ExtractVariable.cpp
18.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
//===--- ExtractVariable.cpp ------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ParsedAST.h"
#include "Protocol.h"
#include "Selection.h"
#include "SourceCode.h"
#include "refactor/Tweak.h"
#include "support/Logger.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Tooling/Core/Replacement.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
namespace clang {
namespace clangd {
namespace {
// information regarding the Expr that is being extracted
class ExtractionContext {
public:
ExtractionContext(const SelectionTree::Node *Node, const SourceManager &SM,
const ASTContext &Ctx);
const clang::Expr *getExpr() const { return Expr; }
const SelectionTree::Node *getExprNode() const { return ExprNode; }
bool isExtractable() const { return Extractable; }
// The half-open range for the expression to be extracted.
SourceRange getExtractionChars() const;
// Generate Replacement for replacing selected expression with given VarName
tooling::Replacement replaceWithVar(SourceRange Chars,
llvm::StringRef VarName) const;
// Generate Replacement for declaring the selected Expr as a new variable
tooling::Replacement insertDeclaration(llvm::StringRef VarName,
SourceRange InitChars) const;
private:
bool Extractable = false;
const clang::Expr *Expr;
const SelectionTree::Node *ExprNode;
// Stmt before which we will extract
const clang::Stmt *InsertionPoint = nullptr;
const SourceManager &SM;
const ASTContext &Ctx;
// Decls referenced in the Expr
std::vector<clang::Decl *> ReferencedDecls;
// returns true if the Expr doesn't reference any variable declared in scope
bool exprIsValidOutside(const clang::Stmt *Scope) const;
// computes the Stmt before which we will extract out Expr
const clang::Stmt *computeInsertionPoint() const;
};
// Returns all the Decls referenced inside the given Expr
static std::vector<clang::Decl *>
computeReferencedDecls(const clang::Expr *Expr) {
// RAV subclass to find all DeclRefs in a given Stmt
class FindDeclRefsVisitor
: public clang::RecursiveASTVisitor<FindDeclRefsVisitor> {
public:
std::vector<Decl *> ReferencedDecls;
bool VisitDeclRefExpr(DeclRefExpr *DeclRef) { // NOLINT
ReferencedDecls.push_back(DeclRef->getDecl());
return true;
}
};
FindDeclRefsVisitor Visitor;
Visitor.TraverseStmt(const_cast<Stmt *>(dyn_cast<Stmt>(Expr)));
return Visitor.ReferencedDecls;
}
ExtractionContext::ExtractionContext(const SelectionTree::Node *Node,
const SourceManager &SM,
const ASTContext &Ctx)
: ExprNode(Node), SM(SM), Ctx(Ctx) {
Expr = Node->ASTNode.get<clang::Expr>();
ReferencedDecls = computeReferencedDecls(Expr);
InsertionPoint = computeInsertionPoint();
if (InsertionPoint)
Extractable = true;
}
// checks whether extracting before InsertionPoint will take a
// variable reference out of scope
bool ExtractionContext::exprIsValidOutside(const clang::Stmt *Scope) const {
SourceLocation ScopeBegin = Scope->getBeginLoc();
SourceLocation ScopeEnd = Scope->getEndLoc();
for (const Decl *ReferencedDecl : ReferencedDecls) {
if (SM.isPointWithin(ReferencedDecl->getBeginLoc(), ScopeBegin, ScopeEnd) &&
SM.isPointWithin(ReferencedDecl->getEndLoc(), ScopeBegin, ScopeEnd))
return false;
}
return true;
}
// Return the Stmt before which we need to insert the extraction.
// To find the Stmt, we go up the AST Tree and if the Parent of the current
// Stmt is a CompoundStmt, we can extract inside this CompoundStmt just before
// the current Stmt. We ALWAYS insert before a Stmt whose parent is a
// CompoundStmt
//
// FIXME: Extraction from label, switch and case statements
// FIXME: Doens't work for FoldExpr
// FIXME: Ensure extraction from loops doesn't change semantics.
const clang::Stmt *ExtractionContext::computeInsertionPoint() const {
// returns true if we can extract before InsertionPoint
auto CanExtractOutside =
[](const SelectionTree::Node *InsertionPoint) -> bool {
if (const clang::Stmt *Stmt = InsertionPoint->ASTNode.get<clang::Stmt>()) {
// Allow all expressions except LambdaExpr since we don't want to extract
// from the captures/default arguments of a lambda
if (isa<clang::Expr>(Stmt))
return !isa<LambdaExpr>(Stmt);
// We don't yet allow extraction from switch/case stmt as we would need to
// jump over the switch stmt even if there is a CompoundStmt inside the
// switch. And there are other Stmts which we don't care about (e.g.
