tsan_interceptors_posix.cpp 89.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
//===-- tsan_interceptors_posix.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// FIXME: move as many interceptors as possible into
// sanitizer_common/sanitizer_common_interceptors.inc
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_linux.h"
#include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
#include "sanitizer_common/sanitizer_platform_limits_posix.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_posix.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_tls_get_addr.h"
#include "interception/interception.h"
#include "tsan_interceptors.h"
#include "tsan_interface.h"
#include "tsan_platform.h"
#include "tsan_suppressions.h"
#include "tsan_rtl.h"
#include "tsan_mman.h"
#include "tsan_fd.h"

#include <stdarg.h>

using namespace __tsan;

#if SANITIZER_FREEBSD || SANITIZER_MAC
#define stdout __stdoutp
#define stderr __stderrp
#endif

#if SANITIZER_NETBSD
#define dirfd(dirp) (*(int *)(dirp))
#define fileno_unlocked(fp)              \
  (((__sanitizer_FILE *)fp)->_file == -1 \
       ? -1                              \
       : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))

#define stdout ((__sanitizer_FILE*)&__sF[1])
#define stderr ((__sanitizer_FILE*)&__sF[2])

#define nanosleep __nanosleep50
#define vfork __vfork14
#endif

#if SANITIZER_ANDROID
#define mallopt(a, b)
#endif

#ifdef __mips__
const int kSigCount = 129;
#else
const int kSigCount = 65;
#endif

#ifdef __mips__
struct ucontext_t {
  u64 opaque[768 / sizeof(u64) + 1];
};
#else
struct ucontext_t {
  // The size is determined by looking at sizeof of real ucontext_t on linux.
  u64 opaque[936 / sizeof(u64) + 1];
};
#endif

#if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
#define PTHREAD_ABI_BASE  "GLIBC_2.3.2"
#elif defined(__aarch64__) || SANITIZER_PPC64V2
#define PTHREAD_ABI_BASE  "GLIBC_2.17"
#endif

extern "C" int pthread_attr_init(void *attr);
extern "C" int pthread_attr_destroy(void *attr);
DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
extern "C" int pthread_setspecific(unsigned key, const void *v);
DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
extern "C" void *pthread_self();
extern "C" void _exit(int status);
#if !SANITIZER_NETBSD
extern "C" int fileno_unlocked(void *stream);
extern "C" int dirfd(void *dirp);
#endif
#if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_NETBSD
extern "C" int mallopt(int param, int value);
#endif
#if SANITIZER_NETBSD
extern __sanitizer_FILE __sF[];
#else
extern __sanitizer_FILE *stdout, *stderr;
#endif
#if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
const int PTHREAD_MUTEX_RECURSIVE = 1;
const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
#else
const int PTHREAD_MUTEX_RECURSIVE = 2;
const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
#endif
#if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
const int EPOLL_CTL_ADD = 1;
#endif
const int SIGILL = 4;
const int SIGTRAP = 5;
const int SIGABRT = 6;
const int SIGFPE = 8;
const int SIGSEGV = 11;
const int SIGPIPE = 13;
const int SIGTERM = 15;
#if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
const int SIGBUS = 10;
const int SIGSYS = 12;
#else
const int SIGBUS = 7;
const int SIGSYS = 31;
#endif
void *const MAP_FAILED = (void*)-1;
#if SANITIZER_NETBSD
const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
#elif !SANITIZER_MAC
const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
#endif
const int MAP_FIXED = 0x10;
typedef long long_t;
typedef __sanitizer::u16 mode_t;

// From /usr/include/unistd.h
# define F_ULOCK 0      /* Unlock a previously locked region.  */
# define F_LOCK  1      /* Lock a region for exclusive use.  */
# define F_TLOCK 2      /* Test and lock a region for exclusive use.  */
# define F_TEST  3      /* Test a region for other processes locks.  */

#if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
const int SA_SIGINFO = 0x40;
const int SIG_SETMASK = 3;
#elif defined(__mips__)
const int SA_SIGINFO = 8;
const int SIG_SETMASK = 3;
#else
const int SA_SIGINFO = 4;
const int SIG_SETMASK = 2;
#endif

#define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
  (cur_thread_init(), !cur_thread()->is_inited)

namespace __tsan {
struct SignalDesc {
  bool armed;
  bool sigaction;
  __sanitizer_siginfo siginfo;
  ucontext_t ctx;
};

struct ThreadSignalContext {
  int int_signal_send;
  atomic_uintptr_t in_blocking_func;
  atomic_uintptr_t have_pending_signals;
  SignalDesc pending_signals[kSigCount];
  // emptyset and oldset are too big for stack.
  __sanitizer_sigset_t emptyset;
  __sanitizer_sigset_t oldset;
};

// The sole reason tsan wraps atexit callbacks is to establish synchronization
// between callback setup and callback execution.
struct AtExitCtx {
  void (*f)();
  void *arg;
};

// InterceptorContext holds all global data required for interceptors.
// It's explicitly constructed in InitializeInterceptors with placement new
// and is never destroyed. This allows usage of members with non-trivial
// constructors and destructors.
struct InterceptorContext {
  // The object is 64-byte aligned, because we want hot data to be located
  // in a single cache line if possible (it's accessed in every interceptor).
  ALIGNED(64) LibIgnore libignore;
  __sanitizer_sigaction sigactions[kSigCount];
#if !SANITIZER_MAC && !SANITIZER_NETBSD
  unsigned finalize_key;
#endif

  BlockingMutex atexit_mu;
  Vector<struct AtExitCtx *> AtExitStack;

  InterceptorContext()
      : libignore(LINKER_INITIALIZED), AtExitStack() {
  }
};

static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
InterceptorContext *interceptor_ctx() {
  return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
}

LibIgnore *libignore() {
  return &interceptor_ctx()->libignore;
}

void InitializeLibIgnore() {
  const SuppressionContext &supp = *Suppressions();
  const uptr n = supp.SuppressionCount();
  for (uptr i = 0; i < n; i++) {
    const Suppression *s = supp.SuppressionAt(i);
    if (0 == internal_strcmp(s->type, kSuppressionLib))
      libignore()->AddIgnoredLibrary(s->templ);
  }
  if (flags()->ignore_noninstrumented_modules)
    libignore()->IgnoreNoninstrumentedModules(true);
  libignore()->OnLibraryLoaded(0);
}

// The following two hooks can be used by for cooperative scheduling when
// locking.
#ifdef TSAN_EXTERNAL_HOOKS
void OnPotentiallyBlockingRegionBegin();
void OnPotentiallyBlockingRegionEnd();
#else
SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
#endif

}  // namespace __tsan

static ThreadSignalContext *SigCtx(ThreadState *thr) {
  ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
  if (ctx == 0 && !thr->is_dead) {
    ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
    MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
    thr->signal_ctx = ctx;
  }
  return ctx;
}

ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
                                     uptr pc)
    : thr_(thr), pc_(pc), in_ignored_lib_(false), ignoring_(false) {
  Initialize(thr);
  if (!thr_->is_inited) return;
  if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
  DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
  ignoring_ =
      !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
                                libignore()->IsIgnored(pc, &in_ignored_lib_));
  EnableIgnores();
}

