LoopConvertCheck.cpp 39.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
//===--- LoopConvertCheck.cpp - clang-tidy---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "LoopConvertCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstring>
#include <utility>

using namespace clang::ast_matchers;
using namespace llvm;

namespace clang {
namespace tidy {

template <> struct OptionEnumMapping<modernize::Confidence::Level> {
  static llvm::ArrayRef<std::pair<modernize::Confidence::Level, StringRef>>
  getEnumMapping() {
    static constexpr std::pair<modernize::Confidence::Level, StringRef>
        Mapping[] = {{modernize::Confidence::CL_Reasonable, "reasonable"},
                     {modernize::Confidence::CL_Safe, "safe"},
                     {modernize::Confidence::CL_Risky, "risky"}};
    return makeArrayRef(Mapping);
  }
};

template <> struct OptionEnumMapping<modernize::VariableNamer::NamingStyle> {
  static llvm::ArrayRef<
      std::pair<modernize::VariableNamer::NamingStyle, StringRef>>
  getEnumMapping() {
    static constexpr std::pair<modernize::VariableNamer::NamingStyle, StringRef>
        Mapping[] = {{modernize::VariableNamer::NS_CamelCase, "CamelCase"},
                     {modernize::VariableNamer::NS_CamelBack, "camelBack"},
                     {modernize::VariableNamer::NS_LowerCase, "lower_case"},
                     {modernize::VariableNamer::NS_UpperCase, "UPPER_CASE"}};
    return makeArrayRef(Mapping);
  }
};

namespace modernize {

static const char LoopNameArray[] = "forLoopArray";
static const char LoopNameIterator[] = "forLoopIterator";
static const char LoopNamePseudoArray[] = "forLoopPseudoArray";
static const char ConditionBoundName[] = "conditionBound";
static const char ConditionVarName[] = "conditionVar";
static const char IncrementVarName[] = "incrementVar";
static const char InitVarName[] = "initVar";
static const char BeginCallName[] = "beginCall";
static const char EndCallName[] = "endCall";
static const char ConditionEndVarName[] = "conditionEndVar";
static const char EndVarName[] = "endVar";
static const char DerefByValueResultName[] = "derefByValueResult";
static const char DerefByRefResultName[] = "derefByRefResult";

// shared matchers
static const TypeMatcher AnyType() { return anything(); }

static const StatementMatcher IntegerComparisonMatcher() {
  return expr(ignoringParenImpCasts(
      declRefExpr(to(varDecl(hasType(isInteger())).bind(ConditionVarName)))));
}

static const DeclarationMatcher InitToZeroMatcher() {
  return varDecl(
             hasInitializer(ignoringParenImpCasts(integerLiteral(equals(0)))))
      .bind(InitVarName);
}

static const StatementMatcher IncrementVarMatcher() {
  return declRefExpr(to(varDecl(hasType(isInteger())).bind(IncrementVarName)));
}

/// The matcher for loops over arrays.
///
/// In this general example, assuming 'j' and 'k' are of integral type:
/// \code
///   for (int i = 0; j < 3 + 2; ++k) { ... }
/// \endcode
/// The following string identifiers are bound to these parts of the AST:
///   ConditionVarName: 'j' (as a VarDecl)
///   ConditionBoundName: '3 + 2' (as an Expr)
///   InitVarName: 'i' (as a VarDecl)
///   IncrementVarName: 'k' (as a VarDecl)
///   LoopName: The entire for loop (as a ForStmt)
///
/// Client code will need to make sure that:
///   - The three index variables identified by the matcher are the same
///     VarDecl.
///   - The index variable is only used as an array index.
///   - All arrays indexed by the loop are the same.
StatementMatcher makeArrayLoopMatcher() {
  StatementMatcher ArrayBoundMatcher =
      expr(hasType(isInteger())).bind(ConditionBoundName);

  return forStmt(
             unless(isInTemplateInstantiation()),
             hasLoopInit(declStmt(hasSingleDecl(InitToZeroMatcher()))),
             hasCondition(anyOf(
                 binaryOperator(hasOperatorName("<"),
                                hasLHS(IntegerComparisonMatcher()),
                                hasRHS(ArrayBoundMatcher)),
                 binaryOperator(hasOperatorName(">"), hasLHS(ArrayBoundMatcher),
                                hasRHS(IntegerComparisonMatcher())))),
             hasIncrement(unaryOperator(hasOperatorName("++"),
                                        hasUnaryOperand(IncrementVarMatcher()))))
      .bind(LoopNameArray);
}