// continue and break) as there can never be anything to extract from
// them.
return isa<AttributedStmt>(Stmt) || isa<CompoundStmt>(Stmt) ||
isa<CXXForRangeStmt>(Stmt) || isa<DeclStmt>(Stmt) ||
isa<DoStmt>(Stmt) || isa<ForStmt>(Stmt) || isa<IfStmt>(Stmt) ||
isa<ReturnStmt>(Stmt) || isa<WhileStmt>(Stmt);
}
if (InsertionPoint->ASTNode.get<VarDecl>())
return true;
return false;
};
for (const SelectionTree::Node *CurNode = getExprNode();
CurNode->Parent && CanExtractOutside(CurNode);
CurNode = CurNode->Parent) {
const clang::Stmt *CurInsertionPoint = CurNode->ASTNode.get<Stmt>();
// give up if extraction will take a variable out of scope
if (CurInsertionPoint && !exprIsValidOutside(CurInsertionPoint))
break;
if (const clang::Stmt *CurParent = CurNode->Parent->ASTNode.get<Stmt>()) {
if (isa<CompoundStmt>(CurParent)) {
// Ensure we don't write inside a macro.
if (CurParent->getBeginLoc().isMacroID())
continue;
return CurInsertionPoint;
}
}
}
return nullptr;
}
// returns the replacement for substituting the extraction with VarName
tooling::Replacement
ExtractionContext::replaceWithVar(SourceRange Chars,
llvm::StringRef VarName) const {
unsigned ExtractionLength =
SM.getFileOffset(Chars.getEnd()) - SM.getFileOffset(Chars.getBegin());
return tooling::Replacement(SM, Chars.getBegin(), ExtractionLength, VarName);
}
// returns the Replacement for declaring a new variable storing the extraction
tooling::Replacement
ExtractionContext::insertDeclaration(llvm::StringRef VarName,
SourceRange InitializerChars) const {
llvm::StringRef ExtractionCode = toSourceCode(SM, InitializerChars);
const SourceLocation InsertionLoc =
toHalfOpenFileRange(SM, Ctx.getLangOpts(),
InsertionPoint->getSourceRange())
->getBegin();
// FIXME: Replace auto with explicit type and add &/&& as necessary
std::string ExtractedVarDecl = std::string("auto ") + VarName.str() + " = " +
ExtractionCode.str() + "; ";
return tooling::Replacement(SM, InsertionLoc, 0, ExtractedVarDecl);
}
// Helpers for handling "binary subexpressions" like a + [[b + c]] + d.
//
// These are special, because the formal AST doesn't match what users expect:
// - the AST is ((a + b) + c) + d, so the ancestor expression is `a + b + c`.
// - but extracting `b + c` is reasonable, as + is (mathematically) associative.
//
// So we try to support these cases with some restrictions:
// - the operator must be associative
// - no mixing of operators is allowed
// - we don't look inside macro expansions in the subexpressions
// - we only adjust the extracted range, so references in the unselected parts
// of the AST expression (e.g. `a`) are still considered referenced for
// the purposes of calculating the insertion point.
// FIXME: it would be nice to exclude these references, by micromanaging
// the computeReferencedDecls() calls around the binary operator tree.
// Information extracted about a binary operator encounted in a SelectionTree.
// It can represent either an overloaded or built-in operator.
struct ParsedBinaryOperator {
BinaryOperatorKind Kind;
SourceLocation ExprLoc;
llvm::SmallVector<const SelectionTree::Node*, 8> SelectedOperands;
// If N is a binary operator, populate this and return true.
bool parse(const SelectionTree::Node &N) {
SelectedOperands.clear();
if (const BinaryOperator *Op =
llvm::dyn_cast_or_null<BinaryOperator>(N.ASTNode.get<Expr>())) {
Kind = Op->getOpcode();
ExprLoc = Op->getExprLoc();
SelectedOperands = N.Children;
return true;
}
if (const CXXOperatorCallExpr *Op =
llvm::dyn_cast_or_null<CXXOperatorCallExpr>(
N.ASTNode.get<Expr>())) {
if (!Op->isInfixBinaryOp())
return false;
Kind = BinaryOperator::getOverloadedOpcode(Op->getOperator());
ExprLoc = Op->getExprLoc();
// Not all children are args, there's also the callee (operator).
for (const auto* Child : N.Children) {
const Expr *E = Child->ASTNode.get<Expr>();
assert(E && "callee and args should be Exprs!");
if (E == Op->getArg(0) || E == Op->getArg(1))
SelectedOperands.push_back(Child);
}
return true;
}
return false;
}
bool associative() const {
// Must also be left-associative, or update getBinaryOperatorRange()!
switch (Kind) {
case BO_Add:
case BO_Mul:
case BO_And:
case BO_Or:
case BO_Xor:
case BO_LAnd:
case BO_LOr:
return true;
default:
return false;
}
}
bool crossesMacroBoundary(const SourceManager &SM) {
FileID F = SM.getFileID(ExprLoc);
for (const SelectionTree::Node *Child : SelectedOperands)
if (SM.getFileID(Child->ASTNode.get<Expr>()->getExprLoc()) != F)
return true;
return false;
}
};
// If have an associative operator at the top level, then we must find
// the start point (rightmost in LHS) and end point (leftmost in RHS).
