_type = __kmp_sched;
  }
  SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers);

  if (__kmp_chunk < KMP_DEFAULT_CHUNK) {
    // __kmp_chunk may be wrong here (if it was not ever set)
    r_sched.chunk = KMP_DEFAULT_CHUNK;
  } else {
    r_sched.chunk = __kmp_chunk;
  }

  return r_sched;
}

/* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE)
   at least argc number of *t_argv entries for the requested team. */
static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) {

  KMP_DEBUG_ASSERT(team);
  if (!realloc || argc > team->t.t_max_argc) {

    KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, "
                   "current entries=%d\n",
                   team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0));
    /* if previously allocated heap space for args, free them */
    if (realloc && team->t.t_argv != &team->t.t_inline_argv[0])
      __kmp_free((void *)team->t.t_argv);

    if (argc <= KMP_INLINE_ARGV_ENTRIES) {
      /* use unused space in the cache line for arguments */
      team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES;
      KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d "
                     "argv entries\n",
                     team->t.t_id, team->t.t_max_argc));
      team->t.t_argv = &team->t.t_inline_argv[0];
      if (__kmp_storage_map) {
        __kmp_print_storage_map_gtid(
            -1, &team->t.t_inline_argv[0],
            &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES],
            (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv",
            team->t.t_id);
      }
    } else {
      /* allocate space for arguments in the heap */
      team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1))
                               ? KMP_MIN_MALLOC_ARGV_ENTRIES
                               : 2 * argc;
      KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d "
                     "argv entries\n",
                     team->t.t_id, team->t.t_max_argc));
      team->t.t_argv =
          (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc);
      if (__kmp_storage_map) {
        __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0],
                                     &team->t.t_argv[team->t.t_max_argc],
                                     sizeof(void *) * team->t.t_max_argc,
                                     "team_%d.t_argv", team->t.t_id);
      }
    }
  }
}

static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) {
  int i;
  int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2;
  team->t.t_threads =
      (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth);
  team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate(
      sizeof(dispatch_shared_info_t) * num_disp_buff);
  team->t.t_dispatch =
      (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth);
  team->t.t_implicit_task_taskdata =
      (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth);
  team->t.t_max_nproc = max_nth;

  /* setup dispatch buffers */
  for (i = 0; i < num_disp_buff; ++i) {
    team->t.t_disp_buffer[i].buffer_index = i;
    team->t.t_disp_buffer[i].doacross_buf_idx = i;
  }
}

static void __kmp_free_team_arrays(kmp_team_t *team) {
  /* Note: this does not free the threads in t_threads (__kmp_free_threads) */
  int i;
  for (i = 0; i < team->t.t_max_nproc; ++i) {
    if (team->t.t_dispatch[i].th_disp_buffer != NULL) {
      __kmp_free(team->t.t_dispatch[i].th_disp_buffer);
      team->t.t_dispatch[i].th_disp_buffer = NULL;
    }
  }
#if KMP_USE_HIER_SCHED
  __kmp_dispatch_free_hierarchies(team);
#endif
  __kmp_free(team->t.t_threads);
  __kmp_free(team->t.t_disp_buffer);
  __kmp_free(team->t.t_dispatch);
  __kmp_free(team->t.t_implicit_task_taskdata);
  team->t.t_threads = NULL;
  team->t.t_disp_buffer = NULL;
  team->t.t_dispatch = NULL;
  team->t.t_implicit_task_taskdata = 0;
}

static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) {
  kmp_info_t **oldThreads = team->t.t_threads;

  __kmp_free(team->t.t_disp_buffer);
  __kmp_free(team->t.t_dispatch);
  __kmp_free(team->t.t_implicit_task_taskdata);
  __kmp_allocate_team_arrays(team, max_nth);

  KMP_MEMCPY(team->t.t_threads, oldThreads,
             team->t.t_nproc * sizeof(kmp_info_t *));

  __kmp_free(oldThreads);
}

static kmp_internal_control_t __kmp_get_global_icvs(void) {

  kmp_r_sched_t r_sched =
      __kmp_get_schedule_global(); // get current state of scheduling globals

  KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0);

  kmp_internal_control_t g_icvs = {
    0, // int serial_nesting_level; //corresponds to value of th_team_serialized
    (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic
    // adjustment of threads (per thread)
    (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for
    // whether blocktime is explicitly set
    __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime
#if KMP_USE_MONITOR
    __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime
// intervals
#endif
    __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for
    // next parallel region (per thread)
    // (use a max ub on value if __kmp_parallel_initialize not called yet)
    __kmp_cg_max_nth, // int thread_limit;
    __kmp_dflt_max_active_levels, // int max_active_levels; //internal control
    // for max_active_levels
    r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule
    // {sched,chunk} pair
    __kmp_nested_proc_bind.bind_types[0],
    __kmp_default_device,
    NULL // struct kmp_internal_control *next;
  };

  return g_icvs;
}

static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) {

  kmp_internal_control_t gx_icvs;
  gx_icvs.serial_nesting_level =
      0; // probably =team->t.t_serial like in save_inter_controls
  copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs);
  gx_icvs.next = NULL;

  return gx_icvs;
}

static void __kmp_initialize_root(kmp_root_t *root) {
  int f;
  kmp_team_t *root_team;
  kmp_team_t *hot_team;
  int hot_team_max_nth;
  kmp_r_sched_t r_sched =
      __kmp_get_schedule_global(); // get current state of scheduling globals
  kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
  KMP_DEBUG_ASSERT(root);
  KMP_ASSERT(!root->r.r_begin);

  /* setup the root state structure */
  __kmp_init_lock(&root->r.r_begin_lock);
  root->r.r_begin = FALSE;
  root->r.r_active = FALSE;
  root->r.r_in_parallel = 0;
  root->r.r_blocktime = __kmp_dflt_blocktime;

  /* setup the root team for this task */
  /* allocate the root team structure */
  KF_TRACE(10, ("__kmp_initialize_root: before root_team\n"));

  root_team =
      __kmp_allocate_team(root,
                          1, // new_nproc
                          1, // max_nproc
#if OMPT_SUPPORT
                          ompt_data_none, // root parallel id
#endif
                          __kmp_nested_proc_bind.bind_types[0], &r_icvs,
                          0 // argc
                          USE_NESTED_HOT_ARG(NULL) // master thread is unknown
                          );
#if USE_DEBUGGER
  // Non-NULL value should be assigned to make the debugger display the root
  // team.
  TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0));
#endif

  KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team));

  root->r.r_root_team = root_team;
  root_team->t.t_control_stack_top = NULL;

  /* initialize root team */
  root_team->t.t_threads[0] = NULL;
  root_team->t.t_nproc = 1;
  root_team->t.t_serialized = 1;
  // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
  root_team->t.t_sched.sched = r_sched.sched;
  KA_TRACE(
      20,
      ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n",
       root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));

  /* setup the  hot team for this task */
  /* allocate the hot team structure */
  KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n"));

  hot_team =
      __kmp_allocate_team(root,
                          1, // new_nproc
                          __kmp_dflt_team_nth_ub * 2, // max_nproc
#if OMPT_SUPPORT
                          ompt_data_none, // root parallel id
#endif
                          __kmp_nested_proc_bind.bind_types[0], &r_icvs,
                          0 // argc
                          USE_NESTED_HOT_ARG(NULL) // master thread is unknown
                          );
  KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team));

  root->r.r_hot_team = hot_team;
  root_team->t.t_control_stack_top = NULL;

  /* first-time initialization */
  hot_team->t.t_parent = root_team;

  /* initialize hot team */
  hot_team_max_nth = hot_team->t.t_max_nproc;
  for (f = 0; f < hot_team_max_nth; ++f) {
    hot_team->t.t_threads[f] = NULL;
  }
  hot_team->t.t_nproc = 1;
  // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
  hot_team->t.t_sched.sched = r_sched.sched;
  hot_team->t.t_size_changed = 0;
}

#ifdef KMP_DEBUG

typedef struct kmp_team_list_item {
  kmp_team_p const *entry;
  struct kmp_team_list_item *next;
} kmp_team_list_item_t;
typedef kmp_team_list_item_t *kmp_team_list_t;

static void __kmp_print_structure_team_accum( // Add team to list of teams.
    kmp_team_list_t list, // List of teams.
    kmp_team_p const *team // Team to add.
    ) {

  // List must terminate with item where both entry and next are NULL.
  // Team is added to the list only once.
  // List is sorted in ascending order by team id.
  // Team id is *not* a key.

  kmp_team_list_t l;

  KMP_DEBUG_ASSERT(list != NULL);
  if (team == NULL) {
    return;
  }

  __kmp_print_structure_team_accum(list, team->t.t_parent);
  __kmp_print_structure_team_accum(list, team->t.t_next_pool);

  // Search list for the team.
  l = list;
  while (l->next != NULL && l->entry != team) {
    l = l->next;
  }
  if (l->next != NULL) {
    return; // Team has been added before, exit.
  }

  // Team is not found. Search list again for insertion point.
  l = list;
  while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) {
    l = l->next;
  }

  // Insert team.
  {
    kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(
        sizeof(kmp_team_list_item_t));
    *item = *l;
    l->entry = team;
    l->next = item;
  }
}

static void __kmp_print_structure_team(char const *title, kmp_team_p const *team

                                       ) {
  __kmp_printf("%s", title);
  if (team != NULL) {
    __kmp_printf("%2x %p\n", team->t.t_id, team);
  } else {
    __kmp_printf(" - (nil)\n");
  }
}

static void __kmp_print_structure_thread(char const *title,
                                         kmp_info_p const *thread) {
  __kmp_printf("%s", title);
  if (thread != NULL) {
    __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread);
  } else {
    __kmp_printf(" - (nil)\n");
  }
}

void __kmp_print_structure(void) {

  kmp_team_list_t list;

  // Initialize list of teams.
  list =
      (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t));
  list->entry = NULL;
  list->next = NULL;

  __kmp_printf("\n------------------------------\nGlobal Thread "
               "Table\n------------------------------\n");
  {
    int gtid;
    for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
      __kmp_printf("%2d", gtid);
      if (__kmp_threads != NULL) {
        __kmp_printf(" %p", __kmp_threads[gtid]);
      }
      if (__kmp_root != NULL) {
        __kmp_printf(" %p", __kmp_root[gtid]);
      }
      __kmp_printf("\n");
    }
  }

  // Print out __kmp_threads array.
  __kmp_printf("\n------------------------------\nThreads\n--------------------"
               "----------\n");
  if (__kmp_threads != NULL) {
    int gtid;
    for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
      kmp_info_t const *thread = __kmp_threads[gtid];
      if (thread != NULL) {
        __kmp_printf("GTID %2d %p:\n", gtid, thread);
        __kmp_printf("    Our Root:        %p\n", thread->th.th_root);
        __kmp_print_structure_team("    Our Team:     ", thread->th.th_team);
        __kmp_print_structure_team("    Serial Team:  ",
                                   thread->th.th_serial_team);
        __kmp_printf("    Threads:      %2d\n", thread->th.th_team_nproc);
        __kmp_print_structure_thread("    Master:       ",
                                     thread->th.th_team_master);
        __kmp_printf("    Serialized?:  %2d\n", thread->th.th_team_serialized);
        __kmp_printf("    Set NProc:    %2d\n", thread->th.th_set_nproc);
        __kmp_printf("    Set Proc Bind: %2d\n", thread->th.th_set_proc_bind);
        __kmp_print_structure_thread("    Next in pool: ",
                                     thread->th.th_next_pool);
        __kmp_printf("\n");
        __kmp_print_structure_team_accum(list, thread->th.th_team);
        __kmp_print_structure_team_accum(list, thread->th.th_serial_team);
      }
    }
  } else {
    __kmp_printf("Threads array is not allocated.\n");
  }

  // Print out __kmp_root array.
  __kmp_printf("\n------------------------------\nUbers\n----------------------"
               "--------\n");
  if (__kmp_root != NULL) {
    int gtid;
    for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
      kmp_root_t const *root = __kmp_root[gtid];
      if (root != NULL) {
        __kmp_printf("GTID %2d %p:\n", gtid, root);
        __kmp_print_structure_team("    Root Team:    ", root->r.r_root_team);
        __kmp_print_structure_team("    Hot Team:     ", root->r.r_hot_team);
        __kmp_print_structure_thread("    Uber Thread:  ",
                                     root->r.r_uber_thread);
        __kmp_printf("    Active?:      %2d\n", root->r.r_active);
        __kmp_printf("    In Parallel:  %2d\n",
                     KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel));
        __kmp_printf("\n");
        __kmp_print_structure_team_accum(list, root->r.r_root_team);
        __kmp_print_structure_team_accum(list, root->r.r_hot_team);
      }
    }
  } else {
    __kmp_printf("Ubers array is not allocated.\n");
  }

  __kmp_printf("\n------------------------------\nTeams\n----------------------"
               "--------\n");
  while (list->next != NULL) {
    kmp_team_p const *team = list->entry;
    int i;
    __kmp_printf("Team %2x %p:\n", team->t.t_id, team);
    __kmp_print_structure_team("    Parent Team:      ", team->t.t_parent);
    __kmp_printf("    Master TID:       %2d\n", team->t.t_master_tid);
    __kmp_printf("    Max threads:      %2d\n", team->t.t_max_nproc);
    __kmp_printf("    Levels of serial: %2d\n", team->t.t_serialized);
    __kmp_printf("    Number threads:   %2d\n", team->t.t_nproc);
    for (i = 0; i < team->t.t_nproc; ++i) {
      __kmp_printf("    Thread %2d:      ", i);
      __kmp_print_structure_thread("", team->t.t_threads[i]);
    }
    __kmp_print_structure_team("    Next in pool:     ", team->t.t_next_pool);
    __kmp_printf("\n");
    list = list->next;
  }

  // Print out __kmp_thread_pool and __kmp_team_pool.
  __kmp_printf("\n------------------------------\nPools\n----------------------"
               "--------\n");
  __kmp_print_structure_thread("Thread pool:          ",
                               CCAST(kmp_info_t *, __kmp_thread_pool));
  __kmp_print_structure_team("Team pool:            ",
                             CCAST(kmp_team_t *, __kmp_team_pool));
  __kmp_printf("\n");

  // Free team list.
  while (list != NULL) {
    kmp_team_list_item_t *item = list;
    list = list->next;
    KMP_INTERNAL_FREE(item);
  }
}

#endif

//---------------------------------------------------------------------------
//  Stuff for per-thread fast random number generator
//  Table of primes
static const unsigned __kmp_primes[] = {
    0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877,
    0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231,
    0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201,
    0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3,
    0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7,
    0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9,
    0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45,
    0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7,
    0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363,
    0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3,
    0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f};

//---------------------------------------------------------------------------
//  __kmp_get_random: Get a random number using a linear congruential method.
unsigned short __kmp_get_random(kmp_info_t *thread) {
  unsigned x = thread->th.th_x;
  unsigned short r = x >> 16;

  thread->th.th_x = x * thread->th.th_a + 1;

  KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n",
                thread->th.th_info.ds.ds_tid, r));

  return r;
}
//--------------------------------------------------------
// __kmp_init_random: Initialize a random number generator
void __kmp_init_random(kmp_info_t *thread) {
  unsigned seed = thread->th.th_info.ds.ds_tid;

  thread->th.th_a =
      __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))];
  thread->th.th_x = (seed + 1) * thread->th.th_a + 1;
  KA_TRACE(30,
           ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a));
}

#if KMP_OS_WINDOWS
/* reclaim array entries for root threads that are already dead, returns number
 * reclaimed */
static int __kmp_reclaim_dead_roots(void) {
  int i, r = 0;

  for (i = 0; i < __kmp_threads_capacity; ++i) {
    if (KMP_UBER_GTID(i) &&
        !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) &&
        !__kmp_root[i]
             ->r.r_active) { // AC: reclaim only roots died in non-active state
      r += __kmp_unregister_root_other_thread(i);
    }
  }
  return r;
}
#endif

/* This function attempts to create free entries in __kmp_threads and
   __kmp_root, and returns the number of free entries generated.

   For Windows* OS static library, the first mechanism used is to reclaim array
   entries for root threads that are already dead.

   On all platforms, expansion is attempted on the arrays __kmp_threads_ and
   __kmp_root, with appropriate update to __kmp_threads_capacity. Array
   capacity is increased by doubling with clipping to __kmp_tp_capacity, if
   threadprivate cache array has been created. Synchronization with
   __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock.

   After any dead root reclamation, if the clipping value allows array expansion
   to result in the generation of a total of nNeed free slots, the function does
   that expansion. If not, nothing is done beyond the possible initial root
   thread reclamation.

   If any argument is negative, the behavior is undefined. */
static int __kmp_expand_threads(int nNeed) {
  int added = 0;
  int minimumRequiredCapacity;
  int newCapacity;
  kmp_info_t **newThreads;
  kmp_root_t **newRoot;

// All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so
// resizing __kmp_threads does not need additional protection if foreign
// threads are present

#if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
  /* only for Windows static library */
  /* reclaim array entries for root threads that are already dead */
  added = __kmp_reclaim_dead_roots();

  if (nNeed) {
    nNeed -= added;
    if (nNeed < 0)
      nNeed = 0;
  }
#endif
  if (nNeed <= 0)
    return added;

  // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If
  // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the
  // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become
  // > __kmp_max_nth in one of two ways:
  //
  // 1) The initialization thread (gtid = 0) exits.  __kmp_threads[0]
  //    may not be reused by another thread, so we may need to increase
  //    __kmp_threads_capacity to __kmp_max_nth + 1.
  //
  // 2) New foreign root(s) are encountered.  We always register new foreign
  //    roots. This may cause a smaller # of threads to be allocated at
  //    subsequent parallel regions, but the worker threads hang around (and
  //    eventually go to sleep) and need slots in the __kmp_threads[] array.
  //
  // Anyway, that is the reason for moving the check to see if
  // __kmp_max_nth was exceeded into __kmp_reserve_threads()
  // instead of having it performed here. -BB

  KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity);

  /* compute expansion headroom to check if we can expand */
  if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) {
    /* possible expansion too small -- give up */
    return added;
  }
  minimumRequiredCapacity = __kmp_threads_capacity + nNeed;

  newCapacity = __kmp_threads_capacity;
  do {
    newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1)
                                                          : __kmp_sys_max_nth;
  } while (newCapacity < minimumRequiredCapacity);
  newThreads = (kmp_info_t **)__kmp_allocate(
      (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE);
  newRoot =
      (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity);
  KMP_MEMCPY(newThreads, __kmp_threads,
             __kmp_threads_capacity * sizeof(kmp_info_t *));
  KMP_MEMCPY(newRoot, __kmp_root,
             __kmp_threads_capacity * sizeof(kmp_root_t *));

  kmp_info_t **temp_threads = __kmp_threads;
  *(kmp_info_t * *volatile *)&__kmp_threads = newThreads;
  *(kmp_root_t * *volatile *)&__kmp_root = newRoot;
  __kmp_free(temp_threads);
  added += newCapacity - __kmp_threads_capacity;
  *(volatile int *)&__kmp_threads_capacity = newCapacity;

  if (newCapacity > __kmp_tp_capacity) {
    __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock);
    if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) {
      __kmp_threadprivate_resize_cache(newCapacity);
    } else { // increase __kmp_tp_capacity to correspond with kmp_threads size
      *(volatile int *)&__kmp_tp_capacity = newCapacity;
    }
    __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock);
  }

  return added;
}

/* Register the current thread as a root thread and obtain our gtid. We must
   have the __kmp_initz_lock held at this point. Argument TRUE only if are the
   thread that calls from __kmp_do_serial_initialize() */
int __kmp_register_root(int initial_thread) {
  kmp_info_t *root_thread;
  kmp_root_t *root;
  int gtid;
  int capacity;
  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
  KA_TRACE(20, ("__kmp_register_root: entered\n"));
  KMP_MB();

  /* 2007-03-02:
     If initial thread did not invoke OpenMP RTL yet, and this thread is not an
     initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not
     work as expected -- it may return false (that means there is at least one
     empty slot in __kmp_threads array), but it is possible the only free slot
     is #0, which is reserved for initial thread and so cannot be used for this
     one. Following code workarounds this bug.