/// The matcher used for iterator-based for loops.
///
/// This matcher is more flexible than array-based loops. It will match
/// catch loops of the following textual forms (regardless of whether the
/// iterator type is actually a pointer type or a class type):
///
/// Assuming f, g, and h are of type containerType::iterator,
/// \code
///   for (containerType::iterator it = container.begin(),
///        e = createIterator(); f != g; ++h) { ... }
///   for (containerType::iterator it = container.begin();
///        f != anotherContainer.end(); ++h) { ... }
/// \endcode
/// The following string identifiers are bound to the parts of the AST:
///   InitVarName: 'it' (as a VarDecl)
///   ConditionVarName: 'f' (as a VarDecl)
///   LoopName: The entire for loop (as a ForStmt)
///   In the first example only:
///     EndVarName: 'e' (as a VarDecl)
///     ConditionEndVarName: 'g' (as a VarDecl)
///   In the second example only:
///     EndCallName: 'container.end()' (as a CXXMemberCallExpr)
///
/// Client code will need to make sure that:
///   - The iterator variables 'it', 'f', and 'h' are the same.
///   - The two containers on which 'begin' and 'end' are called are the same.
///   - If the end iterator variable 'g' is defined, it is the same as 'f'.
StatementMatcher makeIteratorLoopMatcher() {
  StatementMatcher BeginCallMatcher =
      cxxMemberCallExpr(argumentCountIs(0),
                        callee(cxxMethodDecl(hasAnyName("begin", "cbegin"))))
          .bind(BeginCallName);

  DeclarationMatcher InitDeclMatcher =
      varDecl(hasInitializer(anyOf(ignoringParenImpCasts(BeginCallMatcher),
                                   materializeTemporaryExpr(
                                       ignoringParenImpCasts(BeginCallMatcher)),
                                   hasDescendant(BeginCallMatcher))))
          .bind(InitVarName);

  DeclarationMatcher EndDeclMatcher =
      varDecl(hasInitializer(anything())).bind(EndVarName);

  StatementMatcher EndCallMatcher = cxxMemberCallExpr(
      argumentCountIs(0), callee(cxxMethodDecl(hasAnyName("end", "cend"))));

  StatementMatcher IteratorBoundMatcher =
      expr(anyOf(ignoringParenImpCasts(
                     declRefExpr(to(varDecl().bind(ConditionEndVarName)))),
                 ignoringParenImpCasts(expr(EndCallMatcher).bind(EndCallName)),
                 materializeTemporaryExpr(ignoringParenImpCasts(
                     expr(EndCallMatcher).bind(EndCallName)))));

  StatementMatcher IteratorComparisonMatcher = expr(
      ignoringParenImpCasts(declRefExpr(to(varDecl().bind(ConditionVarName)))));

  auto OverloadedNEQMatcher = ignoringImplicit(
      cxxOperatorCallExpr(hasOverloadedOperatorName("!="), argumentCountIs(2),
                          hasArgument(0, IteratorComparisonMatcher),
                          hasArgument(1, IteratorBoundMatcher)));

  // This matcher tests that a declaration is a CXXRecordDecl that has an
  // overloaded operator*(). If the operator*() returns by value instead of by
  // reference then the return type is tagged with DerefByValueResultName.
  internal::Matcher<VarDecl> TestDerefReturnsByValue =
      hasType(hasUnqualifiedDesugaredType(
          recordType(hasDeclaration(cxxRecordDecl(hasMethod(cxxMethodDecl(
              hasOverloadedOperatorName("*"),
              anyOf(
                  // Tag the return type if it's by value.
                  returns(qualType(unless(hasCanonicalType(referenceType())))
                              .bind(DerefByValueResultName)),
                  returns(
                      // Skip loops where the iterator's operator* returns an
                      // rvalue reference. This is just weird.
                      qualType(unless(hasCanonicalType(rValueReferenceType())))
                          .bind(DerefByRefResultName))))))))));

  return forStmt(
             unless(isInTemplateInstantiation()),
             hasLoopInit(anyOf(declStmt(declCountIs(2),
                                        containsDeclaration(0, InitDeclMatcher),
                                        containsDeclaration(1, EndDeclMatcher)),
                               declStmt(hasSingleDecl(InitDeclMatcher)))),
             hasCondition(
                 anyOf(binaryOperator(hasOperatorName("!="),
                                      hasLHS(IteratorComparisonMatcher),
                                      hasRHS(IteratorBoundMatcher)),
                       binaryOperator(hasOperatorName("!="),
                                      hasLHS(IteratorBoundMatcher),
                                      hasRHS(IteratorComparisonMatcher)),
                       OverloadedNEQMatcher)),
             hasIncrement(anyOf(
                 unaryOperator(hasOperatorName("++"),
                               hasUnaryOperand(declRefExpr(
                                   to(varDecl(hasType(pointsTo(AnyType())))
                                          .bind(IncrementVarName))))),
                 cxxOperatorCallExpr(
                     hasOverloadedOperatorName("++"),
                     hasArgument(
                         0, declRefExpr(to(varDecl(TestDerefReturnsByValue)
                                               .bind(IncrementVarName))))))))
      .bind(LoopNameIterator);
}

