dffma.S
13.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
//===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG
#define END(TAG) .size TAG,.-TAG
// Double Precision Multiply
#define A r1:0
#define AH r1
#define AL r0
#define B r3:2
#define BH r3
#define BL r2
#define C r5:4
#define CH r5
#define CL r4
#define BTMP r15:14
#define BTMPH r15
#define BTMPL r14
#define ATMP r13:12
#define ATMPH r13
#define ATMPL r12
#define CTMP r11:10
#define CTMPH r11
#define CTMPL r10
#define PP_LL r9:8
#define PP_LL_H r9
#define PP_LL_L r8
#define PP_ODD r7:6
#define PP_ODD_H r7
#define PP_ODD_L r6
#define PP_HH r17:16
#define PP_HH_H r17
#define PP_HH_L r16
#define EXPA r18
#define EXPB r19
#define EXPBA r19:18
#define TMP r28
#define P_TMP p0
#define PROD_NEG p3
#define EXACT p2
#define SWAP p1
#define MANTBITS 52
#define HI_MANTBITS 20
#define EXPBITS 11
#define BIAS 1023
#define STACKSPACE 32
#define ADJUST 4
#define FUDGE 7
#define FUDGE2 3
#ifndef SR_ROUND_OFF
#define SR_ROUND_OFF 22
#endif
// First, classify for normal values, and abort if abnormal
//
// Next, unpack mantissa into 0x1000_0000_0000_0000 + mant<<8
//
// Since we know that the 2 MSBs of the H registers is zero, we should never carry
// the partial products that involve the H registers
//
// Try to buy X slots, at the expense of latency if needed
//
// We will have PP_HH with the upper bits of the product, PP_LL with the lower
// PP_HH can have a maximum of 0x03FF_FFFF_FFFF_FFFF or thereabouts
// PP_HH can have a minimum of 0x0100_0000_0000_0000
//
// 0x0100_0000_0000_0000 has EXP of EXPA+EXPB-BIAS
//
// We need to align CTMP.
// If CTMP >> PP, convert PP to 64 bit with sticky, align CTMP, and follow normal add
// If CTMP << PP align CTMP and add 128 bits. Then compute sticky
// If CTMP ~= PP, align CTMP and add 128 bits. May have massive cancellation.
//
// Convert partial product and CTMP to 2's complement prior to addition
//
// After we add, we need to normalize into upper 64 bits, then compute sticky.
.text
.global __hexagon_fmadf4
.type __hexagon_fmadf4,@function
.global __hexagon_fmadf5
.type __hexagon_fmadf5,@function
Q6_ALIAS(fmadf5)
.p2align 5
__hexagon_fmadf4:
__hexagon_fmadf5:
.Lfma_begin:
{
P_TMP = dfclass(A,#2)
P_TMP = dfclass(B,#2)
ATMP = #0
BTMP = #0
}
{
ATMP = insert(A,#MANTBITS,#EXPBITS-3)
BTMP = insert(B,#MANTBITS,#EXPBITS-3)
PP_ODD_H = ##0x10000000
allocframe(#STACKSPACE)
}
{
PP_LL = mpyu(ATMPL,BTMPL)
if (!P_TMP) jump .Lfma_abnormal_ab
ATMPH = or(ATMPH,PP_ODD_H)
BTMPH = or(BTMPH,PP_ODD_H)
}
{
P_TMP = dfclass(C,#2)
if (!P_TMP.new) jump:nt .Lfma_abnormal_c
CTMP = combine(PP_ODD_H,#0)
PP_ODD = combine(#0,PP_LL_H)
}
.Lfma_abnormal_c_restart:
{
PP_ODD += mpyu(BTMPL,ATMPH)