     However, right solution seems to be not reserving slot #0 for initial
     thread because:
     (1) there is no magic in slot #0,
     (2) we cannot detect initial thread reliably (the first thread which does
        serial initialization may be not a real initial thread).
  */
  capacity = __kmp_threads_capacity;
  if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) {
    --capacity;
  }

  /* see if there are too many threads */
  if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) {
    if (__kmp_tp_cached) {
      __kmp_fatal(KMP_MSG(CantRegisterNewThread),
                  KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
                  KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
    } else {
      __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads),
                  __kmp_msg_null);
    }
  }

  /* find an available thread slot */
  /* Don't reassign the zero slot since we need that to only be used by initial
     thread */
  for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL;
       gtid++)
    ;
  KA_TRACE(1,
           ("__kmp_register_root: found slot in threads array: T#%d\n", gtid));
  KMP_ASSERT(gtid < __kmp_threads_capacity);

  /* update global accounting */
  __kmp_all_nth++;
  TCW_4(__kmp_nth, __kmp_nth + 1);

  // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
  // numbers of procs, and method #2 (keyed API call) for higher numbers.
  if (__kmp_adjust_gtid_mode) {
    if (__kmp_all_nth >= __kmp_tls_gtid_min) {
      if (TCR_4(__kmp_gtid_mode) != 2) {
        TCW_4(__kmp_gtid_mode, 2);
      }
    } else {
      if (TCR_4(__kmp_gtid_mode) != 1) {
        TCW_4(__kmp_gtid_mode, 1);
      }
    }
  }

#ifdef KMP_ADJUST_BLOCKTIME
  /* Adjust blocktime to zero if necessary            */
  /* Middle initialization might not have occurred yet */
  if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
    if (__kmp_nth > __kmp_avail_proc) {
      __kmp_zero_bt = TRUE;
    }
  }
#endif /* KMP_ADJUST_BLOCKTIME */

  /* setup this new hierarchy */
  if (!(root = __kmp_root[gtid])) {
    root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t));
    KMP_DEBUG_ASSERT(!root->r.r_root_team);
  }

#if KMP_STATS_ENABLED
  // Initialize stats as soon as possible (right after gtid assignment).
  __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid);
  __kmp_stats_thread_ptr->startLife();
  KMP_SET_THREAD_STATE(SERIAL_REGION);
  KMP_INIT_PARTITIONED_TIMERS(OMP_serial);
#endif
  __kmp_initialize_root(root);

  /* setup new root thread structure */
  if (root->r.r_uber_thread) {
    root_thread = root->r.r_uber_thread;
  } else {
    root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));
    if (__kmp_storage_map) {
      __kmp_print_thread_storage_map(root_thread, gtid);
    }
    root_thread->th.th_info.ds.ds_gtid = gtid;
#if OMPT_SUPPORT
    root_thread->th.ompt_thread_info.thread_data = ompt_data_none;
#endif
    root_thread->th.th_root = root;
    if (__kmp_env_consistency_check) {
      root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid);
    }
#if USE_FAST_MEMORY
    __kmp_initialize_fast_memory(root_thread);
#endif /* USE_FAST_MEMORY */

#if KMP_USE_BGET
    KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL);
    __kmp_initialize_bget(root_thread);
#endif
    __kmp_init_random(root_thread); // Initialize random number generator
  }

  /* setup the serial team held in reserve by the root thread */
  if (!root_thread->th.th_serial_team) {
    kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
    KF_TRACE(10, ("__kmp_register_root: before serial_team\n"));
    root_thread->th.th_serial_team = __kmp_allocate_team(
        root, 1, 1,
#if OMPT_SUPPORT
        ompt_data_none, // root parallel id
#endif
        proc_bind_default, &r_icvs, 0 USE_NESTED_HOT_ARG(NULL));
  }
  KMP_ASSERT(root_thread->th.th_serial_team);
  KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n",
                root_thread->th.th_serial_team));

  /* drop root_thread into place */
  TCW_SYNC_PTR(__kmp_threads[gtid], root_thread);

  root->r.r_root_team->t.t_threads[0] = root_thread;
  root->r.r_hot_team->t.t_threads[0] = root_thread;
  root_thread->th.th_serial_team->t.t_threads[0] = root_thread;
  // AC: the team created in reserve, not for execution (it is unused for now).
  root_thread->th.th_serial_team->t.t_serialized = 0;
  root->r.r_uber_thread = root_thread;

  /* initialize the thread, get it ready to go */
  __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid);
  TCW_4(__kmp_init_gtid, TRUE);

  /* prepare the master thread for get_gtid() */
  __kmp_gtid_set_specific(gtid);

#if USE_ITT_BUILD
  __kmp_itt_thread_name(gtid);
#endif /* USE_ITT_BUILD */

#ifdef KMP_TDATA_GTID
  __kmp_gtid = gtid;
#endif
  __kmp_create_worker(gtid, root_thread, __kmp_stksize);
  KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid);

  KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, "
                "plain=%u\n",
                gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team),
                root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE,
                KMP_INIT_BARRIER_STATE));
  { // Initialize barrier data.
    int b;
    for (b = 0; b < bs_last_barrier; ++b) {
      root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE;
#if USE_DEBUGGER
      root_thread->th.th_bar[b].bb.b_worker_arrived = 0;
#endif
    }
  }
  KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived ==
                   KMP_INIT_BARRIER_STATE);

#if KMP_AFFINITY_SUPPORTED
  root_thread->th.th_current_place = KMP_PLACE_UNDEFINED;
  root_thread->th.th_new_place = KMP_PLACE_UNDEFINED;
  root_thread->th.th_first_place = KMP_PLACE_UNDEFINED;
  root_thread->th.th_last_place = KMP_PLACE_UNDEFINED;
  if (TCR_4(__kmp_init_middle)) {
    __kmp_affinity_set_init_mask(gtid, TRUE);
  }
#endif /* KMP_AFFINITY_SUPPORTED */
  root_thread->th.th_def_allocator = __kmp_def_allocator;
  root_thread->th.th_prev_level = 0;
  root_thread->th.th_prev_num_threads = 1;

  kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
  tmp->cg_root = root_thread;
  tmp->cg_thread_limit = __kmp_cg_max_nth;
  tmp->cg_nthreads = 1;
  KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with"
                 " cg_nthreads init to 1\n",
                 root_thread, tmp));
  tmp->up = NULL;
  root_thread->th.th_cg_roots = tmp;

  __kmp_root_counter++;

#if OMPT_SUPPORT
  if (!initial_thread && ompt_enabled.enabled) {

    kmp_info_t *root_thread = ompt_get_thread();

    ompt_set_thread_state(root_thread, ompt_state_overhead);

    if (ompt_enabled.ompt_callback_thread_begin) {
      ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
          ompt_thread_initial, __ompt_get_thread_data_internal());
    }
    ompt_data_t *task_data;
    ompt_data_t *parallel_data;
    __ompt_get_task_info_internal(0, NULL, &task_data, NULL, &parallel_data, NULL);
    if (ompt_enabled.ompt_callback_implicit_task) {
      ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
          ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial);
    }

    ompt_set_thread_state(root_thread, ompt_state_work_serial);
  }
#endif

  KMP_MB();
  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);

  return gtid;
}

#if KMP_NESTED_HOT_TEAMS
static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level,
                                const int max_level) {
  int i, n, nth;
  kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams;
  if (!hot_teams || !hot_teams[level].hot_team) {
    return 0;
  }
  KMP_DEBUG_ASSERT(level < max_level);
  kmp_team_t *team = hot_teams[level].hot_team;
  nth = hot_teams[level].hot_team_nth;
  n = nth - 1; // master is not freed
  if (level < max_level - 1) {
    for (i = 0; i < nth; ++i) {
      kmp_info_t *th = team->t.t_threads[i];
      n += __kmp_free_hot_teams(root, th, level + 1, max_level);
      if (i > 0 && th->th.th_hot_teams) {
        __kmp_free(th->th.th_hot_teams);
        th->th.th_hot_teams = NULL;
      }
    }
  }
  __kmp_free_team(root, team, NULL);
  return n;
}
#endif

// Resets a root thread and clear its root and hot teams.
// Returns the number of __kmp_threads entries directly and indirectly freed.
static int __kmp_reset_root(int gtid, kmp_root_t *root) {
  kmp_team_t *root_team = root->r.r_root_team;
  kmp_team_t *hot_team = root->r.r_hot_team;
  int n = hot_team->t.t_nproc;
  int i;

  KMP_DEBUG_ASSERT(!root->r.r_active);

  root->r.r_root_team = NULL;
  root->r.r_hot_team = NULL;
  // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team
  // before call to __kmp_free_team().
  __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL));
#if KMP_NESTED_HOT_TEAMS
  if (__kmp_hot_teams_max_level >
      0) { // need to free nested hot teams and their threads if any
    for (i = 0; i < hot_team->t.t_nproc; ++i) {
      kmp_info_t *th = hot_team->t.t_threads[i];
      if (__kmp_hot_teams_max_level > 1) {
        n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level);
      }
      if (th->th.th_hot_teams) {
        __kmp_free(th->th.th_hot_teams);
        th->th.th_hot_teams = NULL;
      }
    }
  }
#endif
  __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL));

  // Before we can reap the thread, we need to make certain that all other
  // threads in the teams that had this root as ancestor have stopped trying to
  // steal tasks.
  if (__kmp_tasking_mode != tskm_immediate_exec) {
    __kmp_wait_to_unref_task_teams();
  }

#if KMP_OS_WINDOWS
  /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */
  KA_TRACE(
      10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC
           "\n",
           (LPVOID) & (root->r.r_uber_thread->th),
           root->r.r_uber_thread->th.th_info.ds.ds_thread));
  __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread);
#endif /* KMP_OS_WINDOWS */

#if OMPT_SUPPORT
  ompt_data_t *task_data;
  ompt_data_t *parallel_data;
  __ompt_get_task_info_internal(0, NULL, &task_data, NULL, &parallel_data, NULL);
  if (ompt_enabled.ompt_callback_implicit_task) {
    ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
        ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial);
  }
  if (ompt_enabled.ompt_callback_thread_end) {
    ompt_callbacks.ompt_callback(ompt_callback_thread_end)(
        &(root->r.r_uber_thread->th.ompt_thread_info.thread_data));
  }
#endif

  TCW_4(__kmp_nth,
        __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth.
  i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--;
  KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p"
                 " to %d\n",
                 root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots,
                 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads));
  if (i == 1) {
    // need to free contention group structure
    KMP_DEBUG_ASSERT(root->r.r_uber_thread ==
                     root->r.r_uber_thread->th.th_cg_roots->cg_root);
    KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL);
    __kmp_free(root->r.r_uber_thread->th.th_cg_roots);
    root->r.r_uber_thread->th.th_cg_roots = NULL;
  }
  __kmp_reap_thread(root->r.r_uber_thread, 1);

  // We canot put root thread to __kmp_thread_pool, so we have to reap it
  // instead of freeing.
  root->r.r_uber_thread = NULL;
  /* mark root as no longer in use */
  root->r.r_begin = FALSE;

  return n;
}

void __kmp_unregister_root_current_thread(int gtid) {
  KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid));
  /* this lock should be ok, since unregister_root_current_thread is never
     called during an abort, only during a normal close. furthermore, if you
     have the forkjoin lock, you should never try to get the initz lock */
  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
  if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
    KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, "
                  "exiting T#%d\n",
                  gtid));
    __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
    return;
  }
  kmp_root_t *root = __kmp_root[gtid];

  KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
  KMP_ASSERT(KMP_UBER_GTID(gtid));
  KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
  KMP_ASSERT(root->r.r_active == FALSE);

  KMP_MB();

  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_team_t *team = thread->th.th_team;
  kmp_task_team_t *task_team = thread->th.th_task_team;

  // we need to wait for the proxy tasks before finishing the thread
  if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) {
#if OMPT_SUPPORT
    // the runtime is shutting down so we won't report any events
    thread->th.ompt_thread_info.state = ompt_state_undefined;
#endif
    __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL));
  }

  __kmp_reset_root(gtid, root);

  /* free up this thread slot */
  __kmp_gtid_set_specific(KMP_GTID_DNE);
#ifdef KMP_TDATA_GTID
  __kmp_gtid = KMP_GTID_DNE;
#endif

  KMP_MB();
  KC_TRACE(10,
           ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid));

  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
}

#if KMP_OS_WINDOWS
/* __kmp_forkjoin_lock must be already held
   Unregisters a root thread that is not the current thread.  Returns the number
   of __kmp_threads entries freed as a result. */
static int __kmp_unregister_root_other_thread(int gtid) {
  kmp_root_t *root = __kmp_root[gtid];
  int r;

  KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid));
  KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
  KMP_ASSERT(KMP_UBER_GTID(gtid));
  KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
  KMP_ASSERT(root->r.r_active == FALSE);

  r = __kmp_reset_root(gtid, root);
  KC_TRACE(10,
           ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid));
  return r;
}
#endif

#if KMP_DEBUG
void __kmp_task_info() {

  kmp_int32 gtid = __kmp_entry_gtid();
  kmp_int32 tid = __kmp_tid_from_gtid(gtid);
  kmp_info_t *this_thr = __kmp_threads[gtid];
  kmp_team_t *steam = this_thr->th.th_serial_team;
  kmp_team_t *team = this_thr->th.th_team;

  __kmp_printf(
      "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p "
      "ptask=%p\n",
      gtid, tid, this_thr, team, steam, this_thr->th.th_current_task,
      team->t.t_implicit_task_taskdata[tid].td_parent);
}
#endif // KMP_DEBUG

/* TODO optimize with one big memclr, take out what isn't needed, split
   responsibility to workers as much as possible, and delay initialization of
   features as much as possible  */
static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team,
                                  int tid, int gtid) {
  /* this_thr->th.th_info.ds.ds_gtid is setup in
     kmp_allocate_thread/create_worker.
     this_thr->th.th_serial_team is setup in __kmp_allocate_thread */
  kmp_info_t *master = team->t.t_threads[0];
  KMP_DEBUG_ASSERT(this_thr != NULL);
  KMP_DEBUG_ASSERT(this_thr->th.th_serial_team);
  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(team->t.t_threads);
  KMP_DEBUG_ASSERT(team->t.t_dispatch);
  KMP_DEBUG_ASSERT(master);
  KMP_DEBUG_ASSERT(master->th.th_root);

  KMP_MB();

  TCW_SYNC_PTR(this_thr->th.th_team, team);

  this_thr->th.th_info.ds.ds_tid = tid;
  this_thr->th.th_set_nproc = 0;
  if (__kmp_tasking_mode != tskm_immediate_exec)
    // When tasking is possible, threads are not safe to reap until they are
    // done tasking; this will be set when tasking code is exited in wait
    this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
  else // no tasking --> always safe to reap
    this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
  this_thr->th.th_set_proc_bind = proc_bind_default;
#if KMP_AFFINITY_SUPPORTED
  this_thr->th.th_new_place = this_thr->th.th_current_place;
#endif
  this_thr->th.th_root = master->th.th_root;

  /* setup the thread's cache of the team structure */
  this_thr->th.th_team_nproc = team->t.t_nproc;
  this_thr->th.th_team_master = master;
  this_thr->th.th_team_serialized = team->t.t_serialized;
  TCW_PTR(this_thr->th.th_sleep_loc, NULL);

  KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata);

  KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n",
                tid, gtid, this_thr, this_thr->th.th_current_task));

  __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr,
                           team, tid, TRUE);

  KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n",
                tid, gtid, this_thr, this_thr->th.th_current_task));
  // TODO: Initialize ICVs from parent; GEH - isn't that already done in
  // __kmp_initialize_team()?

  /* TODO no worksharing in speculative threads */
  this_thr->th.th_dispatch = &team->t.t_dispatch[tid];

  this_thr->th.th_local.this_construct = 0;

  if (!this_thr->th.th_pri_common) {
    this_thr->th.th_pri_common =
        (struct common_table *)__kmp_allocate(sizeof(struct common_table));
    if (__kmp_storage_map) {
      __kmp_print_storage_map_gtid(
          gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1,
          sizeof(struct common_table), "th_%d.th_pri_common\n", gtid);
    }
    this_thr->th.th_pri_head = NULL;
  }

  if (this_thr != master && // Master's CG root is initialized elsewhere
      this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set
    // Make new thread's CG root same as master's
    KMP_DEBUG_ASSERT(master->th.th_cg_roots);
    kmp_cg_root_t *tmp = this_thr->th.th_cg_roots;
    if (tmp) {
      // worker changes CG, need to check if old CG should be freed
      int i = tmp->cg_nthreads--;
      KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads"
                     " on node %p of thread %p to %d\n",
                     this_thr, tmp, tmp->cg_root, tmp->cg_nthreads));
      if (i == 1) {
        __kmp_free(tmp); // last thread left CG --> free it
      }
    }
    this_thr->th.th_cg_roots = master->th.th_cg_roots;
    // Increment new thread's CG root's counter to add the new thread
    this_thr->th.th_cg_roots->cg_nthreads++;
    KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on"
                   " node %p of thread %p to %d\n",
                   this_thr, this_thr->th.th_cg_roots,
                   this_thr->th.th_cg_roots->cg_root,
                   this_thr->th.th_cg_roots->cg_nthreads));
    this_thr->th.th_current_task->td_icvs.thread_limit =
        this_thr->th.th_cg_roots->cg_thread_limit;
  }

  /* Initialize dynamic dispatch */
  {
    volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch;
    // Use team max_nproc since this will never change for the team.
    size_t disp_size =
        sizeof(dispatch_private_info_t) *
        (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers);
    KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid,
                  team->t.t_max_nproc));
    KMP_ASSERT(dispatch);
    KMP_DEBUG_ASSERT(team->t.t_dispatch);
    KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]);

    dispatch->th_disp_index = 0;
    dispatch->th_doacross_buf_idx = 0;
    if (!dispatch->th_disp_buffer) {
      dispatch->th_disp_buffer =
          (dispatch_private_info_t *)__kmp_allocate(disp_size);

      if (__kmp_storage_map) {
        __kmp_print_storage_map_gtid(
            gtid, &dispatch->th_disp_buffer[0],
            &dispatch->th_disp_buffer[team->t.t_max_nproc == 1
                                          ? 1
                                          : __kmp_dispatch_num_buffers],
            disp_size, "th_%d.th_dispatch.th_disp_buffer "
                       "(team_%d.t_dispatch[%d].th_disp_buffer)",
            gtid, team->t.t_id, gtid);
      }
    } else {
      memset(&dispatch->th_disp_buffer[0], '\0', disp_size);
    }

    dispatch->th_dispatch_pr_current = 0;
    dispatch->th_dispatch_sh_current = 0;

    dispatch->th_deo_fcn = 0; /* ORDERED     */
    dispatch->th_dxo_fcn = 0; /* END ORDERED */
  }

  this_thr->th.th_next_pool = NULL;

  if (!this_thr->th.th_task_state_memo_stack) {
    size_t i;
    this_thr->th.th_task_state_memo_stack =
        (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8));
    this_thr->th.th_task_state_top = 0;
    this_thr->th.th_task_state_stack_sz = 4;
    for (i = 0; i < this_thr->th.th_task_state_stack_sz;
         ++i) // zero init the stack
      this_thr->th.th_task_state_memo_stack[i] = 0;
  }

  KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
  KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);

  KMP_MB();
}

/* allocate a new thread for the requesting team. this is only called from
   within a forkjoin critical section. we will first try to get an available
   thread from the thread pool. if none is available, we will fork a new one
   assuming we are able to create a new one. this should be assured, as the
   caller should check on this first. */
kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
                                  int new_tid) {
  kmp_team_t *serial_team;
  kmp_info_t *new_thr;
  int new_gtid;

  KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid()));
  KMP_DEBUG_ASSERT(root && team);
#if !KMP_NESTED_HOT_TEAMS
  KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid()));
#endif
  KMP_MB();

  /* first, try to get one from the thread pool */
  if (__kmp_thread_pool) {
    new_thr = CCAST(kmp_info_t *, __kmp_thread_pool);
    __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool;
    if (new_thr == __kmp_thread_pool_insert_pt) {
      __kmp_thread_pool_insert_pt = NULL;
    }
    TCW_4(new_thr->th.th_in_pool, FALSE);
    __kmp_suspend_initialize_thread(new_thr);
    __kmp_lock_suspend_mx(new_thr);
    if (new_thr->th.th_active_in_pool == TRUE) {
      KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE);
      KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
      new_thr->th.th_active_in_pool = FALSE;
    }
    __kmp_unlock_suspend_mx(new_thr);

    KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n",
                  __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid));
    KMP_ASSERT(!new_thr->th.th_team);
    KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity);

    /* setup the thread structure */
    __kmp_initialize_info(new_thr, team, new_tid,
                          new_thr->th.th_info.ds.ds_gtid);
    KMP_DEBUG_ASSERT(new_thr->th.th_serial_team);

    TCW_4(__kmp_nth, __kmp_nth + 1);

    new_thr->th.th_task_state = 0;
    new_thr->th.th_task_state_top = 0;
    new_thr->th.th_task_state_stack_sz = 4;

#ifdef KMP_ADJUST_BLOCKTIME
    /* Adjust blocktime back to zero if necessary */
    /* Middle initialization might not have occurred yet */
    if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
      if (__kmp_nth > __kmp_avail_proc) {
        __kmp_zero_bt = TRUE;
      }
    }
#endif /* KMP_ADJUST_BLOCKTIME */

#if KMP_DEBUG
    // If thread entered pool via __kmp_free_thread, wait_flag should !=
    // KMP_BARRIER_PARENT_FLAG.
    int b;
    kmp_balign_t *balign = new_thr->th.th_bar;
    for (b = 0; b < bs_last_barrier; ++b)
      KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
#endif

    KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n",
                  __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid));

    KMP_MB();
    return new_thr;
  }

  /* no, well fork a new one */
  KMP_ASSERT(__kmp_nth == __kmp_all_nth);
  KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity);

#if KMP_USE_MONITOR
  // If this is the first worker thread the RTL is creating, then also
  // launch the monitor thread.  We try to do this as early as possible.
  if (!TCR_4(__kmp_init_monitor)) {
    __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
    if (!TCR_4(__kmp_init_monitor)) {
      KF_TRACE(10, ("before __kmp_create_monitor\n"));
      TCW_4(__kmp_init_monitor, 1);
      __kmp_create_monitor(&__kmp_monitor);
      KF_TRACE(10, ("after __kmp_create_monitor\n"));
#if KMP_OS_WINDOWS
      // AC: wait until monitor has started. This is a fix for CQ232808.
      // The reason is that if the library is loaded/unloaded in a loop with
      // small (parallel) work in between, then there is high probability that
      // monitor thread started after the library shutdown. At shutdown it is
      // too late to cope with the problem, because when the master is in
      // DllMain (process detach) the monitor has no chances to start (it is
      // blocked), and master has no means to inform the monitor that the
      // library has gone, because all the memory which the monitor can access
      // is going to be released/reset.
      while (TCR_4(__kmp_init_monitor) < 2) {
        KMP_YIELD(TRUE);
      }
      KF_TRACE(10, ("after monitor thread has started\n"));
#endif
    }
    __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
  }
#endif

  KMP_MB();
  for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) {
    KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity);
  }

  /* allocate space for it. */
  new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));

  TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr);

#if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
  // suppress race conditions detection on synchronization flags in debug mode
  // this helps to analyze library internals eliminating false positives
  __itt_suppress_mark_range(
      __itt_suppress_range, __itt_suppress_threading_errors,
      &new_thr->th.th_sleep_loc, sizeof(new_thr->th.th_sleep_loc));
  __itt_suppress_mark_range(
      __itt_suppress_range, __itt_suppress_threading_errors,
      &new_thr->th.th_reap_state, sizeof(new_thr->th.th_reap_state));
#if KMP_OS_WINDOWS
  __itt_suppress_mark_range(
      __itt_suppress_range, __itt_suppress_threading_errors,
      &new_thr->th.th_suspend_init, sizeof(new_thr->th.th_suspend_init));
#else
  __itt_suppress_mark_range(__itt_suppress_range,
                            __itt_suppress_threading_errors,
                            &new_thr->th.th_suspend_init_count,
                            sizeof(new_thr->th.th_suspend_init_count));
#endif
  // TODO: check if we need to also suppress b_arrived flags
  __itt_suppress_mark_range(__itt_suppress_range,
                            __itt_suppress_threading_errors,
                            CCAST(kmp_uint64 *, &new_thr->th.th_bar[0].bb.b_go),
                            sizeof(new_thr->th.th_bar[0].bb.b_go));
  __itt_suppress_mark_range(__itt_suppress_range,
                            __itt_suppress_threading_errors,
                            CCAST(kmp_uint64 *, &new_thr->th.th_bar[1].bb.b_go),
                            sizeof(new_thr->th.th_bar[1].bb.b_go));
  __itt_suppress_mark_range(__itt_suppress_range,
                            __itt_suppress_threading_errors,
                            CCAST(kmp_uint64 *, &new_thr->th.th_bar[2].bb.b_go),
                            sizeof(new_thr->th.th_bar[2].bb.b_go));
#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
  if (__kmp_storage_map) {
    __kmp_print_thread_storage_map(new_thr, new_gtid);
  }

  // add the reserve serialized team, initialized from the team's master thread
  {
    kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team);
    KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n"));
    new_thr->th.th_serial_team = serial_team =
        (kmp_team_t *)__kmp_allocate_team(root, 1, 1,
#if OMPT_SUPPORT
                                          ompt_data_none, // root parallel id
#endif
                                          proc_bind_default, &r_icvs,
                                          0 USE_NESTED_HOT_ARG(NULL));
  }
  KMP_ASSERT(serial_team);
  serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for
  // execution (it is unused for now).
  serial_team->t.t_threads[0] = new_thr;
  KF_TRACE(10,
           ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n",
            new_thr));

  /* setup the thread structures */
  __kmp_initialize_info(new_thr, team, new_tid, new_gtid);

#if USE_FAST_MEMORY
  __kmp_initialize_fast_memory(new_thr);
#endif /* USE_FAST_MEMORY */

#if KMP_USE_BGET
  KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL);
  __kmp_initialize_bget(new_thr);
#endif

  __kmp_init_random(new_thr); // Initialize random number generator

  /* Initialize these only once when thread is grabbed for a team allocation */
  KA_TRACE(20,
           ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n",
            __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));

  int b;
  kmp_balign_t *balign = new_thr->th.th_bar;
  for (b = 0; b < bs_last_barrier; ++b) {
    balign[b].bb.b_go = KMP_INIT_BARRIER_STATE;
    balign[b].bb.team = NULL;
    balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING;
    balign[b].bb.use_oncore_barrier = 0;
  }

  new_thr->th.th_spin_here = FALSE;
  new_thr->th.th_next_waiting = 0;
#if KMP_OS_UNIX
  new_thr->th.th_blocking = false;
#endif

#if KMP_AFFINITY_SUPPORTED
  new_thr->th.th_current_place = KMP_PLACE_UNDEFINED;
  new_thr->th.th_new_place = KMP_PLACE_UNDEFINED;
  new_thr->th.th_first_place = KMP_PLACE_UNDEFINED;
  new_thr->th.th_last_place = KMP_PLACE_UNDEFINED;
#endif
  new_thr->th.th_def_allocator = __kmp_def_allocator;
  new_thr->th.th_prev_level = 0;
  new_thr->th.th_prev_num_threads = 1;

  TCW_4(new_thr->th.th_in_pool, FALSE);
  new_thr->th.th_active_in_pool = FALSE;
  TCW_4(new_thr->th.th_active, TRUE);

  /* adjust the global counters */
  __kmp_all_nth++;
  __kmp_nth++;

  // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
  // numbers of procs, and method #2 (keyed API call) for higher numbers.
  if (__kmp_adjust_gtid_mode) {
    if (__kmp_all_nth >= __kmp_tls_gtid_min) {
      if (TCR_4(__kmp_gtid_mode) != 2) {
        TCW_4(__kmp_gtid_mode, 2);
      }
    } else {
      if (TCR_4(__kmp_gtid_mode) != 1) {
        TCW_4(__kmp_gtid_mode, 1);
      }
    }
  }

#ifdef KMP_ADJUST_BLOCKTIME
  /* Adjust blocktime back to zero if necessary       */
  /* Middle initialization might not have occurred yet */
  if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
    if (__kmp_nth > __kmp_avail_proc) {
      __kmp_zero_bt = TRUE;
    }
  }
#endif /* KMP_ADJUST_BLOCKTIME */

  /* actually fork it and create the new worker thread */
  KF_TRACE(
      10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr));
  __kmp_create_worker(new_gtid, new_thr, __kmp_stksize);
  KF_TRACE(10,
           ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr));

  KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(),
                new_gtid));
  KMP_MB();
  return new_thr;
}

/* Reinitialize team for reuse.
   The hot team code calls this case at every fork barrier, so EPCC barrier
   test are extremely sensitive to changes in it, esp. writes to the team
   struct, which cause a cache invalidation in all threads.
   IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */
static void __kmp_reinitialize_team(kmp_team_t *team,
                                    kmp_internal_control_t *new_icvs,
                                    ident_t *loc) {
  KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n",
                team->t.t_threads[0], team));
  KMP_DEBUG_ASSERT(team && new_icvs);
  KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc);
  KMP_CHECK_UPDATE(team->t.t_ident, loc);

  KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID());
  // Copy ICVs to the master thread's implicit taskdata
  __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE);
  copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs);

  KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n",
                team->t.t_threads[0], team));
}

/* Initialize the team data structure.
   This assumes the t_threads and t_max_nproc are already set.
   Also, we don't touch the arguments */
static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
                                  kmp_internal_control_t *new_icvs,
                                  ident_t *loc) {
  KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team));

  /* verify */
  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc);
  KMP_DEBUG_ASSERT(team->t.t_threads);
  KMP_MB();

  team->t.t_master_tid = 0; /* not needed */
  /* team->t.t_master_bar;        not needed */
  team->t.t_serialized = new_nproc > 1 ? 0 : 1;
  team->t.t_nproc = new_nproc;

  /* team->t.t_parent     = NULL; TODO not needed & would mess up hot team */
  team->t.t_next_pool = NULL;
  /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess
   * up hot team */

  TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */
  team->t.t_invoke = NULL; /* not needed */

  // TODO???: team->t.t_max_active_levels       = new_max_active_levels;
  team->t.t_sched.sched = new_icvs->sched.sched;

#if KMP_ARCH_X86 || KMP_ARCH_X86_64
  team->t.t_fp_control_saved = FALSE; /* not needed */
  team->t.t_x87_fpu_control_word = 0; /* not needed */
  team->t.t_mxcsr = 0; /* not needed */
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */

  team->t.t_construct = 0;

  team->t.t_ordered.dt.t_value = 0;
  team->t.t_master_active = FALSE;

#ifdef KMP_DEBUG
  team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */
#endif
#if KMP_OS_WINDOWS
  team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */
#endif

  team->t.t_control_stack_top = NULL;

  __kmp_reinitialize_team(team, new_icvs, loc);

  KMP_MB();
  KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team));
}

#if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
/* Sets full mask for thread and returns old mask, no changes to structures. */
static void
__kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) {
  if (KMP_AFFINITY_CAPABLE()) {
    int status;
    if (old_mask != NULL) {
      status = __kmp_get_system_affinity(old_mask, TRUE);
      int error = errno;
      if (status != 0) {
        __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error),
                    __kmp_msg_null);
      }
    }
    __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE);
  }
}
#endif

#if KMP_AFFINITY_SUPPORTED

// __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism.
// It calculates the worker + master thread's partition based upon the parent
// thread's partition, and binds each worker to a thread in their partition.
// The master thread's partition should already include its current binding.
static void __kmp_partition_places(kmp_team_t *team, int update_master_only) {
  // Copy the master thread's place partition to the team struct
  kmp_info_t *master_th = team->t.t_threads[0];
  KMP_DEBUG_ASSERT(master_th != NULL);
  kmp_proc_bind_t proc_bind = team->t.t_proc_bind;
  int first_place = master_th->th.th_first_place;
  int last_place = master_th->th.th_last_place;
  int masters_place = master_th->th.th_current_place;
  team->t.t_first_place = first_place;
  team->t.t_last_place = last_place;

  KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) "
                "bound to place %d partition = [%d,%d]\n",
                proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]),
                team->t.t_id, masters_place, first_place, last_place));

  switch (proc_bind) {

  case proc_bind_default:
    // serial teams might have the proc_bind policy set to proc_bind_default. It
    // doesn't matter, as we don't rebind master thread for any proc_bind policy
    KMP_DEBUG_ASSERT(team->t.t_nproc == 1);
    break;

  case proc_bind_master: {
    int f;
    int n_th = team->t.t_nproc;
    for (f = 1; f < n_th; f++) {
      kmp_info_t *th = team->t.t_threads[f];
      KMP_DEBUG_ASSERT(th != NULL);
      th->th.th_first_place = first_place;
      th->th.th_last_place = last_place;
      th->th.th_new_place = masters_place;
      if (__kmp_display_affinity && masters_place != th->th.th_current_place &&
          team->t.t_display_affinity != 1) {
        team->t.t_display_affinity = 1;
      }

      KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d "
                     "partition = [%d,%d]\n",
                     __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
                     f, masters_place, first_place, last_place));
    }
  } break;

  case proc_bind_close: {
    int f;
    int n_th = team->t.t_nproc;
    int n_places;
    if (first_place <= last_place) {
      n_places = last_place - first_place + 1;
    } else {
      n_places = __kmp_affinity_num_masks - first_place + last_place + 1;
    }
    if (n_th <= n_places) {
      int place = masters_place;
      for (f = 1; f < n_th; f++) {
        kmp_info_t *th = team->t.t_threads[f];
        KMP_DEBUG_ASSERT(th != NULL);

        if (place == last_place) {
          place = first_place;
        } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
          place = 0;
        } else {
          place++;
        }
        th->th.th_first_place = first_place;
        th->th.th_last_place = last_place;
        th->th.th_new_place = place;
        if (__kmp_display_affinity && place != th->th.th_current_place &&
            team->t.t_display_affinity != 1) {
          team->t.t_display_affinity = 1;
        }

        KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
                       "partition = [%d,%d]\n",
                       __kmp_gtid_from_thread(team->t.t_threads[f]),
                       team->t.t_id, f, place, first_place, last_place));
      }
    } else {
      int S, rem, gap, s_count;
      S = n_th / n_places;
      s_count = 0;
      rem = n_th - (S * n_places);
      gap = rem > 0 ? n_places / rem : n_places;
      int place = masters_place;
      int gap_ct = gap;
      for (f = 0; f < n_th; f++) {
        kmp_info_t *th = team->t.t_threads[f];
        KMP_DEBUG_ASSERT(th != NULL);

        th->th.th_first_place = first_place;
        th->th.th_last_place = last_place;
        th->th.th_new_place = place;
        if (__kmp_display_affinity && place != th->th.th_current_place &&
            team->t.t_display_affinity != 1) {
          team->t.t_display_affinity = 1;
        }
        s_count++;

        if ((s_count == S) && rem && (gap_ct == gap)) {
          // do nothing, add an extra thread to place on next iteration
        } else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
          // we added an extra thread to this place; move to next place
          if (place == last_place) {
            place = first_place;
          } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
            place = 0;
          } else {
            place++;
          }
          s_count = 0;
          gap_ct = 1;
          rem--;
        } else if (s_count == S) { // place full; don't add extra
          if (place == last_place) {
            place = first_place;
          } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
            place = 0;
          } else {
            place++;
          }
          gap_ct++;
          s_count = 0;
        }

        KA_TRACE(100,
                 ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
                  "partition = [%d,%d]\n",
                  __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f,
                  th->th.th_new_place, first_place, last_place));
      }
      KMP_DEBUG_ASSERT(place == masters_place);
    }
  } break;

  case proc_bind_spread: {
    int f;
    int n_th = team->t.t_nproc;
    int n_places;
    int thidx;
    if (first_place <= last_place) {
      n_places = last_place - first_place + 1;
    } else {
      n_places = __kmp_affinity_num_masks - first_place + last_place + 1;
    }
    if (n_th <= n_places) {
      int place = -1;

      if (n_places != static_cast<int>(__kmp_affinity_num_masks)) {
        int S = n_places / n_th;
        int s_count, rem, gap, gap_ct;

        place = masters_place;
        rem = n_places - n_th * S;
        gap = rem ? n_th / rem : 1;
        gap_ct = gap;
        thidx = n_th;
        if (update_master_only == 1)
          thidx = 1;
        for (f = 0; f < thidx; f++) {
          kmp_info_t *th = team->t.t_threads[f];
          KMP_DEBUG_ASSERT(th != NULL);

          th->th.th_first_place = place;
          th->th.th_new_place = place;
          if (__kmp_display_affinity && place != th->th.th_current_place &&
              team->t.t_display_affinity != 1) {
            team->t.t_display_affinity = 1;
          }
          s_count = 1;
          while (s_count < S) {
            if (place == last_place) {
              place = first_place;
            } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
              place = 0;
            } else {
              place++;
            }
            s_count++;
          }
          if (rem && (gap_ct == gap)) {
            if (place == last_place) {
              place = first_place;
            } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
              place = 0;
            } else {
              place++;
            }
            rem--;
            gap_ct = 0;
          }
          th->th.th_last_place = place;
          gap_ct++;

          if (place == last_place) {
            place = first_place;
          } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
            place = 0;
          } else {
            place++;
          }

          KA_TRACE(100,
                   ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
                    "partition = [%d,%d], __kmp_affinity_num_masks: %u\n",
                    __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
                    f, th->th.th_new_place, th->th.th_first_place,
                    th->th.th_last_place, __kmp_affinity_num_masks));
        }
      } else {
        /* Having uniform space of available computation places I can create
           T partitions of round(P/T) size and put threads into the first
           place of each partition. */
        double current = static_cast<double>(masters_place);
        double spacing =
            (static_cast<double>(n_places + 1) / static_cast<double>(n_th));
        int first, last;
        kmp_info_t *th;

        thidx = n_th + 1;
        if (update_master_only == 1)
          thidx = 1;
        for (f = 0; f < thidx; f++) {
          first = static_cast<int>(current);
          last = static_cast<int>(current + spacing) - 1;
          KMP_DEBUG_ASSERT(last >= first);
          if (first >= n_places) {
            if (masters_place) {
              first -= n_places;
              last -= n_places;
              if (first == (masters_place + 1)) {
                KMP_DEBUG_ASSERT(f == n_th);
                first--;
              }
              if (last == masters_place) {
                KMP_DEBUG_ASSERT(f == (n_th - 1));
                last--;
              }
            } else {
              KMP_DEBUG_ASSERT(f == n_th);
              first = 0;
              last = 0;
            }
          }
          if (last >= n_places) {
            last = (n_places - 1);
          }
          place = first;
          current += spacing;
          if (f < n_th) {
            KMP_DEBUG_ASSERT(0 <= first);
            KMP_DEBUG_ASSERT(n_places > first);
            KMP_DEBUG_ASSERT(0 <= last);
            KMP_DEBUG_ASSERT(n_places > last);
            KMP_DEBUG_ASSERT(last_place >= first_place);
            th = team->t.t_threads[f];
            KMP_DEBUG_ASSERT(th);
            th->th.th_first_place = first;
            th->th.th_new_place = place;
            th->th.th_last_place = last;
            if (__kmp_display_affinity && place != th->th.th_current_place &&
                team->t.t_display_affinity != 1) {
              team->t.t_display_affinity = 1;
            }
            KA_TRACE(100,
                     ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
                      "partition = [%d,%d], spacing = %.4f\n",
                      __kmp_gtid_from_thread(team->t.t_threads[f]),
                      team->t.t_id, f, th->th.th_new_place,
                      th->th.th_first_place, th->th.th_last_place, spacing));
          }
        }
      }
      KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
    } else {
      int S, rem, gap, s_count;
      S = n_th / n_places;
      s_count = 0;
      rem = n_th - (S * n_places);
      gap = rem > 0 ? n_places / rem : n_places;
      int place = masters_place;
      int gap_ct = gap;
      thidx = n_th;
      if (update_master_only == 1)
        thidx = 1;
      for (f = 0; f < thidx; f++) {
        kmp_info_t *th = team->t.t_threads[f];
        KMP_DEBUG_ASSERT(th != NULL);

        th->th.th_first_place = place;
        th->th.th_last_place = place;
        th->th.th_new_place = place;
        if (__kmp_display_affinity && place != th->th.th_current_place &&
            team->t.t_display_affinity != 1) {
          team->t.t_display_affinity = 1;
        }
        s_count++;

        if ((s_count == S) && rem && (gap_ct == gap)) {
          // do nothing, add an extra thread to place on next iteration
        } else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
          // we added an extra thread to this place; move on to next place
          if (place == last_place) {
            place = first_place;
          } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
            place = 0;
          } else {
            place++;
          }
          s_count = 0;
          gap_ct = 1;
          rem--;
        } else if (s_count == S) { // place is full; don't add extra thread
          if (place == last_place) {
            place = first_place;
          } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
            place = 0;
          } else {
            place++;
          }
          gap_ct++;
          s_count = 0;
        }

        KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
                       "partition = [%d,%d]\n",
                       __kmp_gtid_from_thread(team->t.t_threads[f]),
                       team->t.t_id, f, th->th.th_new_place,
                       th->th.th_first_place, th->th.th_last_place));
      }
      KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
    }
  } break;

  default:
    break;
  }

  KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id));
}

#endif // KMP_AFFINITY_SUPPORTED

/* allocate a new team data structure to use.  take one off of the free pool if
   available */
kmp_team_t *
__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
#if OMPT_SUPPORT
                    ompt_data_t ompt_parallel_data,
#endif
                    kmp_proc_bind_t new_proc_bind,
                    kmp_internal_control_t *new_icvs,
                    int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) {
  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team);
  int f;
  kmp_team_t *team;
  int use_hot_team = !root->r.r_active;
  int level = 0;

  KA_TRACE(20, ("__kmp_allocate_team: called\n"));
  KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0);
  KMP_DEBUG_ASSERT(max_nproc >= new_nproc);
  KMP_MB();