/// The matcher used for array-like containers (pseudoarrays).
///
/// This matcher is more flexible than array-based loops. It will match
/// loops of the following textual forms (regardless of whether the
/// iterator type is actually a pointer type or a class type):
///
/// Assuming f, g, and h are of type containerType::iterator,
/// \code
///   for (int i = 0, j = container.size(); f < g; ++h) { ... }
///   for (int i = 0; f < container.size(); ++h) { ... }
/// \endcode
/// The following string identifiers are bound to the parts of the AST:
///   InitVarName: 'i' (as a VarDecl)
///   ConditionVarName: 'f' (as a VarDecl)
///   LoopName: The entire for loop (as a ForStmt)
///   In the first example only:
///     EndVarName: 'j' (as a VarDecl)
///     ConditionEndVarName: 'g' (as a VarDecl)
///   In the second example only:
///     EndCallName: 'container.size()' (as a CXXMemberCallExpr)
///
/// Client code will need to make sure that:
///   - The index variables 'i', 'f', and 'h' are the same.
///   - The containers on which 'size()' is called is the container indexed.
///   - The index variable is only used in overloaded operator[] or
///     container.at().
///   - If the end iterator variable 'g' is defined, it is the same as 'j'.
///   - The container's iterators would not be invalidated during the loop.
StatementMatcher makePseudoArrayLoopMatcher() {
  // Test that the incoming type has a record declaration that has methods
  // called 'begin' and 'end'. If the incoming type is const, then make sure
  // these methods are also marked const.
  //
  // FIXME: To be completely thorough this matcher should also ensure the
  // return type of begin/end is an iterator that dereferences to the same as
  // what operator[] or at() returns. Such a test isn't likely to fail except
  // for pathological cases.
  //
  // FIXME: Also, a record doesn't necessarily need begin() and end(). Free
  // functions called begin() and end() taking the container as an argument
  // are also allowed.
  TypeMatcher RecordWithBeginEnd = qualType(anyOf(
      qualType(
          isConstQualified(),
          hasUnqualifiedDesugaredType(recordType(hasDeclaration(cxxRecordDecl(
              hasMethod(cxxMethodDecl(hasName("begin"), isConst())),
              hasMethod(cxxMethodDecl(hasName("end"),
                                      isConst()))))   // hasDeclaration
                                                 ))), // qualType
      qualType(unless(isConstQualified()),
               hasUnqualifiedDesugaredType(recordType(hasDeclaration(
                   cxxRecordDecl(hasMethod(hasName("begin")),
                                 hasMethod(hasName("end"))))))) // qualType
      ));

  StatementMatcher SizeCallMatcher = cxxMemberCallExpr(
      argumentCountIs(0), callee(cxxMethodDecl(hasAnyName("size", "length"))),
      on(anyOf(hasType(pointsTo(RecordWithBeginEnd)),
               hasType(RecordWithBeginEnd))));

  StatementMatcher EndInitMatcher =
      expr(anyOf(ignoringParenImpCasts(expr(SizeCallMatcher).bind(EndCallName)),
                 explicitCastExpr(hasSourceExpression(ignoringParenImpCasts(
                     expr(SizeCallMatcher).bind(EndCallName))))));

  DeclarationMatcher EndDeclMatcher =
      varDecl(hasInitializer(EndInitMatcher)).bind(EndVarName);

  StatementMatcher IndexBoundMatcher =
      expr(anyOf(ignoringParenImpCasts(declRefExpr(to(
                     varDecl(hasType(isInteger())).bind(ConditionEndVarName)))),
                 EndInitMatcher));

  return forStmt(
             unless(isInTemplateInstantiation()),
             hasLoopInit(
                 anyOf(declStmt(declCountIs(2),
                                containsDeclaration(0, InitToZeroMatcher()),
                                containsDeclaration(1, EndDeclMatcher)),
                       declStmt(hasSingleDecl(InitToZeroMatcher())))),
             hasCondition(anyOf(
                 binaryOperator(hasOperatorName("<"),
                                hasLHS(IntegerComparisonMatcher()),
                                hasRHS(IndexBoundMatcher)),
                 binaryOperator(hasOperatorName(">"), hasLHS(IndexBoundMatcher),
                                hasRHS(IntegerComparisonMatcher())))),
             hasIncrement(unaryOperator(hasOperatorName("++"),
                                        hasUnaryOperand(IncrementVarMatcher()))))
      .bind(LoopNamePseudoArray);
}

/// Determine whether Init appears to be an initializing an iterator.
///
/// If it is, returns the object whose begin() or end() method is called, and
/// the output parameter isArrow is set to indicate whether the initialization
/// is called via . or ->.
static const Expr *getContainerFromBeginEndCall(const Expr *Init, bool IsBegin,
                                                bool *IsArrow) {
  // FIXME: Maybe allow declaration/initialization outside of the for loop.
  const auto *TheCall =
      dyn_cast_or_null<CXXMemberCallExpr>(digThroughConstructors(Init));
  if (!TheCall || TheCall->getNumArgs() != 0)
    return nullptr;

  const auto *Member = dyn_cast<MemberExpr>(TheCall->getCallee());
  if (!Member)
    return nullptr;
  StringRef Name = Member->getMemberDecl()->getName();
  StringRef TargetName = IsBegin ? "begin" : "end";
  StringRef ConstTargetName = IsBegin ? "cbegin" : "cend";
  if (Name != TargetName && Name != ConstTargetName)
    return nullptr;

  const Expr *SourceExpr = Member->getBase();
  if (!SourceExpr)
    return nullptr;