CTMP = insert(C,#MANTBITS,#EXPBITS-3)
memd(r29+#0) = PP_HH
memd(r29+#8) = EXPBA
}
{
PP_ODD += mpyu(ATMPL,BTMPH)
EXPBA = neg(CTMP)
P_TMP = cmp.gt(CH,#-1)
TMP = xor(AH,BH)
}
{
EXPA = extractu(AH,#EXPBITS,#HI_MANTBITS)
EXPB = extractu(BH,#EXPBITS,#HI_MANTBITS)
PP_HH = combine(#0,PP_ODD_H)
if (!P_TMP) CTMP = EXPBA
}
{
PP_HH += mpyu(ATMPH,BTMPH)
PP_LL = combine(PP_ODD_L,PP_LL_L)
#undef PP_ODD
#undef PP_ODD_H
#undef PP_ODD_L
#undef ATMP
#undef ATMPL
#undef ATMPH
#undef BTMP
#undef BTMPL
#undef BTMPH
#define RIGHTLEFTSHIFT r13:12
#define RIGHTSHIFT r13
#define LEFTSHIFT r12
EXPA = add(EXPA,EXPB)
#undef EXPB
#undef EXPBA
#define EXPC r19
#define EXPCA r19:18
EXPC = extractu(CH,#EXPBITS,#HI_MANTBITS)
}
// PP_HH:PP_LL now has product
// CTMP is negated
// EXPA,B,C are extracted
// We need to negate PP
// Since we will be adding with carry later, if we need to negate,
// just invert all bits now, which we can do conditionally and in parallel
#define PP_HH_TMP r15:14
#define PP_LL_TMP r7:6
{
EXPA = add(EXPA,#-BIAS+(ADJUST))
PROD_NEG = !cmp.gt(TMP,#-1)
PP_LL_TMP = #0
PP_HH_TMP = #0
}
{
PP_LL_TMP = sub(PP_LL_TMP,PP_LL,PROD_NEG):carry
P_TMP = !cmp.gt(TMP,#-1)
SWAP = cmp.gt(EXPC,EXPA) // If C >> PP
if (SWAP.new) EXPCA = combine(EXPA,EXPC)
}
{
PP_HH_TMP = sub(PP_HH_TMP,PP_HH,PROD_NEG):carry
if (P_TMP) PP_LL = PP_LL_TMP
#undef PP_LL_TMP
#define CTMP2 r7:6
#define CTMP2H r7
#define CTMP2L r6
CTMP2 = #0
EXPC = sub(EXPA,EXPC)
}
{
if (P_TMP) PP_HH = PP_HH_TMP
P_TMP = cmp.gt(EXPC,#63)
if (SWAP) PP_LL = CTMP2
if (SWAP) CTMP2 = PP_LL
}
#undef PP_HH_TMP
//#define ONE r15:14
//#define S_ONE r14
#define ZERO r15:14
#define S_ZERO r15
#undef PROD_NEG
#define P_CARRY p3
{
if (SWAP) PP_HH = CTMP // Swap C and PP
if (SWAP) CTMP = PP_HH
if (P_TMP) EXPC = add(EXPC,#-64)
TMP = #63
}
{
// If diff > 63, pre-shift-right by 64...
if (P_TMP) CTMP2 = CTMP
TMP = asr(CTMPH,#31)
RIGHTSHIFT = min(EXPC,TMP)
LEFTSHIFT = #0
}
#undef C
#undef CH
#undef CL
#define STICKIES r5:4
#define STICKIESH r5
#define STICKIESL r4
{
if (P_TMP) CTMP = combine(TMP,TMP) // sign extension of pre-shift-right-64
STICKIES = extract(CTMP2,RIGHTLEFTSHIFT)
CTMP2 = lsr(CTMP2,RIGHTSHIFT)
LEFTSHIFT = sub(#64,RIGHTSHIFT)
}
{
ZERO = #0
TMP = #-2
CTMP2 |= lsl(CTMP,LEFTSHIFT)
CTMP = asr(CTMP,RIGHTSHIFT)
}
{
P_CARRY = cmp.gtu(STICKIES,ZERO) // If we have sticky bits from C shift
if (P_CARRY.new) CTMP2L = and(CTMP2L,TMP) // make sure adding 1 == OR
#undef ZERO
#define ONE r15:14
#define S_ONE r14
ONE = #1
STICKIES = #0
}
{
PP_LL = add(CTMP2,PP_LL,P_CARRY):carry // use the carry to add the sticky
}
{
PP_HH = add(CTMP,PP_HH,P_CARRY):carry
TMP = #62
}
// PP_HH:PP_LL now holds the sum
// We may need to normalize left, up to ??? bits.