#if KMP_NESTED_HOT_TEAMS
  kmp_hot_team_ptr_t *hot_teams;
  if (master) {
    team = master->th.th_team;
    level = team->t.t_active_level;
    if (master->th.th_teams_microtask) { // in teams construct?
      if (master->th.th_teams_size.nteams > 1 &&
          ( // #teams > 1
              team->t.t_pkfn ==
                  (microtask_t)__kmp_teams_master || // inner fork of the teams
              master->th.th_teams_level <
                  team->t.t_level)) { // or nested parallel inside the teams
        ++level; // not increment if #teams==1, or for outer fork of the teams;
        // increment otherwise
      }
    }
    hot_teams = master->th.th_hot_teams;
    if (level < __kmp_hot_teams_max_level && hot_teams &&
        hot_teams[level].hot_team) {
      // hot team has already been allocated for given level
      use_hot_team = 1;
    } else {
      use_hot_team = 0;
    }
  } else {
    // check we won't access uninitialized hot_teams, just in case
    KMP_DEBUG_ASSERT(new_nproc == 1);
  }
#endif
  // Optimization to use a "hot" team
  if (use_hot_team && new_nproc > 1) {
    KMP_DEBUG_ASSERT(new_nproc <= max_nproc);
#if KMP_NESTED_HOT_TEAMS
    team = hot_teams[level].hot_team;
#else
    team = root->r.r_hot_team;
#endif
#if KMP_DEBUG
    if (__kmp_tasking_mode != tskm_immediate_exec) {
      KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
                    "task_team[1] = %p before reinit\n",
                    team->t.t_task_team[0], team->t.t_task_team[1]));
    }
#endif

    // Has the number of threads changed?
    /* Let's assume the most common case is that the number of threads is
       unchanged, and put that case first. */
    if (team->t.t_nproc == new_nproc) { // Check changes in number of threads
      KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n"));
      // This case can mean that omp_set_num_threads() was called and the hot
      // team size was already reduced, so we check the special flag
      if (team->t.t_size_changed == -1) {
        team->t.t_size_changed = 1;
      } else {
        KMP_CHECK_UPDATE(team->t.t_size_changed, 0);
      }

      // TODO???: team->t.t_max_active_levels = new_max_active_levels;
      kmp_r_sched_t new_sched = new_icvs->sched;
      // set master's schedule as new run-time schedule
      KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);

      __kmp_reinitialize_team(team, new_icvs,
                              root->r.r_uber_thread->th.th_ident);

      KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0,
                    team->t.t_threads[0], team));
      __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);

#if KMP_AFFINITY_SUPPORTED
      if ((team->t.t_size_changed == 0) &&
          (team->t.t_proc_bind == new_proc_bind)) {
        if (new_proc_bind == proc_bind_spread) {
          __kmp_partition_places(
              team, 1); // add flag to update only master for spread
        }
        KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: "
                       "proc_bind = %d, partition = [%d,%d]\n",
                       team->t.t_id, new_proc_bind, team->t.t_first_place,
                       team->t.t_last_place));
      } else {
        KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
        __kmp_partition_places(team);
      }
#else
      KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
#endif /* KMP_AFFINITY_SUPPORTED */
    } else if (team->t.t_nproc > new_nproc) {
      KA_TRACE(20,
               ("__kmp_allocate_team: decreasing hot team thread count to %d\n",
                new_nproc));

      team->t.t_size_changed = 1;
#if KMP_NESTED_HOT_TEAMS
      if (__kmp_hot_teams_mode == 0) {
        // AC: saved number of threads should correspond to team's value in this
        // mode, can be bigger in mode 1, when hot team has threads in reserve
        KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc);
        hot_teams[level].hot_team_nth = new_nproc;
#endif // KMP_NESTED_HOT_TEAMS
        /* release the extra threads we don't need any more */
        for (f = new_nproc; f < team->t.t_nproc; f++) {
          KMP_DEBUG_ASSERT(team->t.t_threads[f]);
          if (__kmp_tasking_mode != tskm_immediate_exec) {
            // When decreasing team size, threads no longer in the team should
            // unref task team.
            team->t.t_threads[f]->th.th_task_team = NULL;
          }
          __kmp_free_thread(team->t.t_threads[f]);
          team->t.t_threads[f] = NULL;
        }
#if KMP_NESTED_HOT_TEAMS
      } // (__kmp_hot_teams_mode == 0)
      else {
        // When keeping extra threads in team, switch threads to wait on own
        // b_go flag
        for (f = new_nproc; f < team->t.t_nproc; ++f) {
          KMP_DEBUG_ASSERT(team->t.t_threads[f]);
          kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar;
          for (int b = 0; b < bs_last_barrier; ++b) {
            if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) {
              balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
            }
            KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0);
          }
        }
      }
#endif // KMP_NESTED_HOT_TEAMS
      team->t.t_nproc = new_nproc;
      // TODO???: team->t.t_max_active_levels = new_max_active_levels;
      KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched);
      __kmp_reinitialize_team(team, new_icvs,
                              root->r.r_uber_thread->th.th_ident);

      // Update remaining threads
      for (f = 0; f < new_nproc; ++f) {
        team->t.t_threads[f]->th.th_team_nproc = new_nproc;
      }

      // restore the current task state of the master thread: should be the
      // implicit task
      KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0,
                    team->t.t_threads[0], team));

      __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);

#ifdef KMP_DEBUG
      for (f = 0; f < team->t.t_nproc; f++) {
        KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
                         team->t.t_threads[f]->th.th_team_nproc ==
                             team->t.t_nproc);
      }
#endif

      KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
#if KMP_AFFINITY_SUPPORTED
      __kmp_partition_places(team);
#endif
    } else { // team->t.t_nproc < new_nproc
#if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
      kmp_affin_mask_t *old_mask;
      if (KMP_AFFINITY_CAPABLE()) {
        KMP_CPU_ALLOC(old_mask);
      }
#endif

      KA_TRACE(20,
               ("__kmp_allocate_team: increasing hot team thread count to %d\n",
                new_nproc));

      team->t.t_size_changed = 1;

#if KMP_NESTED_HOT_TEAMS
      int avail_threads = hot_teams[level].hot_team_nth;
      if (new_nproc < avail_threads)
        avail_threads = new_nproc;
      kmp_info_t **other_threads = team->t.t_threads;
      for (f = team->t.t_nproc; f < avail_threads; ++f) {
        // Adjust barrier data of reserved threads (if any) of the team
        // Other data will be set in __kmp_initialize_info() below.
        int b;
        kmp_balign_t *balign = other_threads[f]->th.th_bar;
        for (b = 0; b < bs_last_barrier; ++b) {
          balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
          KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
#if USE_DEBUGGER
          balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
#endif
        }
      }
      if (hot_teams[level].hot_team_nth >= new_nproc) {
        // we have all needed threads in reserve, no need to allocate any
        // this only possible in mode 1, cannot have reserved threads in mode 0
        KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1);
        team->t.t_nproc = new_nproc; // just get reserved threads involved
      } else {
        // we may have some threads in reserve, but not enough
        team->t.t_nproc =
            hot_teams[level]
                .hot_team_nth; // get reserved threads involved if any
        hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size
#endif // KMP_NESTED_HOT_TEAMS
        if (team->t.t_max_nproc < new_nproc) {
          /* reallocate larger arrays */
          __kmp_reallocate_team_arrays(team, new_nproc);
          __kmp_reinitialize_team(team, new_icvs, NULL);
        }

#if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
        /* Temporarily set full mask for master thread before creation of
           workers. The reason is that workers inherit the affinity from master,
           so if a lot of workers are created on the single core quickly, they
           don't get a chance to set their own affinity for a long time. */
        __kmp_set_thread_affinity_mask_full_tmp(old_mask);
#endif

        /* allocate new threads for the hot team */
        for (f = team->t.t_nproc; f < new_nproc; f++) {
          kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f);
          KMP_DEBUG_ASSERT(new_worker);
          team->t.t_threads[f] = new_worker;

          KA_TRACE(20,
                   ("__kmp_allocate_team: team %d init T#%d arrived: "
                    "join=%llu, plain=%llu\n",
                    team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f,
                    team->t.t_bar[bs_forkjoin_barrier].b_arrived,
                    team->t.t_bar[bs_plain_barrier].b_arrived));

          { // Initialize barrier data for new threads.
            int b;
            kmp_balign_t *balign = new_worker->th.th_bar;
            for (b = 0; b < bs_last_barrier; ++b) {
              balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
              KMP_DEBUG_ASSERT(balign[b].bb.wait_flag !=
                               KMP_BARRIER_PARENT_FLAG);
#if USE_DEBUGGER
              balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
#endif
            }
          }
        }

#if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
        if (KMP_AFFINITY_CAPABLE()) {
          /* Restore initial master thread's affinity mask */
          __kmp_set_system_affinity(old_mask, TRUE);
          KMP_CPU_FREE(old_mask);
        }
#endif
#if KMP_NESTED_HOT_TEAMS
      } // end of check of t_nproc vs. new_nproc vs. hot_team_nth
#endif // KMP_NESTED_HOT_TEAMS
      /* make sure everyone is syncronized */
      int old_nproc = team->t.t_nproc; // save old value and use to update only
      // new threads below
      __kmp_initialize_team(team, new_nproc, new_icvs,
                            root->r.r_uber_thread->th.th_ident);

      /* reinitialize the threads */
      KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc);
      for (f = 0; f < team->t.t_nproc; ++f)
        __kmp_initialize_info(team->t.t_threads[f], team, f,
                              __kmp_gtid_from_tid(f, team));

      if (level) { // set th_task_state for new threads in nested hot team
        // __kmp_initialize_info() no longer zeroes th_task_state, so we should
        // only need to set the th_task_state for the new threads. th_task_state
        // for master thread will not be accurate until after this in
        // __kmp_fork_call(), so we look to the master's memo_stack to get the
        // correct value.
        for (f = old_nproc; f < team->t.t_nproc; ++f)
          team->t.t_threads[f]->th.th_task_state =
              team->t.t_threads[0]->th.th_task_state_memo_stack[level];
      } else { // set th_task_state for new threads in non-nested hot team
        int old_state =
            team->t.t_threads[0]->th.th_task_state; // copy master's state
        for (f = old_nproc; f < team->t.t_nproc; ++f)
          team->t.t_threads[f]->th.th_task_state = old_state;
      }

#ifdef KMP_DEBUG
      for (f = 0; f < team->t.t_nproc; ++f) {
        KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
                         team->t.t_threads[f]->th.th_team_nproc ==
                             team->t.t_nproc);
      }
#endif

      KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
#if KMP_AFFINITY_SUPPORTED
      __kmp_partition_places(team);
#endif
    } // Check changes in number of threads

    kmp_info_t *master = team->t.t_threads[0];
    if (master->th.th_teams_microtask) {
      for (f = 1; f < new_nproc; ++f) {
        // propagate teams construct specific info to workers
        kmp_info_t *thr = team->t.t_threads[f];
        thr->th.th_teams_microtask = master->th.th_teams_microtask;
        thr->th.th_teams_level = master->th.th_teams_level;
        thr->th.th_teams_size = master->th.th_teams_size;
      }
    }
#if KMP_NESTED_HOT_TEAMS
    if (level) {
      // Sync barrier state for nested hot teams, not needed for outermost hot
      // team.
      for (f = 1; f < new_nproc; ++f) {
        kmp_info_t *thr = team->t.t_threads[f];
        int b;
        kmp_balign_t *balign = thr->th.th_bar;
        for (b = 0; b < bs_last_barrier; ++b) {
          balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
          KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
#if USE_DEBUGGER
          balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
#endif
        }
      }
    }
#endif // KMP_NESTED_HOT_TEAMS

    /* reallocate space for arguments if necessary */
    __kmp_alloc_argv_entries(argc, team, TRUE);
    KMP_CHECK_UPDATE(team->t.t_argc, argc);
    // The hot team re-uses the previous task team,
    // if untouched during the previous release->gather phase.

    KF_TRACE(10, (" hot_team = %p\n", team));

#if KMP_DEBUG
    if (__kmp_tasking_mode != tskm_immediate_exec) {
      KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
                    "task_team[1] = %p after reinit\n",
                    team->t.t_task_team[0], team->t.t_task_team[1]));
    }
#endif

#if OMPT_SUPPORT
    __ompt_team_assign_id(team, ompt_parallel_data);
#endif

    KMP_MB();

    return team;
  }

  /* next, let's try to take one from the team pool */
  KMP_MB();
  for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) {
    /* TODO: consider resizing undersized teams instead of reaping them, now
       that we have a resizing mechanism */
    if (team->t.t_max_nproc >= max_nproc) {
      /* take this team from the team pool */
      __kmp_team_pool = team->t.t_next_pool;

      /* setup the team for fresh use */
      __kmp_initialize_team(team, new_nproc, new_icvs, NULL);

      KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and "
                    "task_team[1] %p to NULL\n",
                    &team->t.t_task_team[0], &team->t.t_task_team[1]));
      team->t.t_task_team[0] = NULL;
      team->t.t_task_team[1] = NULL;

      /* reallocate space for arguments if necessary */
      __kmp_alloc_argv_entries(argc, team, TRUE);
      KMP_CHECK_UPDATE(team->t.t_argc, argc);

      KA_TRACE(
          20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
               team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
      { // Initialize barrier data.
        int b;
        for (b = 0; b < bs_last_barrier; ++b) {
          team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
#if USE_DEBUGGER
          team->t.t_bar[b].b_master_arrived = 0;
          team->t.t_bar[b].b_team_arrived = 0;
#endif
        }
      }

      team->t.t_proc_bind = new_proc_bind;

      KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n",
                    team->t.t_id));

#if OMPT_SUPPORT
      __ompt_team_assign_id(team, ompt_parallel_data);
#endif

      KMP_MB();

      return team;
    }

    /* reap team if it is too small, then loop back and check the next one */
    // not sure if this is wise, but, will be redone during the hot-teams
    // rewrite.
    /* TODO: Use technique to find the right size hot-team, don't reap them */
    team = __kmp_reap_team(team);
    __kmp_team_pool = team;
  }

  /* nothing available in the pool, no matter, make a new team! */
  KMP_MB();
  team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t));

  /* and set it up */
  team->t.t_max_nproc = max_nproc;
  /* NOTE well, for some reason allocating one big buffer and dividing it up
     seems to really hurt performance a lot on the P4, so, let's not use this */
  __kmp_allocate_team_arrays(team, max_nproc);

  KA_TRACE(20, ("__kmp_allocate_team: making a new team\n"));
  __kmp_initialize_team(team, new_nproc, new_icvs, NULL);

  KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] "
                "%p to NULL\n",
                &team->t.t_task_team[0], &team->t.t_task_team[1]));
  team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes
  // memory, no need to duplicate
  team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes
  // memory, no need to duplicate

  if (__kmp_storage_map) {
    __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc);
  }

  /* allocate space for arguments */
  __kmp_alloc_argv_entries(argc, team, FALSE);
  team->t.t_argc = argc;

  KA_TRACE(20,
           ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
            team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
  { // Initialize barrier data.
    int b;
    for (b = 0; b < bs_last_barrier; ++b) {
      team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
#if USE_DEBUGGER
      team->t.t_bar[b].b_master_arrived = 0;
      team->t.t_bar[b].b_team_arrived = 0;
#endif
    }
  }

  team->t.t_proc_bind = new_proc_bind;

#if OMPT_SUPPORT
  __ompt_team_assign_id(team, ompt_parallel_data);
  team->t.ompt_serialized_team_info = NULL;
#endif

  KMP_MB();

  KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n",
                team->t.t_id));

  return team;
}

/* TODO implement hot-teams at all levels */
/* TODO implement lazy thread release on demand (disband request) */

/* free the team.  return it to the team pool.  release all the threads
 * associated with it */
void __kmp_free_team(kmp_root_t *root,
                     kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) {
  int f;
  KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(),
                team->t.t_id));

  /* verify state */
  KMP_DEBUG_ASSERT(root);
  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc);
  KMP_DEBUG_ASSERT(team->t.t_threads);

  int use_hot_team = team == root->r.r_hot_team;
#if KMP_NESTED_HOT_TEAMS
  int level;
  kmp_hot_team_ptr_t *hot_teams;
  if (master) {
    level = team->t.t_active_level - 1;
    if (master->th.th_teams_microtask) { // in teams construct?
      if (master->th.th_teams_size.nteams > 1) {
        ++level; // level was not increased in teams construct for
        // team_of_masters
      }
      if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
          master->th.th_teams_level == team->t.t_level) {
        ++level; // level was not increased in teams construct for
        // team_of_workers before the parallel
      } // team->t.t_level will be increased inside parallel
    }
    hot_teams = master->th.th_hot_teams;
    if (level < __kmp_hot_teams_max_level) {
      KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team);
      use_hot_team = 1;
    }
  }
#endif // KMP_NESTED_HOT_TEAMS

  /* team is done working */
  TCW_SYNC_PTR(team->t.t_pkfn,
               NULL); // Important for Debugging Support Library.
#if KMP_OS_WINDOWS
  team->t.t_copyin_counter = 0; // init counter for possible reuse
#endif
  // Do not reset pointer to parent team to NULL for hot teams.

  /* if we are non-hot team, release our threads */
  if (!use_hot_team) {
    if (__kmp_tasking_mode != tskm_immediate_exec) {
      // Wait for threads to reach reapable state
      for (f = 1; f < team->t.t_nproc; ++f) {
        KMP_DEBUG_ASSERT(team->t.t_threads[f]);
        kmp_info_t *th = team->t.t_threads[f];
        volatile kmp_uint32 *state = &th->th.th_reap_state;
        while (*state != KMP_SAFE_TO_REAP) {
#if KMP_OS_WINDOWS
          // On Windows a thread can be killed at any time, check this
          DWORD ecode;
          if (!__kmp_is_thread_alive(th, &ecode)) {
            *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread
            break;
          }
#endif
          // first check if thread is sleeping
          kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th);
          if (fl.is_sleeping())
            fl.resume(__kmp_gtid_from_thread(th));
          KMP_CPU_PAUSE();
        }
      }

      // Delete task teams
      int tt_idx;
      for (tt_idx = 0; tt_idx < 2; ++tt_idx) {
        kmp_task_team_t *task_team = team->t.t_task_team[tt_idx];
        if (task_team != NULL) {
          for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams
            KMP_DEBUG_ASSERT(team->t.t_threads[f]);
            team->t.t_threads[f]->th.th_task_team = NULL;
          }
          KA_TRACE(
              20,
              ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n",
               __kmp_get_gtid(), task_team, team->t.t_id));
#if KMP_NESTED_HOT_TEAMS
          __kmp_free_task_team(master, task_team);
#endif
          team->t.t_task_team[tt_idx] = NULL;
        }
      }
    }

    // Reset pointer to parent team only for non-hot teams.
    team->t.t_parent = NULL;
    team->t.t_level = 0;
    team->t.t_active_level = 0;

    /* free the worker threads */
    for (f = 1; f < team->t.t_nproc; ++f) {
      KMP_DEBUG_ASSERT(team->t.t_threads[f]);
      __kmp_free_thread(team->t.t_threads[f]);
      team->t.t_threads[f] = NULL;
    }

    /* put the team back in the team pool */
    /* TODO limit size of team pool, call reap_team if pool too large */
    team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool);
    __kmp_team_pool = (volatile kmp_team_t *)team;
  } else { // Check if team was created for the masters in a teams construct
    // See if first worker is a CG root
    KMP_DEBUG_ASSERT(team->t.t_threads[1] &&
                     team->t.t_threads[1]->th.th_cg_roots);
    if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) {
      // Clean up the CG root nodes on workers so that this team can be re-used
      for (f = 1; f < team->t.t_nproc; ++f) {
        kmp_info_t *thr = team->t.t_threads[f];
        KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots &&
                         thr->th.th_cg_roots->cg_root == thr);
        // Pop current CG root off list
        kmp_cg_root_t *tmp = thr->th.th_cg_roots;
        thr->th.th_cg_roots = tmp->up;
        KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving"
                       " up to node %p. cg_nthreads was %d\n",
                       thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads));
        int i = tmp->cg_nthreads--;
        if (i == 1) {
          __kmp_free(tmp); // free CG if we are the last thread in it
        }
        // Restore current task's thread_limit from CG root
        if (thr->th.th_cg_roots)
          thr->th.th_current_task->td_icvs.thread_limit =
              thr->th.th_cg_roots->cg_thread_limit;
      }
    }
  }

  KMP_MB();
}

/* reap the team.  destroy it, reclaim all its resources and free its memory */
kmp_team_t *__kmp_reap_team(kmp_team_t *team) {
  kmp_team_t *next_pool = team->t.t_next_pool;

  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(team->t.t_dispatch);
  KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
  KMP_DEBUG_ASSERT(team->t.t_threads);
  KMP_DEBUG_ASSERT(team->t.t_argv);

  /* TODO clean the threads that are a part of this? */

  /* free stuff */
  __kmp_free_team_arrays(team);
  if (team->t.t_argv != &team->t.t_inline_argv[0])
    __kmp_free((void *)team->t.t_argv);
  __kmp_free(team);