  *IsArrow = Member->isArrow();
  return SourceExpr;
}

/// Determines the container whose begin() and end() functions are called
/// for an iterator-based loop.
///
/// BeginExpr must be a member call to a function named "begin()", and EndExpr
/// must be a member.
static const Expr *findContainer(ASTContext *Context, const Expr *BeginExpr,
                                 const Expr *EndExpr,
                                 bool *ContainerNeedsDereference) {
  // Now that we know the loop variable and test expression, make sure they are
  // valid.
  bool BeginIsArrow = false;
  bool EndIsArrow = false;
  const Expr *BeginContainerExpr =
      getContainerFromBeginEndCall(BeginExpr, /*IsBegin=*/true, &BeginIsArrow);
  if (!BeginContainerExpr)
    return nullptr;

  const Expr *EndContainerExpr =
      getContainerFromBeginEndCall(EndExpr, /*IsBegin=*/false, &EndIsArrow);
  // Disallow loops that try evil things like this (note the dot and arrow):
  //  for (IteratorType It = Obj.begin(), E = Obj->end(); It != E; ++It) { }
  if (!EndContainerExpr || BeginIsArrow != EndIsArrow ||
      !areSameExpr(Context, EndContainerExpr, BeginContainerExpr))
    return nullptr;

  *ContainerNeedsDereference = BeginIsArrow;
  return BeginContainerExpr;
}

/// Obtain the original source code text from a SourceRange.
static StringRef getStringFromRange(SourceManager &SourceMgr,
                                    const LangOptions &LangOpts,
                                    SourceRange Range) {
  if (SourceMgr.getFileID(Range.getBegin()) !=
      SourceMgr.getFileID(Range.getEnd())) {
    return StringRef(); // Empty string.
  }

  return Lexer::getSourceText(CharSourceRange(Range, true), SourceMgr,
                              LangOpts);
}

/// If the given expression is actually a DeclRefExpr or a MemberExpr,
/// find and return the underlying ValueDecl; otherwise, return NULL.
static const ValueDecl *getReferencedVariable(const Expr *E) {
  if (const DeclRefExpr *DRE = getDeclRef(E))
    return dyn_cast<VarDecl>(DRE->getDecl());
  if (const auto *Mem = dyn_cast<MemberExpr>(E->IgnoreParenImpCasts()))
    return dyn_cast<FieldDecl>(Mem->getMemberDecl());
  return nullptr;
}

/// Returns true when the given expression is a member expression
/// whose base is `this` (implicitly or not).
static bool isDirectMemberExpr(const Expr *E) {
  if (const auto *Member = dyn_cast<MemberExpr>(E->IgnoreParenImpCasts()))
    return isa<CXXThisExpr>(Member->getBase()->IgnoreParenImpCasts());
  return false;
}

/// Given an expression that represents an usage of an element from the
/// containter that we are iterating over, returns false when it can be
/// guaranteed this element cannot be modified as a result of this usage.
static bool canBeModified(ASTContext *Context, const Expr *E) {
  if (E->getType().isConstQualified())
    return false;
  auto Parents = Context->getParents(*E);
  if (Parents.size() != 1)
    return true;
  if (const auto *Cast = Parents[0].get<ImplicitCastExpr>()) {
    if ((Cast->getCastKind() == CK_NoOp &&
         Cast->getType() == E->getType().withConst()) ||
        (Cast->getCastKind() == CK_LValueToRValue &&
         !Cast->getType().isNull() && Cast->getType()->isFundamentalType()))
      return false;
  }
  // FIXME: Make this function more generic.
  return true;
}

/// Returns true when it can be guaranteed that the elements of the
/// container are not being modified.
static bool usagesAreConst(ASTContext *Context, const UsageResult &Usages) {
  for (const Usage &U : Usages) {
    // Lambda captures are just redeclarations (VarDecl) of the same variable,
    // not expressions. If we want to know if a variable that is captured by
    // reference can be modified in an usage inside the lambda's body, we need
    // to find the expression corresponding to that particular usage, later in
    // this loop.
    if (U.Kind != Usage::UK_CaptureByCopy && U.Kind != Usage::UK_CaptureByRef &&
        canBeModified(Context, U.Expression))
      return false;
  }
  return true;
}

/// Returns true if the elements of the container are never accessed
/// by reference.
static bool usagesReturnRValues(const UsageResult &Usages) {
  for (const auto &U : Usages) {
    if (U.Expression && !U.Expression->isRValue())
      return false;
  }
  return true;
}

/// Returns true if the container is const-qualified.
static bool containerIsConst(const Expr *ContainerExpr, bool Dereference) {
  if (const auto *VDec = getReferencedVariable(ContainerExpr)) {
    QualType CType = VDec->getType();
    if (Dereference) {
      if (!CType->isPointerType())
        return false;
      CType = CType->getPointeeType();
    }
    // If VDec is a reference to a container, Dereference is false,
    // but we still need to check the const-ness of the underlying container
    // type.
    CType = CType.getNonReferenceType();
    return CType.isConstQualified();
  }
  return false;
}

LoopConvertCheck::RangeDescriptor::RangeDescriptor()
    : ContainerNeedsDereference(false), DerefByConstRef(false),
      DerefByValue(false) {}