//
// I think that if we have massive cancellation, the range we normalize by
// is still limited
{
LEFTSHIFT = add(clb(PP_HH),#-2)
if (!cmp.eq(LEFTSHIFT.new,TMP)) jump:t 1f // all sign bits?
}
// We had all sign bits, shift left by 62.
{
CTMP = extractu(PP_LL,#62,#2)
PP_LL = asl(PP_LL,#62)
EXPA = add(EXPA,#-62) // And adjust exponent of result
}
{
PP_HH = insert(CTMP,#62,#0) // Then shift 63
}
{
LEFTSHIFT = add(clb(PP_HH),#-2)
}
.falign
1:
{
CTMP = asl(PP_HH,LEFTSHIFT)
STICKIES |= asl(PP_LL,LEFTSHIFT)
RIGHTSHIFT = sub(#64,LEFTSHIFT)
EXPA = sub(EXPA,LEFTSHIFT)
}
{
CTMP |= lsr(PP_LL,RIGHTSHIFT)
EXACT = cmp.gtu(ONE,STICKIES)
TMP = #BIAS+BIAS-2
}
{
if (!EXACT) CTMPL = or(CTMPL,S_ONE)
// If EXPA is overflow/underflow, jump to ovf_unf
P_TMP = !cmp.gt(EXPA,TMP)
P_TMP = cmp.gt(EXPA,#1)
if (!P_TMP.new) jump:nt .Lfma_ovf_unf
}
{
// XXX: FIXME: should PP_HH for check of zero be CTMP?
P_TMP = cmp.gtu(ONE,CTMP) // is result true zero?
A = convert_d2df(CTMP)
EXPA = add(EXPA,#-BIAS-60)
PP_HH = memd(r29+#0)
}
{
AH += asl(EXPA,#HI_MANTBITS)
EXPCA = memd(r29+#8)
if (!P_TMP) dealloc_return // not zero, return
}
.Ladd_yields_zero:
// We had full cancellation. Return +/- zero (-0 when round-down)
{
TMP = USR
A = #0
}
{
TMP = extractu(TMP,#2,#SR_ROUND_OFF)
PP_HH = memd(r29+#0)
EXPCA = memd(r29+#8)
}
{
p0 = cmp.eq(TMP,#2)
if (p0.new) AH = ##0x80000000
dealloc_return
}
#undef RIGHTLEFTSHIFT
#undef RIGHTSHIFT
#undef LEFTSHIFT
#undef CTMP2
#undef CTMP2H
#undef CTMP2L
.Lfma_ovf_unf:
{
p0 = cmp.gtu(ONE,CTMP)
if (p0.new) jump:nt .Ladd_yields_zero
}
{
A = convert_d2df(CTMP)
EXPA = add(EXPA,#-BIAS-60)
TMP = EXPA
}
#define NEW_EXPB r7
#define NEW_EXPA r6
{
AH += asl(EXPA,#HI_MANTBITS)
NEW_EXPB = extractu(AH,#EXPBITS,#HI_MANTBITS)
}
{
NEW_EXPA = add(EXPA,NEW_EXPB)
PP_HH = memd(r29+#0)
EXPCA = memd(r29+#8)
#undef PP_HH
#undef PP_HH_H
#undef PP_HH_L
#undef EXPCA
#undef EXPC
#undef EXPA
#undef PP_LL
#undef PP_LL_H
#undef PP_LL_L
#define EXPA r6
#define EXPB r7
#define EXPBA r7:6
#define ATMP r9:8
#define ATMPH r9
#define ATMPL r8
#undef NEW_EXPB
#undef NEW_EXPA
ATMP = abs(CTMP)
}
{
p0 = cmp.gt(EXPA,##BIAS+BIAS)
if (p0.new) jump:nt .Lfma_ovf
}
{
p0 = cmp.gt(EXPA,#0)
if (p0.new) jump:nt .Lpossible_unf
}
{
// TMP has original EXPA.