  KMP_MB();
  return next_pool;
}

// Free the thread.  Don't reap it, just place it on the pool of available
// threads.
//
// Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid
// binding for the affinity mechanism to be useful.
//
// Now, we always keep the free list (__kmp_thread_pool) sorted by gtid.
// However, we want to avoid a potential performance problem by always
// scanning through the list to find the correct point at which to insert
// the thread (potential N**2 behavior).  To do this we keep track of the
// last place a thread struct was inserted (__kmp_thread_pool_insert_pt).
// With single-level parallelism, threads will always be added to the tail
// of the list, kept track of by __kmp_thread_pool_insert_pt.  With nested
// parallelism, all bets are off and we may need to scan through the entire
// free list.
//
// This change also has a potentially large performance benefit, for some
// applications.  Previously, as threads were freed from the hot team, they
// would be placed back on the free list in inverse order.  If the hot team
// grew back to it's original size, then the freed thread would be placed
// back on the hot team in reverse order.  This could cause bad cache
// locality problems on programs where the size of the hot team regularly
// grew and shrunk.
//
// Now, for single-level parallelism, the OMP tid is always == gtid.
void __kmp_free_thread(kmp_info_t *this_th) {
  int gtid;
  kmp_info_t **scan;

  KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n",
                __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid));

  KMP_DEBUG_ASSERT(this_th);

  // When moving thread to pool, switch thread to wait on own b_go flag, and
  // uninitialized (NULL team).
  int b;
  kmp_balign_t *balign = this_th->th.th_bar;
  for (b = 0; b < bs_last_barrier; ++b) {
    if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG)
      balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
    balign[b].bb.team = NULL;
    balign[b].bb.leaf_kids = 0;
  }
  this_th->th.th_task_state = 0;
  this_th->th.th_reap_state = KMP_SAFE_TO_REAP;

  /* put thread back on the free pool */
  TCW_PTR(this_th->th.th_team, NULL);
  TCW_PTR(this_th->th.th_root, NULL);
  TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */

  while (this_th->th.th_cg_roots) {
    this_th->th.th_cg_roots->cg_nthreads--;
    KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node"
                   " %p of thread  %p to %d\n",
                   this_th, this_th->th.th_cg_roots,
                   this_th->th.th_cg_roots->cg_root,
                   this_th->th.th_cg_roots->cg_nthreads));
    kmp_cg_root_t *tmp = this_th->th.th_cg_roots;
    if (tmp->cg_root == this_th) { // Thread is a cg_root
      KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0);
      KA_TRACE(
          5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp));
      this_th->th.th_cg_roots = tmp->up;
      __kmp_free(tmp);
    } else { // Worker thread
      if (tmp->cg_nthreads == 0) { // last thread leaves contention group
        __kmp_free(tmp);
      }
      this_th->th.th_cg_roots = NULL;
      break;
    }
  }

  /* If the implicit task assigned to this thread can be used by other threads
   * -> multiple threads can share the data and try to free the task at
   * __kmp_reap_thread at exit. This duplicate use of the task data can happen
   * with higher probability when hot team is disabled but can occurs even when
   * the hot team is enabled */
  __kmp_free_implicit_task(this_th);
  this_th->th.th_current_task = NULL;

  // If the __kmp_thread_pool_insert_pt is already past the new insert
  // point, then we need to re-scan the entire list.
  gtid = this_th->th.th_info.ds.ds_gtid;
  if (__kmp_thread_pool_insert_pt != NULL) {
    KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL);
    if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) {
      __kmp_thread_pool_insert_pt = NULL;
    }
  }

  // Scan down the list to find the place to insert the thread.
  // scan is the address of a link in the list, possibly the address of
  // __kmp_thread_pool itself.
  //
  // In the absence of nested parallelism, the for loop will have 0 iterations.
  if (__kmp_thread_pool_insert_pt != NULL) {
    scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool);
  } else {
    scan = CCAST(kmp_info_t **, &__kmp_thread_pool);
  }
  for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid);
       scan = &((*scan)->th.th_next_pool))
    ;

  // Insert the new element on the list, and set __kmp_thread_pool_insert_pt
  // to its address.
  TCW_PTR(this_th->th.th_next_pool, *scan);
  __kmp_thread_pool_insert_pt = *scan = this_th;
  KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) ||
                   (this_th->th.th_info.ds.ds_gtid <
                    this_th->th.th_next_pool->th.th_info.ds.ds_gtid));
  TCW_4(this_th->th.th_in_pool, TRUE);
  __kmp_suspend_initialize_thread(this_th);
  __kmp_lock_suspend_mx(this_th);
  if (this_th->th.th_active == TRUE) {
    KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
    this_th->th.th_active_in_pool = TRUE;
  }
#if KMP_DEBUG
  else {
    KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE);
  }
#endif
  __kmp_unlock_suspend_mx(this_th);

  TCW_4(__kmp_nth, __kmp_nth - 1);

#ifdef KMP_ADJUST_BLOCKTIME
  /* Adjust blocktime back to user setting or default if necessary */
  /* Middle initialization might never have occurred                */
  if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
    KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
    if (__kmp_nth <= __kmp_avail_proc) {
      __kmp_zero_bt = FALSE;
    }
  }
#endif /* KMP_ADJUST_BLOCKTIME */

  KMP_MB();
}

/* ------------------------------------------------------------------------ */

void *__kmp_launch_thread(kmp_info_t *this_thr) {
  int gtid = this_thr->th.th_info.ds.ds_gtid;
  /*    void                 *stack_data;*/
  kmp_team_t **volatile pteam;

  KMP_MB();
  KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid));

  if (__kmp_env_consistency_check) {
    this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak?
  }

#if OMPT_SUPPORT
  ompt_data_t *thread_data;
  if (ompt_enabled.enabled) {
    thread_data = &(this_thr->th.ompt_thread_info.thread_data);
    *thread_data = ompt_data_none;

    this_thr->th.ompt_thread_info.state = ompt_state_overhead;
    this_thr->th.ompt_thread_info.wait_id = 0;
    this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0);
    this_thr->th.ompt_thread_info.parallel_flags = 0;
    if (ompt_enabled.ompt_callback_thread_begin) {
      ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
          ompt_thread_worker, thread_data);
    }
    this_thr->th.ompt_thread_info.state = ompt_state_idle;
  }
#endif

  /* This is the place where threads wait for work */
  while (!TCR_4(__kmp_global.g.g_done)) {
    KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]);
    KMP_MB();

    /* wait for work to do */
    KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid));

    /* No tid yet since not part of a team */
    __kmp_fork_barrier(gtid, KMP_GTID_DNE);

#if OMPT_SUPPORT
    if (ompt_enabled.enabled) {
      this_thr->th.ompt_thread_info.state = ompt_state_overhead;
    }
#endif

    pteam = &this_thr->th.th_team;

    /* have we been allocated? */
    if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) {
      /* we were just woken up, so run our new task */
      if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) {
        int rc;
        KA_TRACE(20,
                 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n",
                  gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
                  (*pteam)->t.t_pkfn));

        updateHWFPControl(*pteam);

#if OMPT_SUPPORT
        if (ompt_enabled.enabled) {
          this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
        }
#endif

        rc = (*pteam)->t.t_invoke(gtid);
        KMP_ASSERT(rc);

        KMP_MB();
        KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n",
                      gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
                      (*pteam)->t.t_pkfn));
      }
#if OMPT_SUPPORT
      if (ompt_enabled.enabled) {
        /* no frame set while outside task */
        __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none;

        this_thr->th.ompt_thread_info.state = ompt_state_overhead;
      }
#endif
      /* join barrier after parallel region */
      __kmp_join_barrier(gtid);
    }
  }
  TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done);

#if OMPT_SUPPORT
  if (ompt_enabled.ompt_callback_thread_end) {
    ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data);
  }
#endif

  this_thr->th.th_task_team = NULL;
  /* run the destructors for the threadprivate data for this thread */
  __kmp_common_destroy_gtid(gtid);

  KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid));
  KMP_MB();
  return this_thr;
}

/* ------------------------------------------------------------------------ */

void __kmp_internal_end_dest(void *specific_gtid) {
#if KMP_COMPILER_ICC
#pragma warning(push)
#pragma warning(disable : 810) // conversion from "void *" to "int" may lose
// significant bits
#endif
  // Make sure no significant bits are lost
  int gtid = (kmp_intptr_t)specific_gtid - 1;
#if KMP_COMPILER_ICC
#pragma warning(pop)
#endif

  KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid));
  /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage
   * this is because 0 is reserved for the nothing-stored case */

  /* josh: One reason for setting the gtid specific data even when it is being
     destroyed by pthread is to allow gtid lookup through thread specific data
     (__kmp_gtid_get_specific).  Some of the code, especially stat code,
     that gets executed in the call to __kmp_internal_end_thread, actually
     gets the gtid through the thread specific data.  Setting it here seems
     rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread
     to run smoothly.
     todo: get rid of this after we remove the dependence on
     __kmp_gtid_get_specific  */
  if (gtid >= 0 && KMP_UBER_GTID(gtid))
    __kmp_gtid_set_specific(gtid);
#ifdef KMP_TDATA_GTID
  __kmp_gtid = gtid;
#endif
  __kmp_internal_end_thread(gtid);
}

#if KMP_OS_UNIX && KMP_DYNAMIC_LIB

__attribute__((destructor)) void __kmp_internal_end_dtor(void) {
  __kmp_internal_end_atexit();
}

#endif

/* [Windows] josh: when the atexit handler is called, there may still be more
   than one thread alive */
void __kmp_internal_end_atexit(void) {
  KA_TRACE(30, ("__kmp_internal_end_atexit\n"));
  /* [Windows]
     josh: ideally, we want to completely shutdown the library in this atexit
     handler, but stat code that depends on thread specific data for gtid fails
     because that data becomes unavailable at some point during the shutdown, so
     we call __kmp_internal_end_thread instead. We should eventually remove the
     dependency on __kmp_get_specific_gtid in the stat code and use
     __kmp_internal_end_library to cleanly shutdown the library.

     // TODO: Can some of this comment about GVS be removed?
     I suspect that the offending stat code is executed when the calling thread
     tries to clean up a dead root thread's data structures, resulting in GVS
     code trying to close the GVS structures for that thread, but since the stat
     code uses __kmp_get_specific_gtid to get the gtid with the assumption that
     the calling thread is cleaning up itself instead of another thread, it get
     confused. This happens because allowing a thread to unregister and cleanup
     another thread is a recent modification for addressing an issue.
     Based on the current design (20050722), a thread may end up
     trying to unregister another thread only if thread death does not trigger
     the calling of __kmp_internal_end_thread.  For Linux* OS, there is the
     thread specific data destructor function to detect thread death. For
     Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there
     is nothing.  Thus, the workaround is applicable only for Windows static
     stat library. */
  __kmp_internal_end_library(-1);
#if KMP_OS_WINDOWS
  __kmp_close_console();
#endif
}

static void __kmp_reap_thread(kmp_info_t *thread, int is_root) {
  // It is assumed __kmp_forkjoin_lock is acquired.

  int gtid;

  KMP_DEBUG_ASSERT(thread != NULL);

  gtid = thread->th.th_info.ds.ds_gtid;

  if (!is_root) {
    if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
      /* Assume the threads are at the fork barrier here */
      KA_TRACE(
          20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n",
               gtid));
      /* Need release fence here to prevent seg faults for tree forkjoin barrier
       * (GEH) */
      ANNOTATE_HAPPENS_BEFORE(thread);
      kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread);
      __kmp_release_64(&flag);
    }

    // Terminate OS thread.
    __kmp_reap_worker(thread);

    // The thread was killed asynchronously.  If it was actively
    // spinning in the thread pool, decrement the global count.
    //
    // There is a small timing hole here - if the worker thread was just waking
    // up after sleeping in the pool, had reset it's th_active_in_pool flag but
    // not decremented the global counter __kmp_thread_pool_active_nth yet, then
    // the global counter might not get updated.
    //
    // Currently, this can only happen as the library is unloaded,
    // so there are no harmful side effects.
    if (thread->th.th_active_in_pool) {
      thread->th.th_active_in_pool = FALSE;
      KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
      KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0);
    }
  }

  __kmp_free_implicit_task(thread);

// Free the fast memory for tasking
#if USE_FAST_MEMORY
  __kmp_free_fast_memory(thread);
#endif /* USE_FAST_MEMORY */

  __kmp_suspend_uninitialize_thread(thread);

  KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread);
  TCW_SYNC_PTR(__kmp_threads[gtid], NULL);

  --__kmp_all_nth;
// __kmp_nth was decremented when thread is added to the pool.

#ifdef KMP_ADJUST_BLOCKTIME
  /* Adjust blocktime back to user setting or default if necessary */
  /* Middle initialization might never have occurred                */
  if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
    KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
    if (__kmp_nth <= __kmp_avail_proc) {
      __kmp_zero_bt = FALSE;
    }
  }
#endif /* KMP_ADJUST_BLOCKTIME */

  /* free the memory being used */
  if (__kmp_env_consistency_check) {
    if (thread->th.th_cons) {
      __kmp_free_cons_stack(thread->th.th_cons);
      thread->th.th_cons = NULL;
    }
  }

  if (thread->th.th_pri_common != NULL) {
    __kmp_free(thread->th.th_pri_common);
    thread->th.th_pri_common = NULL;
  }

  if (thread->th.th_task_state_memo_stack != NULL) {
    __kmp_free(thread->th.th_task_state_memo_stack);
    thread->th.th_task_state_memo_stack = NULL;
  }

#if KMP_USE_BGET
  if (thread->th.th_local.bget_data != NULL) {
    __kmp_finalize_bget(thread);
  }
#endif

#if KMP_AFFINITY_SUPPORTED
  if (thread->th.th_affin_mask != NULL) {
    KMP_CPU_FREE(thread->th.th_affin_mask);
    thread->th.th_affin_mask = NULL;
  }
#endif /* KMP_AFFINITY_SUPPORTED */

#if KMP_USE_HIER_SCHED
  if (thread->th.th_hier_bar_data != NULL) {
    __kmp_free(thread->th.th_hier_bar_data);
    thread->th.th_hier_bar_data = NULL;
  }
#endif

  __kmp_reap_team(thread->th.th_serial_team);
  thread->th.th_serial_team = NULL;
  __kmp_free(thread);

  KMP_MB();

} // __kmp_reap_thread

static void __kmp_internal_end(void) {
  int i;

  /* First, unregister the library */
  __kmp_unregister_library();

#if KMP_OS_WINDOWS
  /* In Win static library, we can't tell when a root actually dies, so we
     reclaim the data structures for any root threads that have died but not
     unregistered themselves, in order to shut down cleanly.
     In Win dynamic library we also can't tell when a thread dies.  */
  __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of
// dead roots
#endif

  for (i = 0; i < __kmp_threads_capacity; i++)
    if (__kmp_root[i])
      if (__kmp_root[i]->r.r_active)
        break;
  KMP_MB(); /* Flush all pending memory write invalidates.  */
  TCW_SYNC_4(__kmp_global.g.g_done, TRUE);

  if (i < __kmp_threads_capacity) {
#if KMP_USE_MONITOR
    // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor??
    KMP_MB(); /* Flush all pending memory write invalidates.  */

    // Need to check that monitor was initialized before reaping it. If we are
    // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then
    // __kmp_monitor will appear to contain valid data, but it is only valid in
    // the parent process, not the child.
    // New behavior (201008): instead of keying off of the flag
    // __kmp_init_parallel, the monitor thread creation is keyed off
    // of the new flag __kmp_init_monitor.
    __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
    if (TCR_4(__kmp_init_monitor)) {
      __kmp_reap_monitor(&__kmp_monitor);
      TCW_4(__kmp_init_monitor, 0);
    }
    __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
    KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
#endif // KMP_USE_MONITOR
  } else {
/* TODO move this to cleanup code */
#ifdef KMP_DEBUG
    /* make sure that everything has properly ended */
    for (i = 0; i < __kmp_threads_capacity; i++) {
      if (__kmp_root[i]) {
        //                    KMP_ASSERT( ! KMP_UBER_GTID( i ) );         // AC:
        //                    there can be uber threads alive here
        KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active?
      }
    }
#endif

    KMP_MB();

    // Reap the worker threads.
    // This is valid for now, but be careful if threads are reaped sooner.
    while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool.
      // Get the next thread from the pool.
      kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool);
      __kmp_thread_pool = thread->th.th_next_pool;
      // Reap it.
      KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP);
      thread->th.th_next_pool = NULL;
      thread->th.th_in_pool = FALSE;
      __kmp_reap_thread(thread, 0);
    }
    __kmp_thread_pool_insert_pt = NULL;

    // Reap teams.
    while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool.
      // Get the next team from the pool.
      kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool);
      __kmp_team_pool = team->t.t_next_pool;
      // Reap it.
      team->t.t_next_pool = NULL;
      __kmp_reap_team(team);
    }

    __kmp_reap_task_teams();

#if KMP_OS_UNIX
    // Threads that are not reaped should not access any resources since they
    // are going to be deallocated soon, so the shutdown sequence should wait
    // until all threads either exit the final spin-waiting loop or begin
    // sleeping after the given blocktime.
    for (i = 0; i < __kmp_threads_capacity; i++) {
      kmp_info_t *thr = __kmp_threads[i];
      while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking))
        KMP_CPU_PAUSE();
    }
#endif

    for (i = 0; i < __kmp_threads_capacity; ++i) {
      // TBD: Add some checking...
      // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL );
    }

    /* Make sure all threadprivate destructors get run by joining with all
       worker threads before resetting this flag */
    TCW_SYNC_4(__kmp_init_common, FALSE);

    KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n"));
    KMP_MB();

#if KMP_USE_MONITOR
    // See note above: One of the possible fixes for CQ138434 / CQ140126
    //
    // FIXME: push both code fragments down and CSE them?
    // push them into __kmp_cleanup() ?
    __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
    if (TCR_4(__kmp_init_monitor)) {
      __kmp_reap_monitor(&__kmp_monitor);
      TCW_4(__kmp_init_monitor, 0);
    }
    __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
    KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
#endif
  } /* else !__kmp_global.t_active */
  TCW_4(__kmp_init_gtid, FALSE);
  KMP_MB(); /* Flush all pending memory write invalidates.  */

  __kmp_cleanup();
#if OMPT_SUPPORT
  ompt_fini();
#endif
}

void __kmp_internal_end_library(int gtid_req) {
  /* if we have already cleaned up, don't try again, it wouldn't be pretty */
  /* this shouldn't be a race condition because __kmp_internal_end() is the
     only place to clear __kmp_serial_init */
  /* we'll check this later too, after we get the lock */
  // 2009-09-06: We do not set g_abort without setting g_done. This check looks
  // redundant, because the next check will work in any case.
  if (__kmp_global.g.g_abort) {
    KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n"));
    /* TODO abort? */
    return;
  }
  if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
    KA_TRACE(10, ("__kmp_internal_end_library: already finished\n"));
    return;
  }

  KMP_MB(); /* Flush all pending memory write invalidates.  */

  /* find out who we are and what we should do */
  {
    int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
    KA_TRACE(
        10, ("__kmp_internal_end_library: enter T#%d  (%d)\n", gtid, gtid_req));
    if (gtid == KMP_GTID_SHUTDOWN) {
      KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system "
                    "already shutdown\n"));
      return;
    } else if (gtid == KMP_GTID_MONITOR) {
      KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not "
                    "registered, or system shutdown\n"));
      return;
    } else if (gtid == KMP_GTID_DNE) {
      KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system "
                    "shutdown\n"));
      /* we don't know who we are, but we may still shutdown the library */
    } else if (KMP_UBER_GTID(gtid)) {
      /* unregister ourselves as an uber thread.  gtid is no longer valid */
      if (__kmp_root[gtid]->r.r_active) {
        __kmp_global.g.g_abort = -1;
        TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
        KA_TRACE(10,
                 ("__kmp_internal_end_library: root still active, abort T#%d\n",
                  gtid));
        return;
      } else {
        KA_TRACE(
            10,
            ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid));
        __kmp_unregister_root_current_thread(gtid);
      }
    } else {
/* worker threads may call this function through the atexit handler, if they
 * call exit() */
/* For now, skip the usual subsequent processing and just dump the debug buffer.
   TODO: do a thorough shutdown instead */
#ifdef DUMP_DEBUG_ON_EXIT
      if (__kmp_debug_buf)
        __kmp_dump_debug_buffer();
#endif
      return;
    }
  }
  /* synchronize the termination process */
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);

  /* have we already finished */
  if (__kmp_global.g.g_abort) {
    KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n"));
    /* TODO abort? */
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }
  if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }

  /* We need this lock to enforce mutex between this reading of
     __kmp_threads_capacity and the writing by __kmp_register_root.
     Alternatively, we can use a counter of roots that is atomically updated by
     __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
     __kmp_internal_end_*.  */
  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);

  /* now we can safely conduct the actual termination */
  __kmp_internal_end();

  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
  __kmp_release_bootstrap_lock(&__kmp_initz_lock);

  KA_TRACE(10, ("__kmp_internal_end_library: exit\n"));