LoopConvertCheck::LoopConvertCheck(StringRef Name, ClangTidyContext *Context)
    : ClangTidyCheck(Name, Context), TUInfo(new TUTrackingInfo),
      MaxCopySize(Options.get("MaxCopySize", 16ULL)),
      MinConfidence(Options.get("MinConfidence", Confidence::CL_Reasonable)),
      NamingStyle(Options.get("NamingStyle", VariableNamer::NS_CamelCase)) {}

void LoopConvertCheck::storeOptions(ClangTidyOptions::OptionMap &Opts) {
  Options.store(Opts, "MaxCopySize", std::to_string(MaxCopySize));
  Options.store(Opts, "MinConfidence", MinConfidence);
  Options.store(Opts, "NamingStyle", NamingStyle);
}

void LoopConvertCheck::registerMatchers(MatchFinder *Finder) {
  Finder->addMatcher(traverse(ast_type_traits::TK_AsIs, makeArrayLoopMatcher()),
                     this);
  Finder->addMatcher(
      traverse(ast_type_traits::TK_AsIs, makeIteratorLoopMatcher()), this);
  Finder->addMatcher(
      traverse(ast_type_traits::TK_AsIs, makePseudoArrayLoopMatcher()), this);
}

/// Given the range of a single declaration, such as:
/// \code
///   unsigned &ThisIsADeclarationThatCanSpanSeveralLinesOfCode =
///       InitializationValues[I];
///   next_instruction;
/// \endcode
/// Finds the range that has to be erased to remove this declaration without
/// leaving empty lines, by extending the range until the beginning of the
/// next instruction.
///
/// We need to delete a potential newline after the deleted alias, as
/// clang-format will leave empty lines untouched. For all other formatting we
/// rely on clang-format to fix it.
void LoopConvertCheck::getAliasRange(SourceManager &SM, SourceRange &Range) {
  bool Invalid = false;
  const char *TextAfter =
      SM.getCharacterData(Range.getEnd().getLocWithOffset(1), &Invalid);
  if (Invalid)
    return;
  unsigned Offset = std::strspn(TextAfter, " \t\r\n");
  Range =
      SourceRange(Range.getBegin(), Range.getEnd().getLocWithOffset(Offset));
}

/// Computes the changes needed to convert a given for loop, and
/// applies them.
void LoopConvertCheck::doConversion(
    ASTContext *Context, const VarDecl *IndexVar,
    const ValueDecl *MaybeContainer, const UsageResult &Usages,
    const DeclStmt *AliasDecl, bool AliasUseRequired, bool AliasFromForInit,
    const ForStmt *Loop, RangeDescriptor Descriptor) {
  std::string VarName;
  bool VarNameFromAlias = (Usages.size() == 1) && AliasDecl;
  bool AliasVarIsRef = false;
  bool CanCopy = true;
  std::vector<FixItHint> FixIts;
  if (VarNameFromAlias) {
    const auto *AliasVar = cast<VarDecl>(AliasDecl->getSingleDecl());
    VarName = AliasVar->getName().str();

    // Use the type of the alias if it's not the same
    QualType AliasVarType = AliasVar->getType();
    assert(!AliasVarType.isNull() && "Type in VarDecl is null");
    if (AliasVarType->isReferenceType()) {
      AliasVarType = AliasVarType.getNonReferenceType();
      AliasVarIsRef = true;
    }
    if (Descriptor.ElemType.isNull() ||
        !Context->hasSameUnqualifiedType(AliasVarType, Descriptor.ElemType))
      Descriptor.ElemType = AliasVarType;

    // We keep along the entire DeclStmt to keep the correct range here.
    SourceRange ReplaceRange = AliasDecl->getSourceRange();

    std::string ReplacementText;
    if (AliasUseRequired) {
      ReplacementText = VarName;
    } else if (AliasFromForInit) {
      // FIXME: Clang includes the location of the ';' but only for DeclStmt's
      // in a for loop's init clause. Need to put this ';' back while removing
      // the declaration of the alias variable. This is probably a bug.
      ReplacementText = ";";
    } else {
      // Avoid leaving empty lines or trailing whitespaces.
      getAliasRange(Context->getSourceManager(), ReplaceRange);
    }

    FixIts.push_back(FixItHint::CreateReplacement(
        CharSourceRange::getTokenRange(ReplaceRange), ReplacementText));
    // No further replacements are made to the loop, since the iterator or index
    // was used exactly once - in the initialization of AliasVar.
  } else {
    VariableNamer Namer(&TUInfo->getGeneratedDecls(),
                        &TUInfo->getParentFinder().getStmtToParentStmtMap(),
                        Loop, IndexVar, MaybeContainer, Context, NamingStyle);
    VarName = Namer.createIndexName();
    // First, replace all usages of the array subscript expression with our new
    // variable.
    for (const auto &Usage : Usages) {
      std::string ReplaceText;
      SourceRange Range = Usage.Range;
      if (Usage.Expression) {
        // If this is an access to a member through the arrow operator, after
        // the replacement it must be accessed through the '.' operator.
        ReplaceText = Usage.Kind == Usage::UK_MemberThroughArrow ? VarName + "."
                                                                 : VarName;
        auto Parents = Context->getParents(*Usage.Expression);
        if (Parents.size() == 1) {
          if (const auto *Paren = Parents[0].get<ParenExpr>()) {
            // Usage.Expression will be replaced with the new index variable,
            // and parenthesis around a simple DeclRefExpr can always be
            // removed.
            Range = Paren->getSourceRange();
          } else if (const auto *UOP = Parents[0].get<UnaryOperator>()) {
            // If we are taking the address of the loop variable, then we must
            // not use a copy, as it would mean taking the address of the loop's
            // local index instead.
            // FIXME: This won't catch cases where the address is taken outside
            // of the loop's body (for instance, in a function that got the
            // loop's index as a const reference parameter), or where we take
            // the address of a member (like "&Arr[i].A.B.C").
            if (UOP->getOpcode() == UO_AddrOf)
              CanCopy = false;
          }
        }
      } else {
        // The Usage expression is only null in case of lambda captures (which
        // are VarDecl). If the index is captured by value, add '&' to capture
        // by reference instead.
        ReplaceText =
            Usage.Kind == Usage::UK_CaptureByCopy ? "&" + VarName : VarName;
      }
      TUInfo->getReplacedVars().insert(std::make_pair(Loop, IndexVar));
      FixIts.push_back(FixItHint::CreateReplacement(
          CharSourceRange::getTokenRange(Range), ReplaceText));
    }
  }