// ATMP is corresponding value
// Normalize ATMP and shift right to correct location
EXPB = add(clb(ATMP),#-2) // Amount to left shift to normalize
EXPA = sub(#1+5,TMP) // Amount to right shift to denormalize
p3 = cmp.gt(CTMPH,#-1)
}
// Underflow
// We know that the infinte range exponent should be EXPA
// CTMP is 2's complement, ATMP is abs(CTMP)
{
EXPA = add(EXPA,EXPB) // how much to shift back right
ATMP = asl(ATMP,EXPB) // shift left
AH = USR
TMP = #63
}
{
EXPB = min(EXPA,TMP)
EXPA = #0
AL = #0x0030
}
{
B = extractu(ATMP,EXPBA)
ATMP = asr(ATMP,EXPB)
}
{
p0 = cmp.gtu(ONE,B)
if (!p0.new) ATMPL = or(ATMPL,S_ONE)
ATMPH = setbit(ATMPH,#HI_MANTBITS+FUDGE2)
}
{
CTMP = neg(ATMP)
p1 = bitsclr(ATMPL,#(1<<FUDGE2)-1)
if (!p1.new) AH = or(AH,AL)
B = #0
}
{
if (p3) CTMP = ATMP
USR = AH
TMP = #-BIAS-(MANTBITS+FUDGE2)
}
{
A = convert_d2df(CTMP)
}
{
AH += asl(TMP,#HI_MANTBITS)
dealloc_return
}
.Lpossible_unf:
{
TMP = ##0x7fefffff
ATMP = abs(CTMP)
}
{
p0 = cmp.eq(AL,#0)
p0 = bitsclr(AH,TMP)
if (!p0.new) dealloc_return:t
TMP = #0x7fff
}
{
p0 = bitsset(ATMPH,TMP)
BH = USR
BL = #0x0030
}
{
if (p0) BH = or(BH,BL)
}
{
USR = BH
}
{
p0 = dfcmp.eq(A,A)
dealloc_return
}
.Lfma_ovf:
{
TMP = USR
CTMP = combine(##0x7fefffff,#-1)
A = CTMP
}
{
ATMP = combine(##0x7ff00000,#0)
BH = extractu(TMP,#2,#SR_ROUND_OFF)
TMP = or(TMP,#0x28)
}
{
USR = TMP
BH ^= lsr(AH,#31)
BL = BH
}
{
p0 = !cmp.eq(BL,#1)
p0 = !cmp.eq(BH,#2)
}
{
p0 = dfcmp.eq(ATMP,ATMP)
if (p0.new) CTMP = ATMP
}
{
A = insert(CTMP,#63,#0)
dealloc_return
}
#undef CTMP
#undef CTMPH
#undef CTMPL
#define BTMP r11:10
#define BTMPH r11
#define BTMPL r10
#undef STICKIES
#undef STICKIESH
#undef STICKIESL
#define C r5:4
#define CH r5
#define CL r4
.Lfma_abnormal_ab:
{
ATMP = extractu(A,#63,#0)
BTMP = extractu(B,#63,#0)
deallocframe
}
{
p3 = cmp.gtu(ATMP,BTMP)
if (!p3.new) A = B // sort values
if (!p3.new) B = A
}
{
p0 = dfclass(A,#0x0f) // A NaN?