// We can only descend into subtrees where the operator matches.
//
// e.g. for a + [[b + c]] + d
// +
// / \
// N-> + d
// / \
// + c <- End
// / \
// a b <- Start
const SourceRange getBinaryOperatorRange(const SelectionTree::Node &N,
const SourceManager &SM,
const LangOptions &LangOpts) {
// If N is not a suitable binary operator, bail out.
ParsedBinaryOperator Op;
if (!Op.parse(N.ignoreImplicit()) || !Op.associative() ||
Op.crossesMacroBoundary(SM) || Op.SelectedOperands.size() != 2)
return SourceRange();
BinaryOperatorKind OuterOp = Op.Kind;
// Because the tree we're interested in contains only one operator type, and
// all eligible operators are left-associative, the shape of the tree is
// very restricted: it's a linked list along the left edges.
// This simplifies our implementation.
const SelectionTree::Node *Start = Op.SelectedOperands.front(); // LHS
const SelectionTree::Node *End = Op.SelectedOperands.back(); // RHS
// End is already correct: it can't be an OuterOp (as it's left-associative).
// Start needs to be pushed down int the subtree to the right spot.
while (Op.parse(Start->ignoreImplicit()) && Op.Kind == OuterOp &&
!Op.crossesMacroBoundary(SM)) {
assert(!Op.SelectedOperands.empty() && "got only operator on one side!");
if (Op.SelectedOperands.size() == 1) { // Only Op.RHS selected
Start = Op.SelectedOperands.back();
break;
}
// Op.LHS is (at least partially) selected, so descend into it.
Start = Op.SelectedOperands.front();
}
return SourceRange(
toHalfOpenFileRange(SM, LangOpts, Start->ASTNode.getSourceRange())
->getBegin(),
toHalfOpenFileRange(SM, LangOpts, End->ASTNode.getSourceRange())
->getEnd());
}
SourceRange ExtractionContext::getExtractionChars() const {
// Special case: we're extracting an associative binary subexpression.
SourceRange BinaryOperatorRange =
getBinaryOperatorRange(*ExprNode, SM, Ctx.getLangOpts());
if (BinaryOperatorRange.isValid())
return BinaryOperatorRange;
// Usual case: we're extracting the whole expression.
return *toHalfOpenFileRange(SM, Ctx.getLangOpts(), Expr->getSourceRange());
}
// Find the CallExpr whose callee is the (possibly wrapped) DeclRef
const SelectionTree::Node *getCallExpr(const SelectionTree::Node *DeclRef) {
const SelectionTree::Node &MaybeCallee = DeclRef->outerImplicit();
const SelectionTree::Node *MaybeCall = MaybeCallee.Parent;
if (!MaybeCall)
return nullptr;
const CallExpr *CE =
llvm::dyn_cast_or_null<CallExpr>(MaybeCall->ASTNode.get<Expr>());
if (!CE)
return nullptr;
if (CE->getCallee() != MaybeCallee.ASTNode.get<Expr>())
return nullptr;
return MaybeCall;
}
// Returns true if Inner (which is a direct child of Outer) is appearing as
// a statement rather than an expression whose value can be used.
bool childExprIsStmt(const Stmt *Outer, const Expr *Inner) {
if (!Outer || !Inner)
return false;
// Exclude the most common places where an expr can appear but be unused.
if (llvm::isa<CompoundStmt>(Outer))
return true;
if (llvm::isa<SwitchCase>(Outer))
return true;
// Control flow statements use condition etc, but not the body.
if (const auto* WS = llvm::dyn_cast<WhileStmt>(Outer))
return Inner == WS->getBody();
if (const auto* DS = llvm::dyn_cast<DoStmt>(Outer))
return Inner == DS->getBody();
if (const auto* FS = llvm::dyn_cast<ForStmt>(Outer))
return Inner == FS->getBody();
if (const auto* FS = llvm::dyn_cast<CXXForRangeStmt>(Outer))
return Inner == FS->getBody();
if (const auto* IS = llvm::dyn_cast<IfStmt>(Outer))
return Inner == IS->getThen() || Inner == IS->getElse();
// Assume all other cases may be actual expressions.