  // Now, we need to construct the new range expression.
  SourceRange ParenRange(Loop->getLParenLoc(), Loop->getRParenLoc());

  QualType Type = Context->getAutoDeductType();
  if (!Descriptor.ElemType.isNull() && Descriptor.ElemType->isFundamentalType())
    Type = Descriptor.ElemType.getUnqualifiedType();
  Type = Type.getDesugaredType(*Context);

  // If the new variable name is from the aliased variable, then the reference
  // type for the new variable should only be used if the aliased variable was
  // declared as a reference.
  bool IsCheapToCopy =
      !Descriptor.ElemType.isNull() &&
      Descriptor.ElemType.isTriviallyCopyableType(*Context) &&
      // TypeInfo::Width is in bits.
      Context->getTypeInfo(Descriptor.ElemType).Width <= 8 * MaxCopySize;
  bool UseCopy = CanCopy && ((VarNameFromAlias && !AliasVarIsRef) ||
                             (Descriptor.DerefByConstRef && IsCheapToCopy));

  if (!UseCopy) {
    if (Descriptor.DerefByConstRef) {
      Type = Context->getLValueReferenceType(Context->getConstType(Type));
    } else if (Descriptor.DerefByValue) {
      if (!IsCheapToCopy)
        Type = Context->getRValueReferenceType(Type);
    } else {
      Type = Context->getLValueReferenceType(Type);
    }
  }

  StringRef MaybeDereference = Descriptor.ContainerNeedsDereference ? "*" : "";
  std::string TypeString = Type.getAsString(getLangOpts());
  std::string Range = ("(" + TypeString + " " + VarName + " : " +
                       MaybeDereference + Descriptor.ContainerString + ")")
                          .str();
  FixIts.push_back(FixItHint::CreateReplacement(
      CharSourceRange::getTokenRange(ParenRange), Range));
  diag(Loop->getForLoc(), "use range-based for loop instead") << FixIts;
  TUInfo->getGeneratedDecls().insert(make_pair(Loop, VarName));
}

/// Returns a string which refers to the container iterated over.
StringRef LoopConvertCheck::getContainerString(ASTContext *Context,
                                               const ForStmt *Loop,
                                               const Expr *ContainerExpr) {
  StringRef ContainerString;
  ContainerExpr = ContainerExpr->IgnoreParenImpCasts();
  if (isa<CXXThisExpr>(ContainerExpr)) {
    ContainerString = "this";
  } else {
    // For CXXOperatorCallExpr (e.g. vector_ptr->size()), its first argument is
    // the class object (vector_ptr) we are targeting.
    if (const auto* E = dyn_cast<CXXOperatorCallExpr>(ContainerExpr))
      ContainerExpr = E->getArg(0);
    ContainerString =
        getStringFromRange(Context->getSourceManager(), Context->getLangOpts(),
                           ContainerExpr->getSourceRange());
  }

  return ContainerString;
}

/// Determines what kind of 'auto' must be used after converting a for
/// loop that iterates over an array or pseudoarray.
void LoopConvertCheck::getArrayLoopQualifiers(ASTContext *Context,
                                              const BoundNodes &Nodes,
                                              const Expr *ContainerExpr,
                                              const UsageResult &Usages,
                                              RangeDescriptor &Descriptor) {
  // On arrays and pseudoarrays, we must figure out the qualifiers from the
  // usages.
  if (usagesAreConst(Context, Usages) ||
      containerIsConst(ContainerExpr, Descriptor.ContainerNeedsDereference)) {
    Descriptor.DerefByConstRef = true;
  }
  if (usagesReturnRValues(Usages)) {
    // If the index usages (dereference, subscript, at, ...) return rvalues,
    // then we should not use a reference, because we need to keep the code
    // correct if it mutates the returned objects.
    Descriptor.DerefByValue = true;
  }
  // Try to find the type of the elements on the container, to check if
  // they are trivially copyable.
  for (const Usage &U : Usages) {
    if (!U.Expression || U.Expression->getType().isNull())
      continue;
    QualType Type = U.Expression->getType().getCanonicalType();
    if (U.Kind == Usage::UK_MemberThroughArrow) {
      if (!Type->isPointerType()) {
        continue;
      }
      Type = Type->getPointeeType();
    }
    Descriptor.ElemType = Type;
  }
}