ScopedInterceptor::~ScopedInterceptor() {
  if (!thr_->is_inited) return;
  DisableIgnores();
  if (!thr_->ignore_interceptors) {
    ProcessPendingSignals(thr_);
    FuncExit(thr_);
    CheckNoLocks(thr_);
  }
}

void ScopedInterceptor::EnableIgnores() {
  if (ignoring_) {
    ThreadIgnoreBegin(thr_, pc_, /*save_stack=*/false);
    if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports++;
    if (in_ignored_lib_) {
      DCHECK(!thr_->in_ignored_lib);
      thr_->in_ignored_lib = true;
    }
  }
}

void ScopedInterceptor::DisableIgnores() {
  if (ignoring_) {
    ThreadIgnoreEnd(thr_, pc_);
    if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports--;
    if (in_ignored_lib_) {
      DCHECK(thr_->in_ignored_lib);
      thr_->in_ignored_lib = false;
    }
  }
}

#define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
#if SANITIZER_FREEBSD
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
#elif SANITIZER_NETBSD
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
         INTERCEPT_FUNCTION(__libc_##func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
         INTERCEPT_FUNCTION(__libc_thr_##func)
#else
# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
#endif

#define READ_STRING_OF_LEN(thr, pc, s, len, n)                 \
  MemoryAccessRange((thr), (pc), (uptr)(s),                         \
    common_flags()->strict_string_checks ? (len) + 1 : (n), false)

#define READ_STRING(thr, pc, s, n)                             \
    READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))

#define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))

struct BlockingCall {
  explicit BlockingCall(ThreadState *thr)
      : thr(thr)
      , ctx(SigCtx(thr)) {
    for (;;) {
      atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
      if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
        break;
      atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
      ProcessPendingSignals(thr);
    }
    // When we are in a "blocking call", we process signals asynchronously
    // (right when they arrive). In this context we do not expect to be
    // executing any user/runtime code. The known interceptor sequence when
    // this is not true is: pthread_join -> munmap(stack). It's fine
    // to ignore munmap in this case -- we handle stack shadow separately.
    thr->ignore_interceptors++;
  }

  ~BlockingCall() {
    thr->ignore_interceptors--;
    atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
  }

  ThreadState *thr;
  ThreadSignalContext *ctx;
};

TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
  SCOPED_TSAN_INTERCEPTOR(sleep, sec);
  unsigned res = BLOCK_REAL(sleep)(sec);
  AfterSleep(thr, pc);
  return res;
}

TSAN_INTERCEPTOR(int, usleep, long_t usec) {
  SCOPED_TSAN_INTERCEPTOR(usleep, usec);
  int res = BLOCK_REAL(usleep)(usec);
  AfterSleep(thr, pc);
  return res;
}

TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
  SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
  int res = BLOCK_REAL(nanosleep)(req, rem);
  AfterSleep(thr, pc);
  return res;
}

TSAN_INTERCEPTOR(int, pause, int fake) {
  SCOPED_TSAN_INTERCEPTOR(pause, fake);
  return BLOCK_REAL(pause)(fake);
}

static void at_exit_wrapper() {
  AtExitCtx *ctx;
  {
    // Ensure thread-safety.
    BlockingMutexLock l(&interceptor_ctx()->atexit_mu);

    // Pop AtExitCtx from the top of the stack of callback functions
    uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
    ctx = interceptor_ctx()->AtExitStack[element];
    interceptor_ctx()->AtExitStack.PopBack();
  }

  Acquire(cur_thread(), (uptr)0, (uptr)ctx);
  ((void(*)())ctx->f)();
  InternalFree(ctx);
}

static void cxa_at_exit_wrapper(void *arg) {
  Acquire(cur_thread(), 0, (uptr)arg);
  AtExitCtx *ctx = (AtExitCtx*)arg;
  ((void(*)(void *arg))ctx->f)(ctx->arg);
  InternalFree(ctx);
}

static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
      void *arg, void *dso);

#if !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
  if (in_symbolizer())
    return 0;
  // We want to setup the atexit callback even if we are in ignored lib
  // or after fork.
  SCOPED_INTERCEPTOR_RAW(atexit, f);
  return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
}
#endif

TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
  if (in_symbolizer())
    return 0;
  SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
  return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
}

static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
      void *arg, void *dso) {
  AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
  ctx->f = f;
  ctx->arg = arg;
  Release(thr, pc, (uptr)ctx);
  // Memory allocation in __cxa_atexit will race with free during exit,
  // because we do not see synchronization around atexit callback list.
  ThreadIgnoreBegin(thr, pc);
  int res;
  if (!dso) {
    // NetBSD does not preserve the 2nd argument if dso is equal to 0
    // Store ctx in a local stack-like structure

    // Ensure thread-safety.
    BlockingMutexLock l(&interceptor_ctx()->atexit_mu);

    res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_wrapper, 0, 0);
    // Push AtExitCtx on the top of the stack of callback functions
    if (!res) {
      interceptor_ctx()->AtExitStack.PushBack(ctx);
    }
  } else {
    res = REAL(__cxa_atexit)(cxa_at_exit_wrapper, ctx, dso);
  }
  ThreadIgnoreEnd(thr, pc);
  return res;
}

#if !SANITIZER_MAC && !SANITIZER_NETBSD
static void on_exit_wrapper(int status, void *arg) {
  ThreadState *thr = cur_thread();
  uptr pc = 0;
  Acquire(thr, pc, (uptr)arg);
  AtExitCtx *ctx = (AtExitCtx*)arg;
  ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
  InternalFree(ctx);
}

TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
  if (in_symbolizer())
    return 0;
  SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
  AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
  ctx->f = (void(*)())f;
  ctx->arg = arg;
  Release(thr, pc, (uptr)ctx);
  // Memory allocation in __cxa_atexit will race with free during exit,
  // because we do not see synchronization around atexit callback list.
  ThreadIgnoreBegin(thr, pc);
  int res = REAL(on_exit)(on_exit_wrapper, ctx);
  ThreadIgnoreEnd(thr, pc);
  return res;
}
#define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
#else
#define TSAN_MAYBE_INTERCEPT_ON_EXIT
#endif

// Cleanup old bufs.
static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
  for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
    JmpBuf *buf = &thr->jmp_bufs[i];
    if (buf->sp <= sp) {
      uptr sz = thr->jmp_bufs.Size();
      internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
      thr->jmp_bufs.PopBack();
      i--;
    }
  }
}

static void SetJmp(ThreadState *thr, uptr sp) {
  if (!thr->is_inited)  // called from libc guts during bootstrap
    return;
  // Cleanup old bufs.
  JmpBufGarbageCollect(thr, sp);
  // Remember the buf.
  JmpBuf *buf = thr->jmp_bufs.PushBack();
  buf->sp = sp;
  buf->shadow_stack_pos = thr->shadow_stack_pos;
  ThreadSignalContext *sctx = SigCtx(thr);
  buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
  buf->in_blocking_func = sctx ?
      atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
      false;
  buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
      memory_order_relaxed);
}

static void LongJmp(ThreadState *thr, uptr *env) {
  uptr sp = ExtractLongJmpSp(env);
  // Find the saved buf with matching sp.
  for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
    JmpBuf *buf = &thr->jmp_bufs[i];
    if (buf->sp == sp) {
      CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
      // Unwind the stack.
      while (thr->shadow_stack_pos > buf->shadow_stack_pos)
        FuncExit(thr);
      ThreadSignalContext *sctx = SigCtx(thr);
      if (sctx) {
        sctx->int_signal_send = buf->int_signal_send;
        atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
            memory_order_relaxed);
      }
      atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
          memory_order_relaxed);
      JmpBufGarbageCollect(thr, buf->sp - 1);  // do not collect buf->sp
      return;
    }
  }
  Printf("ThreadSanitizer: can't find longjmp buf\n");
  CHECK(0);
}