#ifdef DUMP_DEBUG_ON_EXIT
  if (__kmp_debug_buf)
    __kmp_dump_debug_buffer();
#endif

#if KMP_OS_WINDOWS
  __kmp_close_console();
#endif

  __kmp_fini_allocator();

} // __kmp_internal_end_library

void __kmp_internal_end_thread(int gtid_req) {
  int i;

  /* if we have already cleaned up, don't try again, it wouldn't be pretty */
  /* this shouldn't be a race condition because __kmp_internal_end() is the
   * only place to clear __kmp_serial_init */
  /* we'll check this later too, after we get the lock */
  // 2009-09-06: We do not set g_abort without setting g_done. This check looks
  // redundant, because the next check will work in any case.
  if (__kmp_global.g.g_abort) {
    KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n"));
    /* TODO abort? */
    return;
  }
  if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
    KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n"));
    return;
  }

  KMP_MB(); /* Flush all pending memory write invalidates.  */

  /* find out who we are and what we should do */
  {
    int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
    KA_TRACE(10,
             ("__kmp_internal_end_thread: enter T#%d  (%d)\n", gtid, gtid_req));
    if (gtid == KMP_GTID_SHUTDOWN) {
      KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system "
                    "already shutdown\n"));
      return;
    } else if (gtid == KMP_GTID_MONITOR) {
      KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not "
                    "registered, or system shutdown\n"));
      return;
    } else if (gtid == KMP_GTID_DNE) {
      KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system "
                    "shutdown\n"));
      return;
      /* we don't know who we are */
    } else if (KMP_UBER_GTID(gtid)) {
      /* unregister ourselves as an uber thread.  gtid is no longer valid */
      if (__kmp_root[gtid]->r.r_active) {
        __kmp_global.g.g_abort = -1;
        TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
        KA_TRACE(10,
                 ("__kmp_internal_end_thread: root still active, abort T#%d\n",
                  gtid));
        return;
      } else {
        KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n",
                      gtid));
        __kmp_unregister_root_current_thread(gtid);
      }
    } else {
      /* just a worker thread, let's leave */
      KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid));

      if (gtid >= 0) {
        __kmp_threads[gtid]->th.th_task_team = NULL;
      }

      KA_TRACE(10,
               ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n",
                gtid));
      return;
    }
  }
#if KMP_DYNAMIC_LIB
  if (__kmp_pause_status != kmp_hard_paused)
  // AC: lets not shutdown the dynamic library at the exit of uber thread,
  // because we will better shutdown later in the library destructor.
  {
    KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req));
    return;
  }
#endif
  /* synchronize the termination process */
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);

  /* have we already finished */
  if (__kmp_global.g.g_abort) {
    KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n"));
    /* TODO abort? */
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }
  if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }

  /* We need this lock to enforce mutex between this reading of
     __kmp_threads_capacity and the writing by __kmp_register_root.
     Alternatively, we can use a counter of roots that is atomically updated by
     __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
     __kmp_internal_end_*.  */

  /* should we finish the run-time?  are all siblings done? */
  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);

  for (i = 0; i < __kmp_threads_capacity; ++i) {
    if (KMP_UBER_GTID(i)) {
      KA_TRACE(
          10,
          ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i));
      __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
      __kmp_release_bootstrap_lock(&__kmp_initz_lock);
      return;
    }
  }

  /* now we can safely conduct the actual termination */

  __kmp_internal_end();

  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
  __kmp_release_bootstrap_lock(&__kmp_initz_lock);

  KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req));

#ifdef DUMP_DEBUG_ON_EXIT
  if (__kmp_debug_buf)
    __kmp_dump_debug_buffer();
#endif
} // __kmp_internal_end_thread

// -----------------------------------------------------------------------------
// Library registration stuff.

static long __kmp_registration_flag = 0;
// Random value used to indicate library initialization.
static char *__kmp_registration_str = NULL;
// Value to be saved in env var __KMP_REGISTERED_LIB_<pid>.

static inline char *__kmp_reg_status_name() {
  /* On RHEL 3u5 if linked statically, getpid() returns different values in
     each thread. If registration and unregistration go in different threads
     (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env
     env var can not be found, because the name will contain different pid. */
  return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid());
} // __kmp_reg_status_get

void __kmp_register_library_startup(void) {

  char *name = __kmp_reg_status_name(); // Name of the environment variable.
  int done = 0;
  union {
    double dtime;
    long ltime;
  } time;
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
  __kmp_initialize_system_tick();
#endif
  __kmp_read_system_time(&time.dtime);
  __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL);
  __kmp_registration_str =
      __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag,
                       __kmp_registration_flag, KMP_LIBRARY_FILE);

  KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name,
                __kmp_registration_str));

  while (!done) {

    char *value = NULL; // Actual value of the environment variable.

    // Set environment variable, but do not overwrite if it is exist.
    __kmp_env_set(name, __kmp_registration_str, 0);
    // Check the variable is written.
    value = __kmp_env_get(name);
    if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {

      done = 1; // Ok, environment variable set successfully, exit the loop.

    } else {

      // Oops. Write failed. Another copy of OpenMP RTL is in memory.
      // Check whether it alive or dead.
      int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead.
      char *tail = value;
      char *flag_addr_str = NULL;
      char *flag_val_str = NULL;
      char const *file_name = NULL;
      __kmp_str_split(tail, '-', &flag_addr_str, &tail);
      __kmp_str_split(tail, '-', &flag_val_str, &tail);
      file_name = tail;
      if (tail != NULL) {
        long *flag_addr = 0;
        long flag_val = 0;
        KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr));
        KMP_SSCANF(flag_val_str, "%lx", &flag_val);
        if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) {
          // First, check whether environment-encoded address is mapped into
          // addr space.
          // If so, dereference it to see if it still has the right value.
          if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) {
            neighbor = 1;
          } else {
            // If not, then we know the other copy of the library is no longer
            // running.
            neighbor = 2;
          }
        }
      }
      switch (neighbor) {
      case 0: // Cannot parse environment variable -- neighbor status unknown.
        // Assume it is the incompatible format of future version of the
        // library. Assume the other library is alive.
        // WARN( ... ); // TODO: Issue a warning.
        file_name = "unknown library";
        KMP_FALLTHROUGH();
      // Attention! Falling to the next case. That's intentional.
      case 1: { // Neighbor is alive.
        // Check it is allowed.
        char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK");
        if (!__kmp_str_match_true(duplicate_ok)) {
          // That's not allowed. Issue fatal error.
          __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name),
                      KMP_HNT(DuplicateLibrary), __kmp_msg_null);
        }
        KMP_INTERNAL_FREE(duplicate_ok);
        __kmp_duplicate_library_ok = 1;
        done = 1; // Exit the loop.
      } break;
      case 2: { // Neighbor is dead.
        // Clear the variable and try to register library again.
        __kmp_env_unset(name);
      } break;
      default: { KMP_DEBUG_ASSERT(0); } break;
      }
    }
    KMP_INTERNAL_FREE((void *)value);
  }
  KMP_INTERNAL_FREE((void *)name);

} // func __kmp_register_library_startup

void __kmp_unregister_library(void) {

  char *name = __kmp_reg_status_name();
  char *value = __kmp_env_get(name);

  KMP_DEBUG_ASSERT(__kmp_registration_flag != 0);
  KMP_DEBUG_ASSERT(__kmp_registration_str != NULL);
  if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {
    // Ok, this is our variable. Delete it.
    __kmp_env_unset(name);
  }

  KMP_INTERNAL_FREE(__kmp_registration_str);
  KMP_INTERNAL_FREE(value);
  KMP_INTERNAL_FREE(name);

  __kmp_registration_flag = 0;
  __kmp_registration_str = NULL;

} // __kmp_unregister_library

// End of Library registration stuff.
// -----------------------------------------------------------------------------

#if KMP_MIC_SUPPORTED

static void __kmp_check_mic_type() {
  kmp_cpuid_t cpuid_state = {0};
  kmp_cpuid_t *cs_p = &cpuid_state;
  __kmp_x86_cpuid(1, 0, cs_p);
  // We don't support mic1 at the moment
  if ((cs_p->eax & 0xff0) == 0xB10) {
    __kmp_mic_type = mic2;
  } else if ((cs_p->eax & 0xf0ff0) == 0x50670) {
    __kmp_mic_type = mic3;
  } else {
    __kmp_mic_type = non_mic;
  }
}

#endif /* KMP_MIC_SUPPORTED */

static void __kmp_do_serial_initialize(void) {
  int i, gtid;
  int size;

  KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n"));

  KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4);
  KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4);
  KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8);
  KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8);
  KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *));

#if OMPT_SUPPORT
  ompt_pre_init();
#endif

  __kmp_validate_locks();

  /* Initialize internal memory allocator */
  __kmp_init_allocator();

  /* Register the library startup via an environment variable and check to see
     whether another copy of the library is already registered. */

  __kmp_register_library_startup();

  /* TODO reinitialization of library */
  if (TCR_4(__kmp_global.g.g_done)) {
    KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n"));
  }

  __kmp_global.g.g_abort = 0;
  TCW_SYNC_4(__kmp_global.g.g_done, FALSE);

/* initialize the locks */
#if KMP_USE_ADAPTIVE_LOCKS
#if KMP_DEBUG_ADAPTIVE_LOCKS
  __kmp_init_speculative_stats();
#endif
#endif
#if KMP_STATS_ENABLED
  __kmp_stats_init();
#endif
  __kmp_init_lock(&__kmp_global_lock);
  __kmp_init_queuing_lock(&__kmp_dispatch_lock);
  __kmp_init_lock(&__kmp_debug_lock);
  __kmp_init_atomic_lock(&__kmp_atomic_lock);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_1i);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_2i);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_4i);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_4r);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_8i);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_8r);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_8c);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_10r);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_16r);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_16c);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_20c);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_32c);
  __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock);
  __kmp_init_bootstrap_lock(&__kmp_exit_lock);
#if KMP_USE_MONITOR
  __kmp_init_bootstrap_lock(&__kmp_monitor_lock);
#endif
  __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock);

  /* conduct initialization and initial setup of configuration */

  __kmp_runtime_initialize();

#if KMP_MIC_SUPPORTED
  __kmp_check_mic_type();
#endif

// Some global variable initialization moved here from kmp_env_initialize()
#ifdef KMP_DEBUG
  kmp_diag = 0;
#endif
  __kmp_abort_delay = 0;

  // From __kmp_init_dflt_team_nth()
  /* assume the entire machine will be used */
  __kmp_dflt_team_nth_ub = __kmp_xproc;
  if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) {
    __kmp_dflt_team_nth_ub = KMP_MIN_NTH;
  }
  if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) {
    __kmp_dflt_team_nth_ub = __kmp_sys_max_nth;
  }
  __kmp_max_nth = __kmp_sys_max_nth;
  __kmp_cg_max_nth = __kmp_sys_max_nth;
  __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default
  if (__kmp_teams_max_nth > __kmp_sys_max_nth) {
    __kmp_teams_max_nth = __kmp_sys_max_nth;
  }

  // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME"
  // part
  __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME;
#if KMP_USE_MONITOR
  __kmp_monitor_wakeups =
      KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
  __kmp_bt_intervals =
      KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
#endif
  // From "KMP_LIBRARY" part of __kmp_env_initialize()
  __kmp_library = library_throughput;
  // From KMP_SCHEDULE initialization
  __kmp_static = kmp_sch_static_balanced;
// AC: do not use analytical here, because it is non-monotonous
//__kmp_guided = kmp_sch_guided_iterative_chunked;
//__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no
// need to repeat assignment
// Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch
// bit control and barrier method control parts
#if KMP_FAST_REDUCTION_BARRIER
#define kmp_reduction_barrier_gather_bb ((int)1)
#define kmp_reduction_barrier_release_bb ((int)1)
#define kmp_reduction_barrier_gather_pat bp_hyper_bar
#define kmp_reduction_barrier_release_pat bp_hyper_bar
#endif // KMP_FAST_REDUCTION_BARRIER
  for (i = bs_plain_barrier; i < bs_last_barrier; i++) {
    __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt;
    __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt;
    __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt;
    __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt;
#if KMP_FAST_REDUCTION_BARRIER
    if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only (
      // lin_64 ): hyper,1
      __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb;
      __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb;
      __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat;
      __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat;
    }
#endif // KMP_FAST_REDUCTION_BARRIER
  }
#if KMP_FAST_REDUCTION_BARRIER
#undef kmp_reduction_barrier_release_pat
#undef kmp_reduction_barrier_gather_pat
#undef kmp_reduction_barrier_release_bb
#undef kmp_reduction_barrier_gather_bb
#endif // KMP_FAST_REDUCTION_BARRIER
#if KMP_MIC_SUPPORTED
  if (__kmp_mic_type == mic2) { // KNC
    // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC
    __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather
    __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] =
        1; // forkjoin release
    __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
    __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
  }
#if KMP_FAST_REDUCTION_BARRIER
  if (__kmp_mic_type == mic2) { // KNC
    __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
    __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
  }
#endif // KMP_FAST_REDUCTION_BARRIER
#endif // KMP_MIC_SUPPORTED

// From KMP_CHECKS initialization
#ifdef KMP_DEBUG
  __kmp_env_checks = TRUE; /* development versions have the extra checks */
#else
  __kmp_env_checks = FALSE; /* port versions do not have the extra checks */
#endif

  // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization
  __kmp_foreign_tp = TRUE;

  __kmp_global.g.g_dynamic = FALSE;
  __kmp_global.g.g_dynamic_mode = dynamic_default;

  __kmp_env_initialize(NULL);

// Print all messages in message catalog for testing purposes.
#ifdef KMP_DEBUG
  char const *val = __kmp_env_get("KMP_DUMP_CATALOG");
  if (__kmp_str_match_true(val)) {
    kmp_str_buf_t buffer;
    __kmp_str_buf_init(&buffer);
    __kmp_i18n_dump_catalog(&buffer);
    __kmp_printf("%s", buffer.str);
    __kmp_str_buf_free(&buffer);
  }
  __kmp_env_free(&val);
#endif

  __kmp_threads_capacity =
      __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub);
  // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part
  __kmp_tp_capacity = __kmp_default_tp_capacity(
      __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified);

  // If the library is shut down properly, both pools must be NULL. Just in
  // case, set them to NULL -- some memory may leak, but subsequent code will
  // work even if pools are not freed.
  KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL);
  KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL);
  KMP_DEBUG_ASSERT(__kmp_team_pool == NULL);
  __kmp_thread_pool = NULL;
  __kmp_thread_pool_insert_pt = NULL;
  __kmp_team_pool = NULL;

  /* Allocate all of the variable sized records */
  /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are
   * expandable */
  /* Since allocation is cache-aligned, just add extra padding at the end */
  size =
      (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity +
      CACHE_LINE;
  __kmp_threads = (kmp_info_t **)__kmp_allocate(size);
  __kmp_root = (kmp_root_t **)((char *)__kmp_threads +
                               sizeof(kmp_info_t *) * __kmp_threads_capacity);

  /* init thread counts */
  KMP_DEBUG_ASSERT(__kmp_all_nth ==
                   0); // Asserts fail if the library is reinitializing and
  KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination.
  __kmp_all_nth = 0;
  __kmp_nth = 0;

  /* setup the uber master thread and hierarchy */
  gtid = __kmp_register_root(TRUE);
  KA_TRACE(10, ("__kmp_do_serial_initialize  T#%d\n", gtid));
  KMP_ASSERT(KMP_UBER_GTID(gtid));
  KMP_ASSERT(KMP_INITIAL_GTID(gtid));

  KMP_MB(); /* Flush all pending memory write invalidates.  */

  __kmp_common_initialize();

#if KMP_OS_UNIX
  /* invoke the child fork handler */
  __kmp_register_atfork();
#endif

#if !KMP_DYNAMIC_LIB
  {
    /* Invoke the exit handler when the program finishes, only for static
       library. For dynamic library, we already have _fini and DllMain. */
    int rc = atexit(__kmp_internal_end_atexit);
    if (rc != 0) {
      __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc),
                  __kmp_msg_null);
    }
  }
#endif

#if KMP_HANDLE_SIGNALS
#if KMP_OS_UNIX
  /* NOTE: make sure that this is called before the user installs their own
     signal handlers so that the user handlers are called first. this way they
     can return false, not call our handler, avoid terminating the library, and
     continue execution where they left off. */
  __kmp_install_signals(FALSE);
#endif /* KMP_OS_UNIX */
#if KMP_OS_WINDOWS
  __kmp_install_signals(TRUE);
#endif /* KMP_OS_WINDOWS */
#endif

  /* we have finished the serial initialization */
  __kmp_init_counter++;

  __kmp_init_serial = TRUE;

  if (__kmp_settings) {
    __kmp_env_print();
  }

  if (__kmp_display_env || __kmp_display_env_verbose) {
    __kmp_env_print_2();
  }

#if OMPT_SUPPORT
  ompt_post_init();
#endif

  KMP_MB();

  KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n"));
}

void __kmp_serial_initialize(void) {
  if (__kmp_init_serial) {
    return;
  }
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
  if (__kmp_init_serial) {
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }
  __kmp_do_serial_initialize();
  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
}

static void __kmp_do_middle_initialize(void) {
  int i, j;
  int prev_dflt_team_nth;

  if (!__kmp_init_serial) {
    __kmp_do_serial_initialize();
  }

  KA_TRACE(10, ("__kmp_middle_initialize: enter\n"));

  // Save the previous value for the __kmp_dflt_team_nth so that
  // we can avoid some reinitialization if it hasn't changed.
  prev_dflt_team_nth = __kmp_dflt_team_nth;

#if KMP_AFFINITY_SUPPORTED
  // __kmp_affinity_initialize() will try to set __kmp_ncores to the
  // number of cores on the machine.
  __kmp_affinity_initialize();

  // Run through the __kmp_threads array and set the affinity mask
  // for each root thread that is currently registered with the RTL.
  for (i = 0; i < __kmp_threads_capacity; i++) {
    if (TCR_PTR(__kmp_threads[i]) != NULL) {
      __kmp_affinity_set_init_mask(i, TRUE);
    }
  }
#endif /* KMP_AFFINITY_SUPPORTED */

  KMP_ASSERT(__kmp_xproc > 0);
  if (__kmp_avail_proc == 0) {
    __kmp_avail_proc = __kmp_xproc;
  }

  // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3),
  // correct them now
  j = 0;
  while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) {
    __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub =
        __kmp_avail_proc;
    j++;
  }

  if (__kmp_dflt_team_nth == 0) {
#ifdef KMP_DFLT_NTH_CORES
    // Default #threads = #cores
    __kmp_dflt_team_nth = __kmp_ncores;
    KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
                  "__kmp_ncores (%d)\n",
                  __kmp_dflt_team_nth));
#else
    // Default #threads = #available OS procs
    __kmp_dflt_team_nth = __kmp_avail_proc;
    KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
                  "__kmp_avail_proc(%d)\n",
                  __kmp_dflt_team_nth));
#endif /* KMP_DFLT_NTH_CORES */
  }

  if (__kmp_dflt_team_nth < KMP_MIN_NTH) {
    __kmp_dflt_team_nth = KMP_MIN_NTH;
  }
  if (__kmp_dflt_team_nth > __kmp_sys_max_nth) {
    __kmp_dflt_team_nth = __kmp_sys_max_nth;
  }

  // There's no harm in continuing if the following check fails,
  // but it indicates an error in the previous logic.
  KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub);

  if (__kmp_dflt_team_nth != prev_dflt_team_nth) {
    // Run through the __kmp_threads array and set the num threads icv for each
    // root thread that is currently registered with the RTL (which has not
    // already explicitly set its nthreads-var with a call to
    // omp_set_num_threads()).
    for (i = 0; i < __kmp_threads_capacity; i++) {
      kmp_info_t *thread = __kmp_threads[i];
      if (thread == NULL)
        continue;
      if (thread->th.th_current_task->td_icvs.nproc != 0)
        continue;

      set__nproc(__kmp_threads[i], __kmp_dflt_team_nth);
    }
  }
  KA_TRACE(
      20,
      ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n",
       __kmp_dflt_team_nth));

#ifdef KMP_ADJUST_BLOCKTIME
  /* Adjust blocktime to zero if necessary  now that __kmp_avail_proc is set */
  if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
    KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
    if (__kmp_nth > __kmp_avail_proc) {
      __kmp_zero_bt = TRUE;
    }
  }
#endif /* KMP_ADJUST_BLOCKTIME */

  /* we have finished middle initialization */
  TCW_SYNC_4(__kmp_init_middle, TRUE);

  KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n"));
}

void __kmp_middle_initialize(void) {
  if (__kmp_init_middle) {
    return;
  }
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
  if (__kmp_init_middle) {
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }
  __kmp_do_middle_initialize();
  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
}

void __kmp_parallel_initialize(void) {
  int gtid = __kmp_entry_gtid(); // this might be a new root