/// Determines what kind of 'auto' must be used after converting an
/// iterator based for loop.
void LoopConvertCheck::getIteratorLoopQualifiers(ASTContext *Context,
                                                 const BoundNodes &Nodes,
                                                 RangeDescriptor &Descriptor) {
  // The matchers for iterator loops provide bound nodes to obtain this
  // information.
  const auto *InitVar = Nodes.getNodeAs<VarDecl>(InitVarName);
  QualType CanonicalInitVarType = InitVar->getType().getCanonicalType();
  const auto *DerefByValueType =
      Nodes.getNodeAs<QualType>(DerefByValueResultName);
  Descriptor.DerefByValue = DerefByValueType;

  if (Descriptor.DerefByValue) {
    // If the dereference operator returns by value then test for the
    // canonical const qualification of the init variable type.
    Descriptor.DerefByConstRef = CanonicalInitVarType.isConstQualified();
    Descriptor.ElemType = *DerefByValueType;
  } else {
    if (const auto *DerefType =
            Nodes.getNodeAs<QualType>(DerefByRefResultName)) {
      // A node will only be bound with DerefByRefResultName if we're dealing
      // with a user-defined iterator type. Test the const qualification of
      // the reference type.
      auto ValueType = DerefType->getNonReferenceType();

      Descriptor.DerefByConstRef = ValueType.isConstQualified();
      Descriptor.ElemType = ValueType;
    } else {
      // By nature of the matcher this case is triggered only for built-in
      // iterator types (i.e. pointers).
      assert(isa<PointerType>(CanonicalInitVarType) &&
             "Non-class iterator type is not a pointer type");

      // We test for const qualification of the pointed-at type.
      Descriptor.DerefByConstRef =
          CanonicalInitVarType->getPointeeType().isConstQualified();
      Descriptor.ElemType = CanonicalInitVarType->getPointeeType();
    }
  }
}

/// Determines the parameters needed to build the range replacement.
void LoopConvertCheck::determineRangeDescriptor(
    ASTContext *Context, const BoundNodes &Nodes, const ForStmt *Loop,
    LoopFixerKind FixerKind, const Expr *ContainerExpr,
    const UsageResult &Usages, RangeDescriptor &Descriptor) {
  Descriptor.ContainerString =
      std::string(getContainerString(Context, Loop, ContainerExpr));

  if (FixerKind == LFK_Iterator)
    getIteratorLoopQualifiers(Context, Nodes, Descriptor);
  else
    getArrayLoopQualifiers(Context, Nodes, ContainerExpr, Usages, Descriptor);
}

/// Check some of the conditions that must be met for the loop to be
/// convertible.
bool LoopConvertCheck::isConvertible(ASTContext *Context,
                                     const ast_matchers::BoundNodes &Nodes,
                                     const ForStmt *Loop,
                                     LoopFixerKind FixerKind) {
  // If we already modified the range of this for loop, don't do any further
  // updates on this iteration.
  if (TUInfo->getReplacedVars().count(Loop))
    return false;

  // Check that we have exactly one index variable and at most one end variable.
  const auto *LoopVar = Nodes.getNodeAs<VarDecl>(IncrementVarName);
  const auto *CondVar = Nodes.getNodeAs<VarDecl>(ConditionVarName);
  const auto *InitVar = Nodes.getNodeAs<VarDecl>(InitVarName);
  if (!areSameVariable(LoopVar, CondVar) || !areSameVariable(LoopVar, InitVar))
    return false;
  const auto *EndVar = Nodes.getNodeAs<VarDecl>(EndVarName);
  const auto *ConditionEndVar = Nodes.getNodeAs<VarDecl>(ConditionEndVarName);
  if (EndVar && !areSameVariable(EndVar, ConditionEndVar))
    return false;

  // FIXME: Try to put most of this logic inside a matcher.
  if (FixerKind == LFK_Iterator) {
    QualType InitVarType = InitVar->getType();
    QualType CanonicalInitVarType = InitVarType.getCanonicalType();

    const auto *BeginCall = Nodes.getNodeAs<CXXMemberCallExpr>(BeginCallName);
    assert(BeginCall && "Bad Callback. No begin call expression");
    QualType CanonicalBeginType =
        BeginCall->getMethodDecl()->getReturnType().getCanonicalType();
    if (CanonicalBeginType->isPointerType() &&
        CanonicalInitVarType->isPointerType()) {
      // If the initializer and the variable are both pointers check if the
      // un-qualified pointee types match, otherwise we don't use auto.
      if (!Context->hasSameUnqualifiedType(
              CanonicalBeginType->getPointeeType(),
              CanonicalInitVarType->getPointeeType()))
        return false;
    }
  } else if (FixerKind == LFK_PseudoArray) {
    // This call is required to obtain the container.
    const auto *EndCall = Nodes.getNodeAs<CXXMemberCallExpr>(EndCallName);
    if (!EndCall || !dyn_cast<MemberExpr>(EndCall->getCallee()))
      return false;
  }
  return true;
}