// FIXME: put everything below into a common extern "C" block?
extern "C" void __tsan_setjmp(uptr sp) {
  cur_thread_init();
  SetJmp(cur_thread(), sp);
}

#if SANITIZER_MAC
TSAN_INTERCEPTOR(int, setjmp, void *env);
TSAN_INTERCEPTOR(int, _setjmp, void *env);
TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
#else  // SANITIZER_MAC

#if SANITIZER_NETBSD
#define setjmp_symname __setjmp14
#define sigsetjmp_symname __sigsetjmp14
#else
#define setjmp_symname setjmp
#define sigsetjmp_symname sigsetjmp
#endif

#define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
#define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
#define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
#define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)

#define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
#define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)

// Not called.  Merely to satisfy TSAN_INTERCEPT().
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int TSAN_INTERCEPTOR_SETJMP(void *env);
extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) {
  CHECK(0);
  return 0;
}

// FIXME: any reason to have a separate declaration?
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int __interceptor__setjmp(void *env);
extern "C" int __interceptor__setjmp(void *env) {
  CHECK(0);
  return 0;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int TSAN_INTERCEPTOR_SIGSETJMP(void *env);
extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) {
  CHECK(0);
  return 0;
}

#if !SANITIZER_NETBSD
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
int __interceptor___sigsetjmp(void *env);
extern "C" int __interceptor___sigsetjmp(void *env) {
  CHECK(0);
  return 0;
}
#endif

extern "C" int setjmp_symname(void *env);
extern "C" int _setjmp(void *env);
extern "C" int sigsetjmp_symname(void *env);
#if !SANITIZER_NETBSD
extern "C" int __sigsetjmp(void *env);
#endif
DEFINE_REAL(int, setjmp_symname, void *env)
DEFINE_REAL(int, _setjmp, void *env)
DEFINE_REAL(int, sigsetjmp_symname, void *env)
#if !SANITIZER_NETBSD
DEFINE_REAL(int, __sigsetjmp, void *env)
#endif
#endif  // SANITIZER_MAC

#if SANITIZER_NETBSD
#define longjmp_symname __longjmp14
#define siglongjmp_symname __siglongjmp14
#else
#define longjmp_symname longjmp
#define siglongjmp_symname siglongjmp
#endif

TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
  // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
  // bad things will happen. We will jump over ScopedInterceptor dtor and can
  // leave thr->in_ignored_lib set.
  {
    SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
  }
  LongJmp(cur_thread(), env);
  REAL(longjmp_symname)(env, val);
}

TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
  {
    SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
  }
  LongJmp(cur_thread(), env);
  REAL(siglongjmp_symname)(env, val);
}

#if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
  {
    SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
  }
  LongJmp(cur_thread(), env);
  REAL(_longjmp)(env, val);
}
#endif

#if !SANITIZER_MAC
TSAN_INTERCEPTOR(void*, malloc, uptr size) {
  if (in_symbolizer())
    return InternalAlloc(size);
  void *p = 0;
  {
    SCOPED_INTERCEPTOR_RAW(malloc, size);
    p = user_alloc(thr, pc, size);
  }
  invoke_malloc_hook(p, size);
  return p;
}

TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
  SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
  return user_memalign(thr, pc, align, sz);
}

TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
  if (in_symbolizer())
    return InternalCalloc(size, n);
  void *p = 0;
  {
    SCOPED_INTERCEPTOR_RAW(calloc, size, n);
    p = user_calloc(thr, pc, size, n);
  }
  invoke_malloc_hook(p, n * size);
  return p;
}

TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
  if (in_symbolizer())
    return InternalRealloc(p, size);
  if (p)
    invoke_free_hook(p);
  {
    SCOPED_INTERCEPTOR_RAW(realloc, p, size);
    p = user_realloc(thr, pc, p, size);
  }
  invoke_malloc_hook(p, size);
  return p;
}

TSAN_INTERCEPTOR(void*, reallocarray, void *p, uptr size, uptr n) {
  if (in_symbolizer())
    return InternalReallocArray(p, size, n);
  if (p)
    invoke_free_hook(p);
  {
    SCOPED_INTERCEPTOR_RAW(reallocarray, p, size, n);
    p = user_reallocarray(thr, pc, p, size, n);
  }
  invoke_malloc_hook(p, size);
  return p;
}

TSAN_INTERCEPTOR(void, free, void *p) {
  if (p == 0)
    return;
  if (in_symbolizer())
    return InternalFree(p);
  invoke_free_hook(p);
  SCOPED_INTERCEPTOR_RAW(free, p);
  user_free(thr, pc, p);
}

TSAN_INTERCEPTOR(void, cfree, void *p) {
  if (p == 0)
    return;
  if (in_symbolizer())
    return InternalFree(p);
  invoke_free_hook(p);
  SCOPED_INTERCEPTOR_RAW(cfree, p);
  user_free(thr, pc, p);
}

TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
  SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
  return user_alloc_usable_size(p);
}
#endif

TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) {
  SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);
  uptr srclen = internal_strlen(src);
  MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
  MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
  return REAL(strcpy)(dst, src);
}

TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
  SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
  uptr srclen = internal_strnlen(src, n);
  MemoryAccessRange(thr, pc, (uptr)dst, n, true);
  MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
  return REAL(strncpy)(dst, src, n);
}

TSAN_INTERCEPTOR(char*, strdup, const char *str) {
  SCOPED_TSAN_INTERCEPTOR(strdup, str);
  // strdup will call malloc, so no instrumentation is required here.
  return REAL(strdup)(str);
}

// Zero out addr if it points into shadow memory and was provided as a hint
// only, i.e., MAP_FIXED is not set.
static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
  if (*addr) {
    if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
      if (flags & MAP_FIXED) {
        errno = errno_EINVAL;
        return false;
      } else {
        *addr = 0;
      }
    }
  }
  return true;
}

template <class Mmap>
static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
                              void *addr, SIZE_T sz, int prot, int flags,
                              int fd, OFF64_T off) {
  if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
  void *res = real_mmap(addr, sz, prot, flags, fd, off);
  if (res != MAP_FAILED) {
    if (fd > 0) FdAccess(thr, pc, fd);
    MemoryRangeImitateWriteOrResetRange(thr, pc, (uptr)res, sz);
  }
  return res;
}

TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
  SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
  UnmapShadow(thr, (uptr)addr, sz);
  int res = REAL(munmap)(addr, sz);
  return res;
}

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
  SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
  return user_memalign(thr, pc, align, sz);
}
#define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
#else
#define TSAN_MAYBE_INTERCEPT_MEMALIGN
#endif

#if !SANITIZER_MAC
TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
  if (in_symbolizer())
    return InternalAlloc(sz, nullptr, align);
  SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
  return user_aligned_alloc(thr, pc, align, sz);
}

TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
  if (in_symbolizer())
    return InternalAlloc(sz, nullptr, GetPageSizeCached());
  SCOPED_INTERCEPTOR_RAW(valloc, sz);
  return user_valloc(thr, pc, sz);
}
#endif

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
  if (in_symbolizer()) {
    uptr PageSize = GetPageSizeCached();
    sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
    return InternalAlloc(sz, nullptr, PageSize);
  }
  SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
  return user_pvalloc(thr, pc, sz);
}
#define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
#else
#define TSAN_MAYBE_INTERCEPT_PVALLOC
#endif