// This includes the important case of subexpressions (where Outer is Expr).
return false;
}
// check if N can and should be extracted (e.g. is not void-typed).
bool eligibleForExtraction(const SelectionTree::Node *N) {
const Expr *E = N->ASTNode.get<Expr>();
if (!E)
return false;
// Void expressions can't be assigned to variables.
if (const Type *ExprType = E->getType().getTypePtrOrNull())
if (ExprType->isVoidType())
return false;
// A plain reference to a name (e.g. variable) isn't worth extracting.
// FIXME: really? What if it's e.g. `std::is_same<void, void>::value`?
if (llvm::isa<DeclRefExpr>(E) || llvm::isa<MemberExpr>(E))
return false;
// Extracting Exprs like a = 1 gives dummy = a = 1 which isn't useful.
// FIXME: we could still hoist the assignment, and leave the variable there?
ParsedBinaryOperator BinOp;
if (BinOp.parse(*N) && BinaryOperator::isAssignmentOp(BinOp.Kind))
return false;
// We don't want to extract expressions used as statements, that would leave
// a `dummy;` around that has no effect.
// Unfortunately because the AST doesn't have ExprStmt, we have to check in
// this roundabout way.
const SelectionTree::Node &OuterImplicit = N->outerImplicit();
if (!OuterImplicit.Parent ||
childExprIsStmt(OuterImplicit.Parent->ASTNode.get<Stmt>(),
OuterImplicit.ASTNode.get<Expr>()))
return false;
// FIXME: ban extracting the RHS of an assignment: `a = [[foo()]]`
return true;
}
// Find the Expr node that we're going to extract.
// We don't want to trigger for assignment expressions and variable/field
// DeclRefs. For function/member function, we want to extract the entire
// function call.
const SelectionTree::Node *computeExtractedExpr(const SelectionTree::Node *N) {
if (!N)
return nullptr;
const SelectionTree::Node *TargetNode = N;
const clang::Expr *SelectedExpr = N->ASTNode.get<clang::Expr>();
if (!SelectedExpr)
return nullptr;
// For function and member function DeclRefs, extract the whole call.
if (llvm::isa<DeclRefExpr>(SelectedExpr) ||
llvm::isa<MemberExpr>(SelectedExpr))
if (const SelectionTree::Node *Call = getCallExpr(N))
TargetNode = Call;
// Extracting Exprs like a = 1 gives dummy = a = 1 which isn't useful.
if (const BinaryOperator *BinOpExpr =
dyn_cast_or_null<BinaryOperator>(SelectedExpr)) {
if (BinOpExpr->getOpcode() == BinaryOperatorKind::BO_Assign)
return nullptr;
}
if (!TargetNode || !eligibleForExtraction(TargetNode))
return nullptr;
return TargetNode;
}
/// Extracts an expression to the variable dummy
/// Before:
/// int x = 5 + 4 * 3;
/// ^^^^^
/// After:
/// auto dummy = 5 + 4;
/// int x = dummy * 3;
class ExtractVariable : public Tweak {
public:
const char *id() const override final;
bool prepare(const Selection &Inputs) override;
Expected<Effect> apply(const Selection &Inputs) override;
std::string title() const override {
return "Extract subexpression to variable";
}
llvm::StringLiteral kind() const override {
return CodeAction::REFACTOR_KIND;
}
private:
// the expression to extract
std::unique_ptr<ExtractionContext> Target;
};
REGISTER_TWEAK(ExtractVariable)
bool ExtractVariable::prepare(const Selection &Inputs) {
// we don't trigger on empty selections for now
if (Inputs.SelectionBegin == Inputs.SelectionEnd)
return false;
const ASTContext &Ctx = Inputs.AST->getASTContext();
// FIXME: Enable non-C++ cases once we start spelling types explicitly instead
// of making use of auto.
if (!Ctx.getLangOpts().CPlusPlus)
return false;
const SourceManager &SM = Inputs.AST->getSourceManager();
if (const SelectionTree::Node *N =
computeExtractedExpr(Inputs.ASTSelection.commonAncestor()))
Target = std::make_unique<ExtractionContext>(N, SM, Ctx);
return Target && Target->isExtractable();
}
Expected<Tweak::Effect> ExtractVariable::apply(const Selection &Inputs) {
tooling::Replacements Result;
// FIXME: get variable name from user or suggest based on type
std::string VarName = "dummy";
SourceRange Range = Target->getExtractionChars();
// insert new variable declaration
if (auto Err = Result.add(Target->insertDeclaration(VarName, Range)))
return std::move(Err);
// replace expression with variable name
if (auto Err = Result.add(Target->replaceWithVar(Range, VarName)))
return std::move(Err);
return Effect::mainFileEdit(Inputs.AST->getSourceManager(),
std::move(Result));
}
} // namespace
} // namespace clangd
} // namespace clang