void LoopConvertCheck::check(const MatchFinder::MatchResult &Result) {
  const BoundNodes &Nodes = Result.Nodes;
  Confidence ConfidenceLevel(Confidence::CL_Safe);
  ASTContext *Context = Result.Context;

  const ForStmt *Loop;
  LoopFixerKind FixerKind;
  RangeDescriptor Descriptor;

  if ((Loop = Nodes.getNodeAs<ForStmt>(LoopNameArray))) {
    FixerKind = LFK_Array;
  } else if ((Loop = Nodes.getNodeAs<ForStmt>(LoopNameIterator))) {
    FixerKind = LFK_Iterator;
  } else {
    Loop = Nodes.getNodeAs<ForStmt>(LoopNamePseudoArray);
    assert(Loop && "Bad Callback. No for statement");
    FixerKind = LFK_PseudoArray;
  }

  if (!isConvertible(Context, Nodes, Loop, FixerKind))
    return;

  const auto *LoopVar = Nodes.getNodeAs<VarDecl>(IncrementVarName);
  const auto *EndVar = Nodes.getNodeAs<VarDecl>(EndVarName);

  // If the loop calls end()/size() after each iteration, lower our confidence
  // level.
  if (FixerKind != LFK_Array && !EndVar)
    ConfidenceLevel.lowerTo(Confidence::CL_Reasonable);

  // If the end comparison isn't a variable, we can try to work with the
  // expression the loop variable is being tested against instead.
  const auto *EndCall = Nodes.getNodeAs<CXXMemberCallExpr>(EndCallName);
  const auto *BoundExpr = Nodes.getNodeAs<Expr>(ConditionBoundName);

  // Find container expression of iterators and pseudoarrays, and determine if
  // this expression needs to be dereferenced to obtain the container.
  // With array loops, the container is often discovered during the
  // ForLoopIndexUseVisitor traversal.
  const Expr *ContainerExpr = nullptr;
  if (FixerKind == LFK_Iterator) {
    ContainerExpr = findContainer(Context, LoopVar->getInit(),
                                  EndVar ? EndVar->getInit() : EndCall,
                                  &Descriptor.ContainerNeedsDereference);
  } else if (FixerKind == LFK_PseudoArray) {
    ContainerExpr = EndCall->getImplicitObjectArgument();
    Descriptor.ContainerNeedsDereference =
        dyn_cast<MemberExpr>(EndCall->getCallee())->isArrow();
  }

  // We must know the container or an array length bound.
  if (!ContainerExpr && !BoundExpr)
    return;

  ForLoopIndexUseVisitor Finder(Context, LoopVar, EndVar, ContainerExpr,
                                BoundExpr,
                                Descriptor.ContainerNeedsDereference);

  // Find expressions and variables on which the container depends.
  if (ContainerExpr) {
    ComponentFinderASTVisitor ComponentFinder;
    ComponentFinder.findExprComponents(ContainerExpr->IgnoreParenImpCasts());
    Finder.addComponents(ComponentFinder.getComponents());
  }

  // Find usages of the loop index. If they are not used in a convertible way,
  // stop here.
  if (!Finder.findAndVerifyUsages(Loop->getBody()))
    return;
  ConfidenceLevel.lowerTo(Finder.getConfidenceLevel());

  // Obtain the container expression, if we don't have it yet.
  if (FixerKind == LFK_Array) {
    ContainerExpr = Finder.getContainerIndexed()->IgnoreParenImpCasts();

    // Very few loops are over expressions that generate arrays rather than
    // array variables. Consider loops over arrays that aren't just represented
    // by a variable to be risky conversions.
    if (!getReferencedVariable(ContainerExpr) &&
        !isDirectMemberExpr(ContainerExpr))
      ConfidenceLevel.lowerTo(Confidence::CL_Risky);
  }

  // Find out which qualifiers we have to use in the loop range.
  TraversalKindScope RAII(*Context, ast_type_traits::TK_AsIs);
  const UsageResult &Usages = Finder.getUsages();
  determineRangeDescriptor(Context, Nodes, Loop, FixerKind, ContainerExpr,
                           Usages, Descriptor);

  // Ensure that we do not try to move an expression dependent on a local
  // variable declared inside the loop outside of it.
  // FIXME: Determine when the external dependency isn't an expression converted
  // by another loop.
  TUInfo->getParentFinder().gatherAncestors(*Context);
  DependencyFinderASTVisitor DependencyFinder(
      &TUInfo->getParentFinder().getStmtToParentStmtMap(),
      &TUInfo->getParentFinder().getDeclToParentStmtMap(),
      &TUInfo->getReplacedVars(), Loop);

  if (DependencyFinder.dependsOnInsideVariable(ContainerExpr) ||
      Descriptor.ContainerString.empty() || Usages.empty() ||
      ConfidenceLevel.getLevel() < MinConfidence)
    return;

  doConversion(Context, LoopVar, getReferencedVariable(ContainerExpr), Usages,
               Finder.getAliasDecl(), Finder.aliasUseRequired(),
               Finder.aliasFromForInit(), Loop, Descriptor);
}

} // namespace modernize
} // namespace tidy
} // namespace clang