  /* synchronize parallel initialization (for sibling) */
  if (TCR_4(__kmp_init_parallel))
    return;
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
  if (TCR_4(__kmp_init_parallel)) {
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }

  /* TODO reinitialization after we have already shut down */
  if (TCR_4(__kmp_global.g.g_done)) {
    KA_TRACE(
        10,
        ("__kmp_parallel_initialize: attempt to init while shutting down\n"));
    __kmp_infinite_loop();
  }

  /* jc: The lock __kmp_initz_lock is already held, so calling
     __kmp_serial_initialize would cause a deadlock.  So we call
     __kmp_do_serial_initialize directly. */
  if (!__kmp_init_middle) {
    __kmp_do_middle_initialize();
  }
  __kmp_resume_if_hard_paused();

  /* begin initialization */
  KA_TRACE(10, ("__kmp_parallel_initialize: enter\n"));
  KMP_ASSERT(KMP_UBER_GTID(gtid));

#if KMP_ARCH_X86 || KMP_ARCH_X86_64
  // Save the FP control regs.
  // Worker threads will set theirs to these values at thread startup.
  __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
  __kmp_store_mxcsr(&__kmp_init_mxcsr);
  __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK;
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */

#if KMP_OS_UNIX
#if KMP_HANDLE_SIGNALS
  /*  must be after __kmp_serial_initialize  */
  __kmp_install_signals(TRUE);
#endif
#endif

  __kmp_suspend_initialize();

#if defined(USE_LOAD_BALANCE)
  if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
    __kmp_global.g.g_dynamic_mode = dynamic_load_balance;
  }
#else
  if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
    __kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
  }
#endif

  if (__kmp_version) {
    __kmp_print_version_2();
  }

  /* we have finished parallel initialization */
  TCW_SYNC_4(__kmp_init_parallel, TRUE);

  KMP_MB();
  KA_TRACE(10, ("__kmp_parallel_initialize: exit\n"));

  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
}

/* ------------------------------------------------------------------------ */

void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
                                   kmp_team_t *team) {
  kmp_disp_t *dispatch;

  KMP_MB();

  /* none of the threads have encountered any constructs, yet. */
  this_thr->th.th_local.this_construct = 0;
#if KMP_CACHE_MANAGE
  KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived);
#endif /* KMP_CACHE_MANAGE */
  dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch);
  KMP_DEBUG_ASSERT(dispatch);
  KMP_DEBUG_ASSERT(team->t.t_dispatch);
  // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[
  // this_thr->th.th_info.ds.ds_tid ] );

  dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */
  dispatch->th_doacross_buf_idx = 0; // reset doacross dispatch buffer counter
  if (__kmp_env_consistency_check)
    __kmp_push_parallel(gtid, team->t.t_ident);

  KMP_MB(); /* Flush all pending memory write invalidates.  */
}

void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
                                  kmp_team_t *team) {
  if (__kmp_env_consistency_check)
    __kmp_pop_parallel(gtid, team->t.t_ident);

  __kmp_finish_implicit_task(this_thr);
}

int __kmp_invoke_task_func(int gtid) {
  int rc;
  int tid = __kmp_tid_from_gtid(gtid);
  kmp_info_t *this_thr = __kmp_threads[gtid];
  kmp_team_t *team = this_thr->th.th_team;

  __kmp_run_before_invoked_task(gtid, tid, this_thr, team);
#if USE_ITT_BUILD
  if (__itt_stack_caller_create_ptr) {
    __kmp_itt_stack_callee_enter(
        (__itt_caller)
            team->t.t_stack_id); // inform ittnotify about entering user's code
  }
#endif /* USE_ITT_BUILD */
#if INCLUDE_SSC_MARKS
  SSC_MARK_INVOKING();
#endif

#if OMPT_SUPPORT
  void *dummy;
  void **exit_frame_p;
  ompt_data_t *my_task_data;
  ompt_data_t *my_parallel_data;
  int ompt_team_size;

  if (ompt_enabled.enabled) {
    exit_frame_p = &(
        team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame.ptr);
  } else {
    exit_frame_p = &dummy;
  }

  my_task_data =
      &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data);
  my_parallel_data = &(team->t.ompt_team_info.parallel_data);
  if (ompt_enabled.ompt_callback_implicit_task) {
    ompt_team_size = team->t.t_nproc;
    ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
        ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size,
        __kmp_tid_from_gtid(gtid), ompt_task_implicit);
    OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid);
  }
#endif

#if KMP_STATS_ENABLED
  stats_state_e previous_state = KMP_GET_THREAD_STATE();
  if (previous_state == stats_state_e::TEAMS_REGION) {
    KMP_PUSH_PARTITIONED_TIMER(OMP_teams);
  } else {
    KMP_PUSH_PARTITIONED_TIMER(OMP_parallel);
  }
  KMP_SET_THREAD_STATE(IMPLICIT_TASK);
#endif

  rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid,
                              tid, (int)team->t.t_argc, (void **)team->t.t_argv
#if OMPT_SUPPORT
                              ,
                              exit_frame_p
#endif
                              );
#if OMPT_SUPPORT
  *exit_frame_p = NULL;
   this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_team;
#endif

#if KMP_STATS_ENABLED
  if (previous_state == stats_state_e::TEAMS_REGION) {
    KMP_SET_THREAD_STATE(previous_state);
  }
  KMP_POP_PARTITIONED_TIMER();
#endif

#if USE_ITT_BUILD
  if (__itt_stack_caller_create_ptr) {
    __kmp_itt_stack_callee_leave(
        (__itt_caller)
            team->t.t_stack_id); // inform ittnotify about leaving user's code
  }
#endif /* USE_ITT_BUILD */
  __kmp_run_after_invoked_task(gtid, tid, this_thr, team);

  return rc;
}

void __kmp_teams_master(int gtid) {
  // This routine is called by all master threads in teams construct
  kmp_info_t *thr = __kmp_threads[gtid];
  kmp_team_t *team = thr->th.th_team;
  ident_t *loc = team->t.t_ident;
  thr->th.th_set_nproc = thr->th.th_teams_size.nth;
  KMP_DEBUG_ASSERT(thr->th.th_teams_microtask);
  KMP_DEBUG_ASSERT(thr->th.th_set_nproc);
  KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid,
                __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask));

  // This thread is a new CG root.  Set up the proper variables.
  kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
  tmp->cg_root = thr; // Make thr the CG root
  // Init to thread limit that was stored when league masters were forked
  tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit;
  tmp->cg_nthreads = 1; // Init counter to one active thread, this one
  KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init"
                 " cg_nthreads to 1\n",
                 thr, tmp));
  tmp->up = thr->th.th_cg_roots;
  thr->th.th_cg_roots = tmp;

// Launch league of teams now, but not let workers execute
// (they hang on fork barrier until next parallel)
#if INCLUDE_SSC_MARKS
  SSC_MARK_FORKING();
#endif
  __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc,
                  (microtask_t)thr->th.th_teams_microtask, // "wrapped" task
                  VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL);
#if INCLUDE_SSC_MARKS
  SSC_MARK_JOINING();
#endif
  // If the team size was reduced from the limit, set it to the new size
  if (thr->th.th_team_nproc < thr->th.th_teams_size.nth)
    thr->th.th_teams_size.nth = thr->th.th_team_nproc;
  // AC: last parameter "1" eliminates join barrier which won't work because
  // worker threads are in a fork barrier waiting for more parallel regions
  __kmp_join_call(loc, gtid
#if OMPT_SUPPORT
                  ,
                  fork_context_intel
#endif
                  ,
                  1);
}

int __kmp_invoke_teams_master(int gtid) {
  kmp_info_t *this_thr = __kmp_threads[gtid];
  kmp_team_t *team = this_thr->th.th_team;
#if KMP_DEBUG
  if (!__kmp_threads[gtid]->th.th_team->t.t_serialized)
    KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn ==
                     (void *)__kmp_teams_master);
#endif
  __kmp_run_before_invoked_task(gtid, 0, this_thr, team);
#if OMPT_SUPPORT
  int tid = __kmp_tid_from_gtid(gtid);
  ompt_data_t *task_data =
      &team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data;
  ompt_data_t *parallel_data = &team->t.ompt_team_info.parallel_data;
  if (ompt_enabled.ompt_callback_implicit_task) {
    ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
        ompt_scope_begin, parallel_data, task_data, team->t.t_nproc, tid,
        ompt_task_initial);
    OMPT_CUR_TASK_INFO(this_thr)->thread_num = tid;
  }
#endif
  __kmp_teams_master(gtid);
#if OMPT_SUPPORT
  this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_league;
#endif
  __kmp_run_after_invoked_task(gtid, 0, this_thr, team);
  return 1;
}

/* this sets the requested number of threads for the next parallel region
   encountered by this team. since this should be enclosed in the forkjoin
   critical section it should avoid race conditions with asymmetrical nested
   parallelism */

void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) {
  kmp_info_t *thr = __kmp_threads[gtid];

  if (num_threads > 0)
    thr->th.th_set_nproc = num_threads;
}

/* this sets the requested number of teams for the teams region and/or
   the number of threads for the next parallel region encountered  */
void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams,
                          int num_threads) {
  kmp_info_t *thr = __kmp_threads[gtid];
  KMP_DEBUG_ASSERT(num_teams >= 0);
  KMP_DEBUG_ASSERT(num_threads >= 0);

  if (num_teams == 0)
    num_teams = 1; // default number of teams is 1.
  if (num_teams > __kmp_teams_max_nth) { // if too many teams requested?
    if (!__kmp_reserve_warn) {
      __kmp_reserve_warn = 1;
      __kmp_msg(kmp_ms_warning,
                KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth),
                KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
    }
    num_teams = __kmp_teams_max_nth;
  }
  // Set number of teams (number of threads in the outer "parallel" of the
  // teams)
  thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams;

  // Remember the number of threads for inner parallel regions
  if (!TCR_4(__kmp_init_middle))
    __kmp_middle_initialize(); // get internal globals calculated
  KMP_DEBUG_ASSERT(__kmp_avail_proc);
  KMP_DEBUG_ASSERT(__kmp_dflt_team_nth);
  if (num_threads == 0) {
    num_threads = __kmp_avail_proc / num_teams;
    // adjust num_threads w/o warning as it is not user setting
    // num_threads = min(num_threads, nthreads-var, thread-limit-var)
    // no thread_limit clause specified -  do not change thread-limit-var ICV
    if (num_threads > __kmp_dflt_team_nth) {
      num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV
    }
    if (num_threads > thr->th.th_current_task->td_icvs.thread_limit) {
      num_threads = thr->th.th_current_task->td_icvs.thread_limit;
    } // prevent team size to exceed thread-limit-var
    if (num_teams * num_threads > __kmp_teams_max_nth) {
      num_threads = __kmp_teams_max_nth / num_teams;
    }
  } else {
    // This thread will be the master of the league masters
    // Store new thread limit; old limit is saved in th_cg_roots list
    thr->th.th_current_task->td_icvs.thread_limit = num_threads;
    // num_threads = min(num_threads, nthreads-var)
    if (num_threads > __kmp_dflt_team_nth) {
      num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV
    }
    if (num_teams * num_threads > __kmp_teams_max_nth) {
      int new_threads = __kmp_teams_max_nth / num_teams;
      if (!__kmp_reserve_warn) { // user asked for too many threads
        __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT
        __kmp_msg(kmp_ms_warning,
                  KMP_MSG(CantFormThrTeam, num_threads, new_threads),
                  KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
      }
      num_threads = new_threads;
    }
  }
  thr->th.th_teams_size.nth = num_threads;
}

// Set the proc_bind var to use in the following parallel region.
void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) {
  kmp_info_t *thr = __kmp_threads[gtid];
  thr->th.th_set_proc_bind = proc_bind;
}

/* Launch the worker threads into the microtask. */

void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) {
  kmp_info_t *this_thr = __kmp_threads[gtid];

#ifdef KMP_DEBUG
  int f;
#endif /* KMP_DEBUG */

  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
  KMP_ASSERT(KMP_MASTER_GTID(gtid));
  KMP_MB(); /* Flush all pending memory write invalidates.  */

  team->t.t_construct = 0; /* no single directives seen yet */
  team->t.t_ordered.dt.t_value =
      0; /* thread 0 enters the ordered section first */

  /* Reset the identifiers on the dispatch buffer */
  KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
  if (team->t.t_max_nproc > 1) {
    int i;
    for (i = 0; i < __kmp_dispatch_num_buffers; ++i) {
      team->t.t_disp_buffer[i].buffer_index = i;
      team->t.t_disp_buffer[i].doacross_buf_idx = i;
    }
  } else {
    team->t.t_disp_buffer[0].buffer_index = 0;
    team->t.t_disp_buffer[0].doacross_buf_idx = 0;
  }

  KMP_MB(); /* Flush all pending memory write invalidates.  */
  KMP_ASSERT(this_thr->th.th_team == team);

#ifdef KMP_DEBUG
  for (f = 0; f < team->t.t_nproc; f++) {
    KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
                     team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc);
  }
#endif /* KMP_DEBUG */

  /* release the worker threads so they may begin working */
  __kmp_fork_barrier(gtid, 0);
}

void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) {
  kmp_info_t *this_thr = __kmp_threads[gtid];

  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
  KMP_ASSERT(KMP_MASTER_GTID(gtid));
  KMP_MB(); /* Flush all pending memory write invalidates.  */

/* Join barrier after fork */

#ifdef KMP_DEBUG
  if (__kmp_threads[gtid] &&
      __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) {
    __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid,
                 __kmp_threads[gtid]);
    __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, "
                 "team->t.t_nproc=%d\n",
                 gtid, __kmp_threads[gtid]->th.th_team_nproc, team,
                 team->t.t_nproc);
    __kmp_print_structure();
  }
  KMP_DEBUG_ASSERT(__kmp_threads[gtid] &&
                   __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc);
#endif /* KMP_DEBUG */

  __kmp_join_barrier(gtid); /* wait for everyone */
#if OMPT_SUPPORT
  if (ompt_enabled.enabled &&
      this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) {
    int ds_tid = this_thr->th.th_info.ds.ds_tid;
    ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr);
    this_thr->th.ompt_thread_info.state = ompt_state_overhead;
#if OMPT_OPTIONAL
    void *codeptr = NULL;
    if (KMP_MASTER_TID(ds_tid) &&
        (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) ||
         ompt_callbacks.ompt_callback(ompt_callback_sync_region)))
      codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address;

    if (ompt_enabled.ompt_callback_sync_region_wait) {
      ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
          ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
          codeptr);
    }
    if (ompt_enabled.ompt_callback_sync_region) {
      ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
          ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
          codeptr);
    }
#endif
    if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) {
      ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
          ompt_scope_end, NULL, task_data, 0, ds_tid, ompt_task_implicit); // TODO: Can this be ompt_task_initial?
    }
  }
#endif

  KMP_MB(); /* Flush all pending memory write invalidates.  */
  KMP_ASSERT(this_thr->th.th_team == team);
}

/* ------------------------------------------------------------------------ */

#ifdef USE_LOAD_BALANCE

// Return the worker threads actively spinning in the hot team, if we
// are at the outermost level of parallelism.  Otherwise, return 0.
static int __kmp_active_hot_team_nproc(kmp_root_t *root) {
  int i;
  int retval;
  kmp_team_t *hot_team;

  if (root->r.r_active) {
    return 0;
  }
  hot_team = root->r.r_hot_team;
  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
    return hot_team->t.t_nproc - 1; // Don't count master thread
  }

  // Skip the master thread - it is accounted for elsewhere.
  retval = 0;
  for (i = 1; i < hot_team->t.t_nproc; i++) {
    if (hot_team->t.t_threads[i]->th.th_active) {
      retval++;
    }
  }
  return retval;
}

// Perform an automatic adjustment to the number of
// threads used by the next parallel region.
static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) {
  int retval;
  int pool_active;
  int hot_team_active;
  int team_curr_active;
  int system_active;

  KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root,
                set_nproc));
  KMP_DEBUG_ASSERT(root);
  KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0]
                       ->th.th_current_task->td_icvs.dynamic == TRUE);
  KMP_DEBUG_ASSERT(set_nproc > 1);

  if (set_nproc == 1) {
    KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n"));
    return 1;
  }

  // Threads that are active in the thread pool, active in the hot team for this
  // particular root (if we are at the outer par level), and the currently
  // executing thread (to become the master) are available to add to the new
  // team, but are currently contributing to the system load, and must be
  // accounted for.
  pool_active = __kmp_thread_pool_active_nth;
  hot_team_active = __kmp_active_hot_team_nproc(root);
  team_curr_active = pool_active + hot_team_active + 1;

  // Check the system load.
  system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active);
  KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d "
                "hot team active = %d\n",
                system_active, pool_active, hot_team_active));

  if (system_active < 0) {
    // There was an error reading the necessary info from /proc, so use the
    // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode
    // = dynamic_thread_limit, we shouldn't wind up getting back here.
    __kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
    KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit");

    // Make this call behave like the thread limit algorithm.
    retval = __kmp_avail_proc - __kmp_nth +
             (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
    if (retval > set_nproc) {
      retval = set_nproc;
    }
    if (retval < KMP_MIN_NTH) {
      retval = KMP_MIN_NTH;
    }

    KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n",
                  retval));
    return retval;
  }

  // There is a slight delay in the load balance algorithm in detecting new
  // running procs. The real system load at this instant should be at least as
  // large as the #active omp thread that are available to add to the team.
  if (system_active < team_curr_active) {
    system_active = team_curr_active;
  }
  retval = __kmp_avail_proc - system_active + team_curr_active;
  if (retval > set_nproc) {
    retval = set_nproc;
  }
  if (retval < KMP_MIN_NTH) {
    retval = KMP_MIN_NTH;
  }

  KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval));
  return retval;
} // __kmp_load_balance_nproc()

#endif /* USE_LOAD_BALANCE */

/* ------------------------------------------------------------------------ */

/* NOTE: this is called with the __kmp_init_lock held */
void __kmp_cleanup(void) {
  int f;

  KA_TRACE(10, ("__kmp_cleanup: enter\n"));

  if (TCR_4(__kmp_init_parallel)) {
#if KMP_HANDLE_SIGNALS
    __kmp_remove_signals();
#endif
    TCW_4(__kmp_init_parallel, FALSE);
  }

  if (TCR_4(__kmp_init_middle)) {
#if KMP_AFFINITY_SUPPORTED
    __kmp_affinity_uninitialize();
#endif /* KMP_AFFINITY_SUPPORTED */
    __kmp_cleanup_hierarchy();
    TCW_4(__kmp_init_middle, FALSE);
  }

  KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n"));

  if (__kmp_init_serial) {
    __kmp_runtime_destroy();
    __kmp_init_serial = FALSE;
  }

  __kmp_cleanup_threadprivate_caches();

  for (f = 0; f < __kmp_threads_capacity; f++) {
    if (__kmp_root[f] != NULL) {
      __kmp_free(__kmp_root[f]);
      __kmp_root[f] = NULL;
    }
  }
  __kmp_free(__kmp_threads);
  // __kmp_threads and __kmp_root were allocated at once, as single block, so
  // there is no need in freeing __kmp_root.
  __kmp_threads = NULL;
  __kmp_root = NULL;
  __kmp_threads_capacity = 0;

#if KMP_USE_DYNAMIC_LOCK
  __kmp_cleanup_indirect_user_locks();
#else
  __kmp_cleanup_user_locks();
#endif

#if KMP_AFFINITY_SUPPORTED
  KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file));
  __kmp_cpuinfo_file = NULL;
#endif /* KMP_AFFINITY_SUPPORTED */

#if KMP_USE_ADAPTIVE_LOCKS
#if KMP_DEBUG_ADAPTIVE_LOCKS
  __kmp_print_speculative_stats();
#endif
#endif
  KMP_INTERNAL_FREE(__kmp_nested_nth.nth);
  __kmp_nested_nth.nth = NULL;
  __kmp_nested_nth.size = 0;
  __kmp_nested_nth.used = 0;
  KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types);
  __kmp_nested_proc_bind.bind_types = NULL;
  __kmp_nested_proc_bind.size = 0;
  __kmp_nested_proc_bind.used = 0;
  if (__kmp_affinity_format) {
    KMP_INTERNAL_FREE(__kmp_affinity_format);
    __kmp_affinity_format = NULL;
  }

  __kmp_i18n_catclose();

#if KMP_USE_HIER_SCHED
  __kmp_hier_scheds.deallocate();
#endif

#if KMP_STATS_ENABLED
  __kmp_stats_fini();
#endif

  KA_TRACE(10, ("__kmp_cleanup: exit\n"));
}

/* ------------------------------------------------------------------------ */

int __kmp_ignore_mppbeg(void) {
  char *env;

  if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) {
    if (__kmp_str_match_false(env))
      return FALSE;
  }
  // By default __kmpc_begin() is no-op.
  return TRUE;
}

int __kmp_ignore_mppend(void) {
  char *env;

  if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) {
    if (__kmp_str_match_false(env))
      return FALSE;
  }
  // By default __kmpc_end() is no-op.
  return TRUE;
}

void __kmp_internal_begin(void) {
  int gtid;
  kmp_root_t *root;