#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
  if (in_symbolizer()) {
    void *p = InternalAlloc(sz, nullptr, align);
    if (!p)
      return errno_ENOMEM;
    *memptr = p;
    return 0;
  }
  SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
  return user_posix_memalign(thr, pc, memptr, align, sz);
}
#endif

// __cxa_guard_acquire and friends need to be intercepted in a special way -
// regular interceptors will break statically-linked libstdc++. Linux
// interceptors are especially defined as weak functions (so that they don't
// cause link errors when user defines them as well). So they silently
// auto-disable themselves when such symbol is already present in the binary. If
// we link libstdc++ statically, it will bring own __cxa_guard_acquire which
// will silently replace our interceptor.  That's why on Linux we simply export
// these interceptors with INTERFACE_ATTRIBUTE.
// On OS X, we don't support statically linking, so we just use a regular
// interceptor.
#if SANITIZER_MAC
#define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
#else
#define STDCXX_INTERCEPTOR(rettype, name, ...) \
  extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
#endif

// Used in thread-safe function static initialization.
STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
  SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
  OnPotentiallyBlockingRegionBegin();
  auto on_exit = at_scope_exit(&OnPotentiallyBlockingRegionEnd);
  for (;;) {
    u32 cmp = atomic_load(g, memory_order_acquire);
    if (cmp == 0) {
      if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
        return 1;
    } else if (cmp == 1) {
      Acquire(thr, pc, (uptr)g);
      return 0;
    } else {
      internal_sched_yield();
    }
  }
}

STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
  SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
  Release(thr, pc, (uptr)g);
  atomic_store(g, 1, memory_order_release);
}

STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
  SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
  atomic_store(g, 0, memory_order_relaxed);
}

namespace __tsan {
void DestroyThreadState() {
  ThreadState *thr = cur_thread();
  Processor *proc = thr->proc();
  ThreadFinish(thr);
  ProcUnwire(proc, thr);
  ProcDestroy(proc);
  DTLS_Destroy();
  cur_thread_finalize();
}

void PlatformCleanUpThreadState(ThreadState *thr) {
  ThreadSignalContext *sctx = thr->signal_ctx;
  if (sctx) {
    thr->signal_ctx = 0;
    UnmapOrDie(sctx, sizeof(*sctx));
  }
}
}  // namespace __tsan

#if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
static void thread_finalize(void *v) {
  uptr iter = (uptr)v;
  if (iter > 1) {
    if (pthread_setspecific(interceptor_ctx()->finalize_key,
        (void*)(iter - 1))) {
      Printf("ThreadSanitizer: failed to set thread key\n");
      Die();
    }
    return;
  }
  DestroyThreadState();
}
#endif


struct ThreadParam {
  void* (*callback)(void *arg);
  void *param;
  atomic_uintptr_t tid;
};

extern "C" void *__tsan_thread_start_func(void *arg) {
  ThreadParam *p = (ThreadParam*)arg;
  void* (*callback)(void *arg) = p->callback;
  void *param = p->param;
  int tid = 0;
  {
    cur_thread_init();
    ThreadState *thr = cur_thread();
    // Thread-local state is not initialized yet.
    ScopedIgnoreInterceptors ignore;
#if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
    ThreadIgnoreBegin(thr, 0);
    if (pthread_setspecific(interceptor_ctx()->finalize_key,
                            (void *)GetPthreadDestructorIterations())) {
      Printf("ThreadSanitizer: failed to set thread key\n");
      Die();
    }
    ThreadIgnoreEnd(thr, 0);
#endif
    while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
      internal_sched_yield();
    Processor *proc = ProcCreate();
    ProcWire(proc, thr);
    ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
    atomic_store(&p->tid, 0, memory_order_release);
  }
  void *res = callback(param);
  // Prevent the callback from being tail called,
  // it mixes up stack traces.
  volatile int foo = 42;
  foo++;
  return res;
}

TSAN_INTERCEPTOR(int, pthread_create,
    void *th, void *attr, void *(*callback)(void*), void * param) {
  SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);

  MaybeSpawnBackgroundThread();

  if (ctx->after_multithreaded_fork) {
    if (flags()->die_after_fork) {
      Report("ThreadSanitizer: starting new threads after multi-threaded "
          "fork is not supported. Dying (set die_after_fork=0 to override)\n");
      Die();
    } else {
      VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
          "fork is not supported (pid %d). Continuing because of "
          "die_after_fork=0, but you are on your own\n", internal_getpid());
    }
  }
  __sanitizer_pthread_attr_t myattr;
  if (attr == 0) {
    pthread_attr_init(&myattr);
    attr = &myattr;
  }
  int detached = 0;
  REAL(pthread_attr_getdetachstate)(attr, &detached);
  AdjustStackSize(attr);

  ThreadParam p;
  p.callback = callback;
  p.param = param;
  atomic_store(&p.tid, 0, memory_order_relaxed);
  int res = -1;
  {
    // Otherwise we see false positives in pthread stack manipulation.
    ScopedIgnoreInterceptors ignore;
    ThreadIgnoreBegin(thr, pc);
    res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
    ThreadIgnoreEnd(thr, pc);
  }
  if (res == 0) {
    int tid = ThreadCreate(thr, pc, *(uptr*)th, IsStateDetached(detached));
    CHECK_NE(tid, 0);
    // Synchronization on p.tid serves two purposes:
    // 1. ThreadCreate must finish before the new thread starts.
    //    Otherwise the new thread can call pthread_detach, but the pthread_t
    //    identifier is not yet registered in ThreadRegistry by ThreadCreate.
    // 2. ThreadStart must finish before this thread continues.
    //    Otherwise, this thread can call pthread_detach and reset thr->sync
    //    before the new thread got a chance to acquire from it in ThreadStart.
    atomic_store(&p.tid, tid, memory_order_release);
    while (atomic_load(&p.tid, memory_order_acquire) != 0)
      internal_sched_yield();
  }
  if (attr == &myattr)
    pthread_attr_destroy(&myattr);
  return res;
}

TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
  SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
  int tid = ThreadConsumeTid(thr, pc, (uptr)th);
  ThreadIgnoreBegin(thr, pc);
  int res = BLOCK_REAL(pthread_join)(th, ret);
  ThreadIgnoreEnd(thr, pc);
  if (res == 0) {
    ThreadJoin(thr, pc, tid);
  }
  return res;
}

DEFINE_REAL_PTHREAD_FUNCTIONS

TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
  SCOPED_INTERCEPTOR_RAW(pthread_detach, th);
  int tid = ThreadConsumeTid(thr, pc, (uptr)th);
  int res = REAL(pthread_detach)(th);
  if (res == 0) {
    ThreadDetach(thr, pc, tid);
  }
  return res;
}

TSAN_INTERCEPTOR(void, pthread_exit, void *retval) {
  {
    SCOPED_INTERCEPTOR_RAW(pthread_exit, retval);
#if !SANITIZER_MAC && !SANITIZER_ANDROID
    CHECK_EQ(thr, &cur_thread_placeholder);
#endif
  }
  REAL(pthread_exit)(retval);
}

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
  SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret);
  int tid = ThreadConsumeTid(thr, pc, (uptr)th);
  ThreadIgnoreBegin(thr, pc);
  int res = REAL(pthread_tryjoin_np)(th, ret);
  ThreadIgnoreEnd(thr, pc);
  if (res == 0)
    ThreadJoin(thr, pc, tid);
  else
    ThreadNotJoined(thr, pc, tid, (uptr)th);
  return res;
}

TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
                 const struct timespec *abstime) {
  SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime);
  int tid = ThreadConsumeTid(thr, pc, (uptr)th);
  ThreadIgnoreBegin(thr, pc);
  int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
  ThreadIgnoreEnd(thr, pc);
  if (res == 0)
    ThreadJoin(thr, pc, tid);
  else
    ThreadNotJoined(thr, pc, tid, (uptr)th);
  return res;
}
#endif

// Problem:
// NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
// pthread_cond_t has different size in the different versions.
// If call new REAL functions for old pthread_cond_t, they will corrupt memory
// after pthread_cond_t (old cond is smaller).
// If we call old REAL functions for new pthread_cond_t, we will lose  some
// functionality (e.g. old functions do not support waiting against
// CLOCK_REALTIME).
// Proper handling would require to have 2 versions of interceptors as well.
// But this is messy, in particular requires linker scripts when sanitizer
// runtime is linked into a shared library.
// Instead we assume we don't have dynamic libraries built against old
// pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
// that allows to work with old libraries (but this mode does not support
// some features, e.g. pthread_condattr_getpshared).
static void *init_cond(void *c, bool force = false) {
  // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
  // So we allocate additional memory on the side large enough to hold
  // any pthread_cond_t object. Always call new REAL functions, but pass
  // the aux object to them.
  // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
  // first word of pthread_cond_t to zero.
  // It's all relevant only for linux.
  if (!common_flags()->legacy_pthread_cond)
    return c;
  atomic_uintptr_t *p = (atomic_uintptr_t*)c;
  uptr cond = atomic_load(p, memory_order_acquire);
  if (!force && cond != 0)
    return (void*)cond;
  void *newcond = WRAP(malloc)(pthread_cond_t_sz);
  internal_memset(newcond, 0, pthread_cond_t_sz);
  if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
      memory_order_acq_rel))
    return newcond;
  WRAP(free)(newcond);
  return (void*)cond;
}

struct CondMutexUnlockCtx {
  ScopedInterceptor *si;
  ThreadState *thr;
  uptr pc;
  void *m;
};

static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
  // pthread_cond_wait interceptor has enabled async signal delivery
  // (see BlockingCall below). Disable async signals since we are running
  // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
  // since the thread is cancelled, so we have to manually execute them
  // (the thread still can run some user code due to pthread_cleanup_push).
  ThreadSignalContext *ctx = SigCtx(arg->thr);
  CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
  atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
  MutexPostLock(arg->thr, arg->pc, (uptr)arg->m, MutexFlagDoPreLockOnPostLock);
  // Undo BlockingCall ctor effects.
  arg->thr->ignore_interceptors--;
  arg->si->~ScopedInterceptor();
}

INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
  void *cond = init_cond(c, true);
  SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
  return REAL(pthread_cond_init)(cond, a);
}

static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
                     int (*fn)(void *c, void *m, void *abstime), void *c,
                     void *m, void *t) {
  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
  MutexUnlock(thr, pc, (uptr)m);
  CondMutexUnlockCtx arg = {si, thr, pc, m};
  int res = 0;
  // This ensures that we handle mutex lock even in case of pthread_cancel.
  // See test/tsan/cond_cancel.cpp.
  {
    // Enable signal delivery while the thread is blocked.
    BlockingCall bc(thr);
    res = call_pthread_cancel_with_cleanup(
        fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
  }
  if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
  MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
  return res;
}

INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
  void *cond = init_cond(c);
  SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
  return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
                                     pthread_cond_wait),
                   cond, m, 0);
}

INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
  void *cond = init_cond(c);
  SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
  return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
                   abstime);
}

#if SANITIZER_MAC
INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
            void *reltime) {
  void *cond = init_cond(c);
  SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
  return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
                   m, reltime);
}
#endif

INTERCEPTOR(int, pthread_cond_signal, void *c) {
  void *cond = init_cond(c);
  SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
  return REAL(pthread_cond_signal)(cond);
}

INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
  void *cond = init_cond(c);
  SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
  return REAL(pthread_cond_broadcast)(cond);
}

INTERCEPTOR(int, pthread_cond_destroy, void *c) {
  void *cond = init_cond(c);
  SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
  int res = REAL(pthread_cond_destroy)(cond);
  if (common_flags()->legacy_pthread_cond) {
    // Free our aux cond and zero the pointer to not leave dangling pointers.
    WRAP(free)(cond);
    atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
  int res = REAL(pthread_mutex_init)(m, a);
  if (res == 0) {
    u32 flagz = 0;
    if (a) {
      int type = 0;
      if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
        if (type == PTHREAD_MUTEX_RECURSIVE ||
            type == PTHREAD_MUTEX_RECURSIVE_NP)
          flagz |= MutexFlagWriteReentrant;
    }
    MutexCreate(thr, pc, (uptr)m, flagz);
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
  int res = REAL(pthread_mutex_destroy)(m);
  if (res == 0 || res == errno_EBUSY) {
    MutexDestroy(thr, pc, (uptr)m);
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
  int res = REAL(pthread_mutex_trylock)(m);
  if (res == errno_EOWNERDEAD)
    MutexRepair(thr, pc, (uptr)m);
  if (res == 0 || res == errno_EOWNERDEAD)
    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
  return res;
}

#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
  int res = REAL(pthread_mutex_timedlock)(m, abstime);
  if (res == 0) {
    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
  }
  return res;
}
#endif

#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
  SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
  int res = REAL(pthread_spin_init)(m, pshared);
  if (res == 0) {
    MutexCreate(thr, pc, (uptr)m);
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
  int res = REAL(pthread_spin_destroy)(m);
  if (res == 0) {
    MutexDestroy(thr, pc, (uptr)m);
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
  MutexPreLock(thr, pc, (uptr)m);
  int res = REAL(pthread_spin_lock)(m);
  if (res == 0) {
    MutexPostLock(thr, pc, (uptr)m);
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
  int res = REAL(pthread_spin_trylock)(m);
  if (res == 0) {
    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
  MutexUnlock(thr, pc, (uptr)m);
  int res = REAL(pthread_spin_unlock)(m);
  return res;
}
#endif

TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
  int res = REAL(pthread_rwlock_init)(m, a);
  if (res == 0) {
    MutexCreate(thr, pc, (uptr)m);
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
  int res = REAL(pthread_rwlock_destroy)(m);
  if (res == 0) {
    MutexDestroy(thr, pc, (uptr)m);
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
  MutexPreReadLock(thr, pc, (uptr)m);
  int res = REAL(pthread_rwlock_rdlock)(m);
  if (res == 0) {
    MutexPostReadLock(thr, pc, (uptr)m);
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
  int res = REAL(pthread_rwlock_tryrdlock)(m);
  if (res == 0) {
    MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
  }
  return res;
}

#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
  int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
  if (res == 0) {
    MutexPostReadLock(thr, pc, (uptr)m);
  }
  return res;
}
#endif

TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
  MutexPreLock(thr, pc, (uptr)m);
  int res = REAL(pthread_rwlock_wrlock)(m);
  if (res == 0) {
    MutexPostLock(thr, pc, (uptr)m);
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
  int res = REAL(pthread_rwlock_trywrlock)(m);
  if (res == 0) {
    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
  }
  return res;
}

#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
  int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
  if (res == 0) {
    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
  }
  return res;
}
#endif

TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
  MutexReadOrWriteUnlock(thr, pc, (uptr)m);
  int res = REAL(pthread_rwlock_unlock)(m);
  return res;
}

#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
  SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
  MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
  int res = REAL(pthread_barrier_init)(b, a, count);
  return res;
}

TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
  SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
  MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
  int res = REAL(pthread_barrier_destroy)(b);
  return res;
}

TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
  SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
  Release(thr, pc, (uptr)b);
  MemoryRead(thr, pc, (uptr)b, kSizeLog1);
  int res = REAL(pthread_barrier_wait)(b);
  MemoryRead(thr, pc, (uptr)b, kSizeLog1);
  if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
    Acquire(thr, pc, (uptr)b);
  }
  return res;
}
#endif

TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
  SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
  if (o == 0 || f == 0)
    return errno_EINVAL;
  atomic_uint32_t *a;

  if (SANITIZER_MAC)
    a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
  else if (SANITIZER_NETBSD)
    a = static_cast<atomic_uint32_t*>
          ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
  else
    a = static_cast<atomic_uint32_t*>(o);

  u32 v = atomic_load(a, memory_order_acquire);
  if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
                                               memory_order_relaxed)) {
    (*f)();
    if (!thr->in_ignored_lib)
      Release(thr, pc, (uptr)o);
    atomic_store(a, 2, memory_order_release);
  } else {
    while (v != 2) {
      internal_sched_yield();
      v = atomic_load(a, memory_order_acquire);
    }
    if (!thr->in_ignored_lib)
      Acquire(thr, pc, (uptr)o);
  }
  return 0;
}

#if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
  SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
  if (fd > 0)
    FdAccess(thr, pc, fd);
  return REAL(__fxstat)(version, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
#else
#define TSAN_MAYBE_INTERCEPT___FXSTAT
#endif

TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
#if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD
  SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
  if (fd > 0)
    FdAccess(thr, pc, fd);
  return REAL(fstat)(fd, buf);
#else
  SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
  if (fd > 0)
    FdAccess(thr, pc, fd);
  return REAL(__fxstat)(0, fd, buf);
#endif
}

#if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
  SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
  if (fd > 0)
    FdAccess(thr, pc, fd);
  return REAL(__fxstat64)(version, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
#else
#define TSAN_MAYBE_INTERCEPT___FXSTAT64
#endif

#if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
  SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
  if (fd > 0)
    FdAccess(thr, pc, fd);
  return REAL(__fxstat64)(0, fd, buf);
}
#define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
#else
#define TSAN_MAYBE_INTERCEPT_FSTAT64
#endif

TSAN_INTERCEPTOR(int, open, const char *name, int oflag, ...) {
  va_list ap;
  va_start(ap, oflag);
  mode_t mode = va_arg(ap, int);
  va_end(ap);
  SCOPED_TSAN_INTERCEPTOR(open, name, oflag, mode);
  READ_STRING(thr, pc, name, 0);
  int fd = REAL(open)(name, oflag, mode);
  if (fd >= 0)
    FdFileCreate(thr, pc, fd);
  return fd;
}

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, open64, const char *name, int oflag, ...) {
  va_list ap;
  va_start(ap, oflag);
  mode_t mode = va_arg(ap, int);
  va_end(ap);
  SCOPED_TSAN_INTERCEPTOR(open64, name, oflag, mode);
  READ_STRING(thr, pc, name, 0);
  int fd = REAL(open64)(name, oflag, mode);
  if (fd >= 0)
    FdFileCreate(thr, pc, fd);
  return fd;
}
#define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
#else
#define TSAN_MAYBE_INTERCEPT_OPEN64
#endif

TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
  SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
  READ_STRING(thr, pc, name, 0);
  int fd = REAL(creat)(name, mode);
  if (fd >= 0)
    FdFileCreate(thr, pc, fd);
  return fd;
}

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
  SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
  READ_STRING(thr, pc, name, 0);
  int fd = REAL(creat64)(name, mode);
  if (fd >= 0)
    FdFileCreate(thr, pc, fd);
  return fd;
}
#define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
#else
#define TSAN_MAYBE_INTERCEPT_CREAT64
#endif

TSAN_INTERCEPTOR(int, dup, int oldfd) {
  SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
  int newfd = REAL(dup)(oldfd);
  if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
    FdDup(thr, pc, oldfd, newfd, true);
  return newfd;
}

TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
  SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
  int newfd2 = REAL(dup2)(oldfd, newfd);
  if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
    FdDup(thr, pc, oldfd, newfd2, false);
  return newfd2;
}

#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
  SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
  int newfd2 = REAL(dup3)(oldfd, newfd, flags);
  if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
    FdDup(thr, pc, oldfd, newfd2, false);
  return newfd2;
}
#endif

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
  SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
  int fd = REAL(eventfd)(initval, flags);
  if (fd >= 0)
    FdEventCreate(thr, pc, fd);
  return fd;
}
#define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
#else
#define TSAN_MAYBE_INTERCEPT_EVENTFD
#endif

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
  SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
  if (fd >= 0)
    FdClose(thr, pc, fd);
  fd = REAL(signalfd)(fd, mask, flags);
  if (fd >= 0)
    FdSignalCreate(thr, pc, fd);
  return fd;
}
#define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
#else
#define TSAN_MAYBE_INTERCEPT_SIGNALFD
#endif

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, inotify_init, int fake) {
  SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
  int fd = REAL(inotify_init)(fake);
  if (fd >= 0)
    FdInotifyCreate(thr, pc, fd);
  return fd;
}
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
#else
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
#endif

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
  SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
  int fd = REAL(inotify_init1)(flags);
  if (fd >= 0)
    FdInotifyCreate(thr, pc, fd);
  return fd;
}
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
#else
#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
#endif

TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
  SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
  int fd = REAL(socket)(domain, type, protocol);
  if (fd >= 0)
    FdSocketCreate(thr, pc, fd);
  return fd;
}

TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
  SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
  int res = REAL(socketpair)(domain, type, protocol, fd);
  if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
    FdPipeCreate(thr, pc, fd[0], fd[1]);
  return res;
}

TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
  SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
  FdSocketConnecting(thr, pc, fd);
  int res = REAL(connect)(fd, addr, addrlen);
  if (res == 0 && fd >= 0)
    FdSocketConnect(thr, pc, fd);
  return res;
}

TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
  SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
  int res = REAL(bind)(fd, addr, addrlen);
  if (fd > 0 && res == 0)
    FdAccess(thr, pc, fd);
  return res;
}

TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
  SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
  int res = REAL(listen)(fd, backlog);
  if (fd > 0 && res == 0)
    FdAccess(thr, pc, fd);
  return res;
}

TSAN_INTERCEPTOR(int, close, int fd) {
  SCOPED_TSAN_INTERCEPTOR(close, fd);
  if (fd >= 0)
    FdClose(thr, pc, fd);
  return REAL(close)(fd);
}

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, __close, int fd) {
  SCOPED_TSAN_INTERCEPTOR(__close, fd);
  if (fd >= 0)
    FdClose(thr, pc, fd);
  return REAL(__close)(fd);
}
#define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
#else
#define TSAN_MAYBE_INTERCEPT___CLOSE
#endif

// glibc guts
#if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
  SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
  int fds[64];
  int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
  for (int i = 0; i < cnt; i++) {
    if (fds[i] > 0)
      FdClose(thr, pc, fds[i]);
  }
  REAL(__res_iclose)(state, free_addr);
}
#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
#else
#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
#endif

TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
  SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
  int res = REAL(pipe)(pipefd);
  if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
    FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
  return res;
}

#if !SANITIZER_MAC
TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
  SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
  int res = REAL(pipe2)(pipefd, flags);
  if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
    FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
  return res;
}
#endif

TSAN_INTERCEPTOR(int, unlink, char *path) {
  SCOPED_TSAN_INTERCEPTOR(unlink, path);
  Release(thr, pc, File2addr(path));
  int res = REAL(unlink)(path);
  return res;
}

TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
  SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
  void *res = REAL(tmpfile)(fake);
  if (res) {
    int fd = fileno_unlocked(res);
    if (fd >= 0)
      FdFileCreate(thr, pc, fd);
  }
  return res;
}

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
  SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
  void *res = REAL(tmpfile64)(fake);
  if (res) {
    int fd = fileno_unlocked(res);
    if (fd >= 0)
      FdFileCreate(thr, pc, fd);
  }
  return res;
}
#define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
#else
#define TSAN_MAYBE_INTERCEPT_TMPFILE64
#endif

static void FlushStreams() {
  // Flushing all the streams here may freeze the process if a child thread is
  // performing file stream operations at the same time.
  REAL(fflush)(stdout);
  REAL(fflush)(stderr);
}

TSAN_INTERCEPTOR(void, abort, int fake) {
  SCOPED_TSAN_INTERCEPTOR(abort, fake);
  FlushStreams();
  REAL(abort)(fake);
}

TSAN_INTERCEPTOR(int, rmdir, char *path) {
  SCOPED_TSAN_INTERCEPTOR(rmdir, path);
  Release(thr, pc, Dir2addr(path));
  int res = REAL(rmdir)(path);
  return res;
}

TSAN_INTERCEPTOR(int, closedir, void *dirp) {
  SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
  if (dirp) {
    int fd = dirfd(dirp);
    FdClose(thr, pc, fd);
  }
  return REAL(closedir)(dirp);
}

#if SANITIZER_LINUX
TSAN_INTERCEPTOR(int, epoll_create, int size) {
  SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
  int fd = REAL(epoll_create)(size);
  if (fd >= 0)
    FdPollCreate(thr, pc, fd);
  return fd;
}

TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
  SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
  int fd = REAL(epoll_create1)(flags);
  if (fd >= 0)
    FdPollCreate(thr, pc, fd);
  return fd;
}

TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
  SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
  if (epfd >= 0)
    FdAccess(thr, pc, epfd);
  if (epfd >= 0 && fd >= 0)
    FdAccess(thr, pc, fd);
  if (op == EPOLL_CTL_ADD && epfd >= 0)
    FdRelease(thr, pc, epfd);
  int res = REAL(epoll_ctl)(epfd, op, fd, ev);
  return res;
}

TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
  SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
  if (epfd >= 0)
    FdAccess(thr, pc, epfd);
  int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
  if (res > 0 && epfd >= 0)
    FdAcquire(thr, pc, epfd);
  return res;
}

TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
                 void *sigmask) {
  SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
  if (epfd >= 0)
    FdAccess(thr, pc, epfd);
  int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
  if (res > 0 && epfd >= 0)
    FdAcquire(thr, pc, epfd);
  return res;
}

#define TSAN_MAYBE_INTERCEPT_EPOLL \
    TSAN_INTERCEPT(epoll_create); \
    TSAN_INTERCEPT(epoll_create1); \
    TSAN_INTERCEPT(epoll_ctl); \
    TSAN_INTERCEPT(epoll_wait); \
    TSAN_INTERCEPT(epoll_pwait)
#else
#define TSAN_MAYBE_INTERCEPT_EPOLL
#endif

// The following functions are intercepted merely to process pending signals.
// If program blocks signal X, we must deliver the signal before the function
// returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
// it's better to deliver the signal straight away.
TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
  SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
  return REAL(sigsuspend)(mask);
}

TSAN_INTERCEPTOR(int, sigblock, int mask) {
  SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
  return REAL(sigblock)(mask);
}

TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
  SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
  return REAL(sigsetmask)(mask);
}

TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
    __sanitizer_sigset_t *oldset) {
  SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
  return REAL(pthread_sigmask)(how, set, oldset);
}

namespace __tsan {

static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
                                  bool sigact, int sig,
                                  __sanitizer_siginfo *info, void *uctx) {
  __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
  if (acquire)
    Acquire(thr, 0, (uptr)&sigactions[sig]);
  // Signals are generally asynchronous, so if we receive a signals when
  // ignores are enabled we should disable ignores. This is critical for sync
  // and interceptors, because otherwise we can miss syncronization and report
  // false races.
  int ignore_reads_and_writes = thr->ignore_reads_and_writes;
  int ignore_interceptors = thr->ignore_interceptors;
  int ignore_sync = thr->ignore_sync;
  if (!ctx->after_multithreaded_fork) {
    thr->ignore_reads_and_writes = 0;
    thr->fast_state.ClearIgnoreBit();
    thr->ignore_interceptors = 0;
    thr->ignore_sync = 0;
  }
  // Ensure that the handler does not spoil errno.
  const int saved_errno = errno;
  errno = 99;
  // This code races with sigaction. Be careful to not read sa_sigaction twice.
  // Also need to remember pc for reporting before the call,
  // because the handler can reset it.
  volatile uptr pc =
      sigact ? (uptr)sigactions[sig].sigaction : (uptr)sigactions[sig].handler;
  if (pc != sig_dfl && pc != sig_ign) {
    if (sigact)
      ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
    else
      ((__sanitizer_sighandler_ptr)pc)(sig);
  }
  if (!ctx->after_multithreaded_fork) {
    thr->ignore_reads_and_writes = ignore_reads_and_writes;
    if (ignore_reads_and_writes)
      thr->fast_state.SetIgnoreBit();
    thr->ignore_interceptors = ignore_interceptors;
    thr->ignore_sync = ignore_sync;
  }
  // We do not detect errno spoiling for SIGTERM,
  // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
  // tsan reports false positive in such case.
  // It's difficult to properly detect this situation (reraise),
  // because in async signal processing case (when handler is called directly
  // from rtl_generic_sighandler) we have not yet received the reraised
  // signal; and it looks too fragile to intercept all ways to reraise a signal.
  if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
    VarSizeStackTrace stack;
    // StackTrace::GetNestInstructionPc(pc) is used because return address is
    // expected, OutputReport() will undo this.
    ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
    ThreadRegistryLock l(ctx->thread_registry);
    ScopedReport rep(ReportTypeErrnoInSignal);
    if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
      rep.AddStack(stack, true);
      OutputReport(thr, rep);
    }
  }
  errno = saved_errno;
}

void ProcessPendingSignals(ThreadState *thr) {
  ThreadSignalContext *sctx = SigCtx(thr);
  if (sctx == 0 ||
      atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
    return;
  atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
  atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
  internal_sigfillset(&sctx->emptyset);
  int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
  CHECK_EQ(res, 0);
  for (int sig = 0; sig < kSigCount; sig++) {
    SignalDesc *signal = &sctx->pending_signals[sig];
    if (signal->armed) {
      signal->armed = false;
      CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
          &signal->siginfo, &signal->ctx);
    }
  }
  res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
  CHECK_EQ(res, 0);
  atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
}