if (!p0.new) jump:nt .Lnan
if (!p3) ATMP = BTMP
if (!p3) BTMP = ATMP
}
{
p1 = dfclass(A,#0x08) // A is infinity
p1 = dfclass(B,#0x0e) // B is nonzero
}
{
p0 = dfclass(A,#0x08) // a is inf
p0 = dfclass(B,#0x01) // b is zero
}
{
if (p1) jump .Lab_inf
p2 = dfclass(B,#0x01)
}
{
if (p0) jump .Linvalid
if (p2) jump .Lab_true_zero
TMP = ##0x7c000000
}
// We are left with a normal or subnormal times a subnormal, A > B
// If A and B are both very small, we will go to a single sticky bit; replace
// A and B lower 63 bits with 0x0010_0000_0000_0000, which yields equivalent results
// if A and B might multiply to something bigger, decrease A exp and increase B exp
// and start over
{
p0 = bitsclr(AH,TMP)
if (p0.new) jump:nt .Lfma_ab_tiny
}
{
TMP = add(clb(BTMP),#-EXPBITS)
}
{
BTMP = asl(BTMP,TMP)
}
{
B = insert(BTMP,#63,#0)
AH -= asl(TMP,#HI_MANTBITS)
}
jump .Lfma_begin
.Lfma_ab_tiny:
ATMP = combine(##0x00100000,#0)
{
A = insert(ATMP,#63,#0)
B = insert(ATMP,#63,#0)
}
jump .Lfma_begin
.Lab_inf:
{
B = lsr(B,#63)
p0 = dfclass(C,#0x10)
}
{
A ^= asl(B,#63)
if (p0) jump .Lnan
}
{
p1 = dfclass(C,#0x08)
if (p1.new) jump:nt .Lfma_inf_plus_inf
}
// A*B is +/- inf, C is finite. Return A
{
jumpr r31
}
.falign
.Lfma_inf_plus_inf:
{ // adding infinities of different signs is invalid
p0 = dfcmp.eq(A,C)
if (!p0.new) jump:nt .Linvalid
}
{
jumpr r31
}
.Lnan:
{
p0 = dfclass(B,#0x10)
p1 = dfclass(C,#0x10)
if (!p0.new) B = A
if (!p1.new) C = A
}
{ // find sNaNs
BH = convert_df2sf(B)
BL = convert_df2sf(C)
}
{
BH = convert_df2sf(A)
A = #-1
jumpr r31
}
.Linvalid:
{
TMP = ##0x7f800001 // sp snan
}
{
A = convert_sf2df(TMP)
jumpr r31
}
.Lab_true_zero:
// B is zero, A is finite number
{
p0 = dfclass(C,#0x10)
if (p0.new) jump:nt .Lnan
if (p0.new) A = C
}
{
p0 = dfcmp.eq(B,C) // is C also zero?
AH = lsr(AH,#31) // get sign
}
{
BH ^= asl(AH,#31) // form correctly signed zero in B
if (!p0) A = C // If C is not zero, return C
if (!p0) jumpr r31
}
// B has correctly signed zero, C is also zero
.Lzero_plus_zero:
{
p0 = cmp.eq(B,C) // yes, scalar equals. +0++0 or -0+-0
if (p0.new) jumpr:t r31
A = B
}
{
TMP = USR
}
{
TMP = extractu(TMP,#2,#SR_ROUND_OFF)
A = #0
}
{
p0 = cmp.eq(TMP,#2)
if (p0.new) AH = ##0x80000000
jumpr r31
}
#undef BTMP
#undef BTMPH
#undef BTMPL
#define CTMP r11:10
.falign
.Lfma_abnormal_c:
// We know that AB is normal * normal
// C is not normal: zero, subnormal, inf, or NaN.
{
p0 = dfclass(C,#0x10) // is C NaN?
if (p0.new) jump:nt .Lnan
if (p0.new) A = C // move NaN to A
deallocframe
}
{
p0 = dfclass(C,#0x08) // is C inf?
if (p0.new) A = C // return C
if (p0.new) jumpr:nt r31
}
// zero or subnormal
// If we have a zero, and we know AB is normal*normal, we can just call normal multiply
{
p0 = dfclass(C,#0x01) // is C zero?
if (p0.new) jump:nt __hexagon_muldf3
TMP = #1
}
// Left with: subnormal
// Adjust C and jump back to restart
{
allocframe(#STACKSPACE) // oops, deallocated above, re-allocate frame
CTMP = #0
CH = insert(TMP,#EXPBITS,#HI_MANTBITS)
jump .Lfma_abnormal_c_restart
}
END(fma)