  /* this is a very important step as it will register new sibling threads
     and assign these new uber threads a new gtid */
  gtid = __kmp_entry_gtid();
  root = __kmp_threads[gtid]->th.th_root;
  KMP_ASSERT(KMP_UBER_GTID(gtid));

  if (root->r.r_begin)
    return;
  __kmp_acquire_lock(&root->r.r_begin_lock, gtid);
  if (root->r.r_begin) {
    __kmp_release_lock(&root->r.r_begin_lock, gtid);
    return;
  }

  root->r.r_begin = TRUE;

  __kmp_release_lock(&root->r.r_begin_lock, gtid);
}

/* ------------------------------------------------------------------------ */

void __kmp_user_set_library(enum library_type arg) {
  int gtid;
  kmp_root_t *root;
  kmp_info_t *thread;

  /* first, make sure we are initialized so we can get our gtid */

  gtid = __kmp_entry_gtid();
  thread = __kmp_threads[gtid];

  root = thread->th.th_root;

  KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg,
                library_serial));
  if (root->r.r_in_parallel) { /* Must be called in serial section of top-level
                                  thread */
    KMP_WARNING(SetLibraryIncorrectCall);
    return;
  }

  switch (arg) {
  case library_serial:
    thread->th.th_set_nproc = 0;
    set__nproc(thread, 1);
    break;
  case library_turnaround:
    thread->th.th_set_nproc = 0;
    set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
                                           : __kmp_dflt_team_nth_ub);
    break;
  case library_throughput:
    thread->th.th_set_nproc = 0;
    set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
                                           : __kmp_dflt_team_nth_ub);
    break;
  default:
    KMP_FATAL(UnknownLibraryType, arg);
  }

  __kmp_aux_set_library(arg);
}

void __kmp_aux_set_stacksize(size_t arg) {
  if (!__kmp_init_serial)
    __kmp_serial_initialize();

#if KMP_OS_DARWIN
  if (arg & (0x1000 - 1)) {
    arg &= ~(0x1000 - 1);
    if (arg + 0x1000) /* check for overflow if we round up */
      arg += 0x1000;
  }
#endif
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);

  /* only change the default stacksize before the first parallel region */
  if (!TCR_4(__kmp_init_parallel)) {
    size_t value = arg; /* argument is in bytes */

    if (value < __kmp_sys_min_stksize)
      value = __kmp_sys_min_stksize;
    else if (value > KMP_MAX_STKSIZE)
      value = KMP_MAX_STKSIZE;

    __kmp_stksize = value;

    __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */
  }

  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
}

/* set the behaviour of the runtime library */
/* TODO this can cause some odd behaviour with sibling parallelism... */
void __kmp_aux_set_library(enum library_type arg) {
  __kmp_library = arg;

  switch (__kmp_library) {
  case library_serial: {
    KMP_INFORM(LibraryIsSerial);
  } break;
  case library_turnaround:
    if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set)
      __kmp_use_yield = 2; // only yield when oversubscribed
    break;
  case library_throughput:
    if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME)
      __kmp_dflt_blocktime = 200;
    break;
  default:
    KMP_FATAL(UnknownLibraryType, arg);
  }
}

/* Getting team information common for all team API */
// Returns NULL if not in teams construct
static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) {
  kmp_info_t *thr = __kmp_entry_thread();
  teams_serialized = 0;
  if (thr->th.th_teams_microtask) {
    kmp_team_t *team = thr->th.th_team;
    int tlevel = thr->th.th_teams_level; // the level of the teams construct
    int ii = team->t.t_level;
    teams_serialized = team->t.t_serialized;
    int level = tlevel + 1;
    KMP_DEBUG_ASSERT(ii >= tlevel);
    while (ii > level) {
      for (teams_serialized = team->t.t_serialized;
           (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) {
      }
      if (team->t.t_serialized && (!teams_serialized)) {
        team = team->t.t_parent;
        continue;
      }
      if (ii > level) {
        team = team->t.t_parent;
        ii--;
      }
    }
    return team;
  }
  return NULL;
}

int __kmp_aux_get_team_num() {
  int serialized;
  kmp_team_t *team = __kmp_aux_get_team_info(serialized);
  if (team) {
    if (serialized > 1) {
      return 0; // teams region is serialized ( 1 team of 1 thread ).
    } else {
      return team->t.t_master_tid;
    }
  }
  return 0;
}

int __kmp_aux_get_num_teams() {
  int serialized;
  kmp_team_t *team = __kmp_aux_get_team_info(serialized);
  if (team) {
    if (serialized > 1) {
      return 1;
    } else {
      return team->t.t_parent->t.t_nproc;
    }
  }
  return 1;
}

/* ------------------------------------------------------------------------ */

/*
 * Affinity Format Parser
 *
 * Field is in form of: %[[[0].]size]type
 * % and type are required (%% means print a literal '%')
 * type is either single char or long name surrounded by {},
 * e.g., N or {num_threads}
 * 0 => leading zeros
 * . => right justified when size is specified
 * by default output is left justified
 * size is the *minimum* field length
 * All other characters are printed as is
 *
 * Available field types:
 * L {thread_level}      - omp_get_level()
 * n {thread_num}        - omp_get_thread_num()
 * h {host}              - name of host machine
 * P {process_id}        - process id (integer)
 * T {thread_identifier} - native thread identifier (integer)
 * N {num_threads}       - omp_get_num_threads()
 * A {ancestor_tnum}     - omp_get_ancestor_thread_num(omp_get_level()-1)
 * a {thread_affinity}   - comma separated list of integers or integer ranges
 *                         (values of affinity mask)
 *
 * Implementation-specific field types can be added
 * If a type is unknown, print "undefined"
*/

// Structure holding the short name, long name, and corresponding data type
// for snprintf.  A table of these will represent the entire valid keyword
// field types.
typedef struct kmp_affinity_format_field_t {
  char short_name; // from spec e.g., L -> thread level
  const char *long_name; // from spec thread_level -> thread level
  char field_format; // data type for snprintf (typically 'd' or 's'
  // for integer or string)
} kmp_affinity_format_field_t;

static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = {
#if KMP_AFFINITY_SUPPORTED
    {'A', "thread_affinity", 's'},
#endif
    {'t', "team_num", 'd'},
    {'T', "num_teams", 'd'},
    {'L', "nesting_level", 'd'},
    {'n', "thread_num", 'd'},
    {'N', "num_threads", 'd'},
    {'a', "ancestor_tnum", 'd'},
    {'H', "host", 's'},
    {'P', "process_id", 'd'},
    {'i', "native_thread_id", 'd'}};

// Return the number of characters it takes to hold field
static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th,
                                            const char **ptr,
                                            kmp_str_buf_t *field_buffer) {
  int rc, format_index, field_value;
  const char *width_left, *width_right;
  bool pad_zeros, right_justify, parse_long_name, found_valid_name;
  static const int FORMAT_SIZE = 20;
  char format[FORMAT_SIZE] = {0};
  char absolute_short_name = 0;

  KMP_DEBUG_ASSERT(gtid >= 0);
  KMP_DEBUG_ASSERT(th);
  KMP_DEBUG_ASSERT(**ptr == '%');
  KMP_DEBUG_ASSERT(field_buffer);

  __kmp_str_buf_clear(field_buffer);

  // Skip the initial %
  (*ptr)++;

  // Check for %% first
  if (**ptr == '%') {
    __kmp_str_buf_cat(field_buffer, "%", 1);
    (*ptr)++; // skip over the second %
    return 1;
  }

  // Parse field modifiers if they are present
  pad_zeros = false;
  if (**ptr == '0') {
    pad_zeros = true;
    (*ptr)++; // skip over 0
  }
  right_justify = false;
  if (**ptr == '.') {
    right_justify = true;
    (*ptr)++; // skip over .
  }
  // Parse width of field: [width_left, width_right)
  width_left = width_right = NULL;
  if (**ptr >= '0' && **ptr <= '9') {
    width_left = *ptr;
    SKIP_DIGITS(*ptr);
    width_right = *ptr;
  }

  // Create the format for KMP_SNPRINTF based on flags parsed above
  format_index = 0;
  format[format_index++] = '%';
  if (!right_justify)
    format[format_index++] = '-';
  if (pad_zeros)
    format[format_index++] = '0';
  if (width_left && width_right) {
    int i = 0;
    // Only allow 8 digit number widths.
    // This also prevents overflowing format variable
    while (i < 8 && width_left < width_right) {
      format[format_index++] = *width_left;
      width_left++;
      i++;
    }
  }

  // Parse a name (long or short)
  // Canonicalize the name into absolute_short_name
  found_valid_name = false;
  parse_long_name = (**ptr == '{');
  if (parse_long_name)
    (*ptr)++; // skip initial left brace
  for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) /
                             sizeof(__kmp_affinity_format_table[0]);
       ++i) {
    char short_name = __kmp_affinity_format_table[i].short_name;
    const char *long_name = __kmp_affinity_format_table[i].long_name;
    char field_format = __kmp_affinity_format_table[i].field_format;
    if (parse_long_name) {
      int length = KMP_STRLEN(long_name);
      if (strncmp(*ptr, long_name, length) == 0) {
        found_valid_name = true;
        (*ptr) += length; // skip the long name
      }
    } else if (**ptr == short_name) {
      found_valid_name = true;
      (*ptr)++; // skip the short name
    }
    if (found_valid_name) {
      format[format_index++] = field_format;
      format[format_index++] = '\0';
      absolute_short_name = short_name;
      break;
    }
  }
  if (parse_long_name) {
    if (**ptr != '}') {
      absolute_short_name = 0;
    } else {
      (*ptr)++; // skip over the right brace
    }
  }

  // Attempt to fill the buffer with the requested
  // value using snprintf within __kmp_str_buf_print()
  switch (absolute_short_name) {
  case 't':
    rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num());
    break;
  case 'T':
    rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams());
    break;
  case 'L':
    rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level);
    break;
  case 'n':
    rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid));
    break;
  case 'H': {
    static const int BUFFER_SIZE = 256;
    char buf[BUFFER_SIZE];
    __kmp_expand_host_name(buf, BUFFER_SIZE);
    rc = __kmp_str_buf_print(field_buffer, format, buf);
  } break;
  case 'P':
    rc = __kmp_str_buf_print(field_buffer, format, getpid());
    break;
  case 'i':
    rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid());
    break;
  case 'N':
    rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc);
    break;
  case 'a':
    field_value =
        __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1);
    rc = __kmp_str_buf_print(field_buffer, format, field_value);
    break;
#if KMP_AFFINITY_SUPPORTED
  case 'A': {
    kmp_str_buf_t buf;
    __kmp_str_buf_init(&buf);
    __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask);
    rc = __kmp_str_buf_print(field_buffer, format, buf.str);
    __kmp_str_buf_free(&buf);
  } break;
#endif
  default:
    // According to spec, If an implementation does not have info for field
    // type, then "undefined" is printed
    rc = __kmp_str_buf_print(field_buffer, "%s", "undefined");
    // Skip the field
    if (parse_long_name) {
      SKIP_TOKEN(*ptr);
      if (**ptr == '}')
        (*ptr)++;
    } else {
      (*ptr)++;
    }
  }

  KMP_ASSERT(format_index <= FORMAT_SIZE);
  return rc;
}

/*
 * Return number of characters needed to hold the affinity string
 * (not including null byte character)
 * The resultant string is printed to buffer, which the caller can then
 * handle afterwards
*/
size_t __kmp_aux_capture_affinity(int gtid, const char *format,
                                  kmp_str_buf_t *buffer) {
  const char *parse_ptr;
  size_t retval;
  const kmp_info_t *th;
  kmp_str_buf_t field;

  KMP_DEBUG_ASSERT(buffer);
  KMP_DEBUG_ASSERT(gtid >= 0);

  __kmp_str_buf_init(&field);
  __kmp_str_buf_clear(buffer);

  th = __kmp_threads[gtid];
  retval = 0;

  // If format is NULL or zero-length string, then we use
  // affinity-format-var ICV
  parse_ptr = format;
  if (parse_ptr == NULL || *parse_ptr == '\0') {
    parse_ptr = __kmp_affinity_format;
  }
  KMP_DEBUG_ASSERT(parse_ptr);

  while (*parse_ptr != '\0') {
    // Parse a field
    if (*parse_ptr == '%') {
      // Put field in the buffer
      int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field);
      __kmp_str_buf_catbuf(buffer, &field);
      retval += rc;
    } else {
      // Put literal character in buffer
      __kmp_str_buf_cat(buffer, parse_ptr, 1);
      retval++;
      parse_ptr++;
    }
  }
  __kmp_str_buf_free(&field);
  return retval;
}

// Displays the affinity string to stdout
void __kmp_aux_display_affinity(int gtid, const char *format) {
  kmp_str_buf_t buf;
  __kmp_str_buf_init(&buf);
  __kmp_aux_capture_affinity(gtid, format, &buf);
  __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str);
  __kmp_str_buf_free(&buf);
}

/* ------------------------------------------------------------------------ */

void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) {
  int blocktime = arg; /* argument is in milliseconds */
#if KMP_USE_MONITOR
  int bt_intervals;
#endif
  int bt_set;

  __kmp_save_internal_controls(thread);

  /* Normalize and set blocktime for the teams */
  if (blocktime < KMP_MIN_BLOCKTIME)
    blocktime = KMP_MIN_BLOCKTIME;
  else if (blocktime > KMP_MAX_BLOCKTIME)
    blocktime = KMP_MAX_BLOCKTIME;

  set__blocktime_team(thread->th.th_team, tid, blocktime);
  set__blocktime_team(thread->th.th_serial_team, 0, blocktime);

#if KMP_USE_MONITOR
  /* Calculate and set blocktime intervals for the teams */
  bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups);

  set__bt_intervals_team(thread->th.th_team, tid, bt_intervals);
  set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals);
#endif

  /* Set whether blocktime has been set to "TRUE" */
  bt_set = TRUE;

  set__bt_set_team(thread->th.th_team, tid, bt_set);
  set__bt_set_team(thread->th.th_serial_team, 0, bt_set);
#if KMP_USE_MONITOR
  KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, "
                "bt_intervals=%d, monitor_updates=%d\n",
                __kmp_gtid_from_tid(tid, thread->th.th_team),
                thread->th.th_team->t.t_id, tid, blocktime, bt_intervals,
                __kmp_monitor_wakeups));
#else
  KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n",
                __kmp_gtid_from_tid(tid, thread->th.th_team),
                thread->th.th_team->t.t_id, tid, blocktime));
#endif
}

void __kmp_aux_set_defaults(char const *str, int len) {
  if (!__kmp_init_serial) {
    __kmp_serial_initialize();
  }
  __kmp_env_initialize(str);

  if (__kmp_settings || __kmp_display_env || __kmp_display_env_verbose) {
    __kmp_env_print();
  }
} // __kmp_aux_set_defaults

/* ------------------------------------------------------------------------ */
/* internal fast reduction routines */

PACKED_REDUCTION_METHOD_T
__kmp_determine_reduction_method(
    ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
    void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
    kmp_critical_name *lck) {

  // Default reduction method: critical construct ( lck != NULL, like in current
  // PAROPT )
  // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method
  // can be selected by RTL
  // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method
  // can be selected by RTL
  // Finally, it's up to OpenMP RTL to make a decision on which method to select
  // among generated by PAROPT.

  PACKED_REDUCTION_METHOD_T retval;

  int team_size;

  KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 )
  KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 )

#define FAST_REDUCTION_ATOMIC_METHOD_GENERATED                                 \
  ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE))
#define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func))

  retval = critical_reduce_block;

  // another choice of getting a team size (with 1 dynamic deference) is slower
  team_size = __kmp_get_team_num_threads(global_tid);
  if (team_size == 1) {

    retval = empty_reduce_block;

  } else {

    int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;

#if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 ||                   \
    KMP_ARCH_MIPS64 || KMP_ARCH_RISCV64

#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
    KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD

    int teamsize_cutoff = 4;

#if KMP_MIC_SUPPORTED
    if (__kmp_mic_type != non_mic) {
      teamsize_cutoff = 8;
    }
#endif
    int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
    if (tree_available) {
      if (team_size <= teamsize_cutoff) {
        if (atomic_available) {
          retval = atomic_reduce_block;
        }
      } else {
        retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
      }
    } else if (atomic_available) {
      retval = atomic_reduce_block;
    }
#else
#error "Unknown or unsupported OS"
#endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
       // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD

#elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS

#if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD

    // basic tuning

    if (atomic_available) {
      if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ???
        retval = atomic_reduce_block;
      }
    } // otherwise: use critical section

#elif KMP_OS_DARWIN

    int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
    if (atomic_available && (num_vars <= 3)) {
      retval = atomic_reduce_block;
    } else if (tree_available) {
      if ((reduce_size > (9 * sizeof(kmp_real64))) &&
          (reduce_size < (2000 * sizeof(kmp_real64)))) {
        retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER;
      }
    } // otherwise: use critical section

#else
#error "Unknown or unsupported OS"
#endif

#else
#error "Unknown or unsupported architecture"
#endif
  }

  // KMP_FORCE_REDUCTION

  // If the team is serialized (team_size == 1), ignore the forced reduction
  // method and stay with the unsynchronized method (empty_reduce_block)
  if (__kmp_force_reduction_method != reduction_method_not_defined &&
      team_size != 1) {

    PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block;

    int atomic_available, tree_available;

    switch ((forced_retval = __kmp_force_reduction_method)) {
    case critical_reduce_block:
      KMP_ASSERT(lck); // lck should be != 0
      break;

    case atomic_reduce_block:
      atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;
      if (!atomic_available) {
        KMP_WARNING(RedMethodNotSupported, "atomic");
        forced_retval = critical_reduce_block;
      }
      break;

    case tree_reduce_block:
      tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
      if (!tree_available) {
        KMP_WARNING(RedMethodNotSupported, "tree");
        forced_retval = critical_reduce_block;
      } else {
#if KMP_FAST_REDUCTION_BARRIER
        forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
#endif
      }
      break;

    default:
      KMP_ASSERT(0); // "unsupported method specified"
    }

    retval = forced_retval;
  }

  KA_TRACE(10, ("reduction method selected=%08x\n", retval));

#undef FAST_REDUCTION_TREE_METHOD_GENERATED
#undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED

  return (retval);
}
// this function is for testing set/get/determine reduce method
kmp_int32 __kmp_get_reduce_method(void) {
  return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8);
}

// Soft pause sets up threads to ignore blocktime and just go to sleep.
// Spin-wait code checks __kmp_pause_status and reacts accordingly.
void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; }

// Hard pause shuts down the runtime completely.  Resume happens naturally when
// OpenMP is used subsequently.
void __kmp_hard_pause() {
  __kmp_pause_status = kmp_hard_paused;
  __kmp_internal_end_thread(-1);
}

// Soft resume sets __kmp_pause_status, and wakes up all threads.
void __kmp_resume_if_soft_paused() {
  if (__kmp_pause_status == kmp_soft_paused) {
    __kmp_pause_status = kmp_not_paused;

    for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) {
      kmp_info_t *thread = __kmp_threads[gtid];
      if (thread) { // Wake it if sleeping
        kmp_flag_64 fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread);
        if (fl.is_sleeping())
          fl.resume(gtid);
        else if (__kmp_try_suspend_mx(thread)) { // got suspend lock
          __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep
        } else { // thread holds the lock and may sleep soon
          do { // until either the thread sleeps, or we can get the lock
            if (fl.is_sleeping()) {
              fl.resume(gtid);
              break;
            } else if (__kmp_try_suspend_mx(thread)) {
              __kmp_unlock_suspend_mx(thread);
              break;
            }
          } while (1);
        }
      }
    }
  }
}

// This function is called via __kmpc_pause_resource. Returns 0 if successful.
// TODO: add warning messages
int __kmp_pause_resource(kmp_pause_status_t level) {
  if (level == kmp_not_paused) { // requesting resume
    if (__kmp_pause_status == kmp_not_paused) {
      // error message about runtime not being paused, so can't resume
      return 1;
    } else {
      KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused ||
                       __kmp_pause_status == kmp_hard_paused);
      __kmp_pause_status = kmp_not_paused;
      return 0;
    }
  } else if (level == kmp_soft_paused) { // requesting soft pause
    if (__kmp_pause_status != kmp_not_paused) {
      // error message about already being paused
      return 1;
    } else {
      __kmp_soft_pause();
      return 0;
    }
  } else if (level == kmp_hard_paused) { // requesting hard pause
    if (__kmp_pause_status != kmp_not_paused) {
      // error message about already being paused
      return 1;
    } else {
      __kmp_hard_pause();
      return 0;
    }
  } else {
    // error message about invalid level
    return 1;
  }
}


void __kmp_omp_display_env(int verbose) {
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
  if (__kmp_init_serial == 0)
    __kmp_do_serial_initialize();
  __kmp_display_env_impl(!verbose, verbose);
  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
}