}  // namespace __tsan

static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
  return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP ||
         sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
         // If we are sending signal to ourselves, we must process it now.
         (sctx && sig == sctx->int_signal_send);
}

void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
                                          __sanitizer_siginfo *info,
                                          void *ctx) {
  cur_thread_init();
  ThreadState *thr = cur_thread();
  ThreadSignalContext *sctx = SigCtx(thr);
  if (sig < 0 || sig >= kSigCount) {
    VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
    return;
  }
  // Don't mess with synchronous signals.
  const bool sync = is_sync_signal(sctx, sig);
  if (sync ||
      // If we are in blocking function, we can safely process it now
      // (but check if we are in a recursive interceptor,
      // i.e. pthread_join()->munmap()).
      (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
    atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
    if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
      atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
      CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
      atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
    } else {
      // Be very conservative with when we do acquire in this case.
      // It's unsafe to do acquire in async handlers, because ThreadState
      // can be in inconsistent state.
      // SIGSYS looks relatively safe -- it's synchronous and can actually
      // need some global state.
      bool acq = (sig == SIGSYS);
      CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
    }
    atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
    return;
  }

  if (sctx == 0)
    return;
  SignalDesc *signal = &sctx->pending_signals[sig];
  if (signal->armed == false) {
    signal->armed = true;
    signal->sigaction = sigact;
    if (info)
      internal_memcpy(&signal->siginfo, info, sizeof(*info));
    if (ctx)
      internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
    atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
  }
}

static void rtl_sighandler(int sig) {
  rtl_generic_sighandler(false, sig, 0, 0);
}

static void rtl_sigaction(int sig, __sanitizer_siginfo *info, void *ctx) {
  rtl_generic_sighandler(true, sig, info, ctx);
}

TSAN_INTERCEPTOR(int, raise, int sig) {
  SCOPED_TSAN_INTERCEPTOR(raise, sig);
  ThreadSignalContext *sctx = SigCtx(thr);
  CHECK_NE(sctx, 0);
  int prev = sctx->int_signal_send;
  sctx->int_signal_send = sig;
  int res = REAL(raise)(sig);
  CHECK_EQ(sctx->int_signal_send, sig);
  sctx->int_signal_send = prev;
  return res;
}

TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
  SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
  ThreadSignalContext *sctx = SigCtx(thr);
  CHECK_NE(sctx, 0);
  int prev = sctx->int_signal_send;
  if (pid == (int)internal_getpid()) {
    sctx->int_signal_send = sig;
  }
  int res = REAL(kill)(pid, sig);
  if (pid == (int)internal_getpid()) {
    CHECK_EQ(sctx->int_signal_send, sig);
    sctx->int_signal_send = prev;
  }
  return res;
}

TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
  SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
  ThreadSignalContext *sctx = SigCtx(thr);
  CHECK_NE(sctx, 0);
  int prev = sctx->int_signal_send;
  if (tid == pthread_self()) {
    sctx->int_signal_send = sig;
  }
  int res = REAL(pthread_kill)(tid, sig);
  if (tid == pthread_self()) {
    CHECK_EQ(sctx->int_signal_send, sig);
    sctx->int_signal_send = prev;
  }
  return res;
}

TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
  SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
  // It's intercepted merely to process pending signals.
  return REAL(gettimeofday)(tv, tz);
}

TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
    void *hints, void *rv) {
  SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
  // We miss atomic synchronization in getaddrinfo,
  // and can report false race between malloc and free
  // inside of getaddrinfo. So ignore memory accesses.
  ThreadIgnoreBegin(thr, pc);
  int res = REAL(getaddrinfo)(node, service, hints, rv);
  ThreadIgnoreEnd(thr, pc);
  return res;
}

TSAN_INTERCEPTOR(int, fork, int fake) {
  if (in_symbolizer())
    return REAL(fork)(fake);
  SCOPED_INTERCEPTOR_RAW(fork, fake);
  ForkBefore(thr, pc);
  int pid;
  {
    // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
    // we'll assert in CheckNoLocks() unless we ignore interceptors.
    ScopedIgnoreInterceptors ignore;
    pid = REAL(fork)(fake);
  }
  if (pid == 0) {
    // child
    ForkChildAfter(thr, pc);
    FdOnFork(thr, pc);
  } else if (pid > 0) {
    // parent
    ForkParentAfter(thr, pc);
  } else {
    // error
    ForkParentAfter(thr, pc);
  }
  return pid;
}

TSAN_INTERCEPTOR(int, vfork, int fake) {
  // Some programs (e.g. openjdk) call close for all file descriptors
  // in the child process. Under tsan it leads to false positives, because
  // address space is shared, so the parent process also thinks that
  // the descriptors are closed (while they are actually not).
  // This leads to false positives due to missed synchronization.
  // Strictly saying this is undefined behavior, because vfork child is not
  // allowed to call any functions other than exec/exit. But this is what
  // openjdk does, so we want to handle it.
  // We could disable interceptors in the child process. But it's not possible
  // to simply intercept and wrap vfork, because vfork child is not allowed
  // to return from the function that calls vfork, and that's exactly what
  // we would do. So this would require some assembly trickery as well.
  // Instead we simply turn vfork into fork.
  return WRAP(fork)(fake);
}

#if !SANITIZER_MAC && !SANITIZER_ANDROID
typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
                                    void *data);
struct dl_iterate_phdr_data {
  ThreadState *thr;
  uptr pc;
  dl_iterate_phdr_cb_t cb;
  void *data;
};

static bool IsAppNotRodata(uptr addr) {
  return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
}

static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
                              void *data) {
  dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
  // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
  // accessible in dl_iterate_phdr callback. But we don't see synchronization
  // inside of dynamic linker, so we "unpoison" it here in order to not
  // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
  // because some libc functions call __libc_dlopen.
  if (info && IsAppNotRodata((uptr)info->dlpi_name))
    MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
                     internal_strlen(info->dlpi_name));
  int res = cbdata->cb(info, size, cbdata->data);
  // Perform the check one more time in case info->dlpi_name was overwritten
  // by user callback.
  if (info && IsAppNotRodata((uptr)info->dlpi_name))
    MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
                     internal_strlen(info->dlpi_name));
  return res;
}

TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
  SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
  dl_iterate_phdr_data cbdata;
  cbdata.thr = thr;
  cbdata.pc = pc;
  cbdata.cb = cb;
  cbdata.data = data;
  int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
  return res;
}
#endif

static int OnExit(ThreadState *thr) {
  int status = Finalize(thr);
  FlushStreams();
  return status;
}

struct TsanInterceptorContext {
  ThreadState *thr;
  const uptr caller_pc;
  const uptr pc;
};

#if !SANITIZER_MAC
static void HandleRecvmsg(ThreadState *thr, uptr pc,
    __sanitizer_msghdr *msg) {
  int fds[64];
  int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
  for (int i = 0; i < cnt; i++)
    FdEventCreate(thr, pc, fds[i]);
}
#endif

#include "sanitizer_common/sanitizer_platform_interceptors.h"
// Causes interceptor recursion (getaddrinfo() and fopen())
#undef SANITIZER_INTERCEPT_GETADDRINFO
// We define our own.
#if SANITIZER_INTERCEPT_TLS_GET_ADDR
#define NEED_TLS_GET_ADDR
#endif
#undef SANITIZER_INTERCEPT_TLS_GET_ADDR
#undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK

#define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
#define COMMON_INTERCEPT_FUNCTION_VER(name, ver)                          \
  INTERCEPT_FUNCTION_VER(name, ver)

#define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size)                    \
  MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr,                 \
                    ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
                    true)

#define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size)                       \
  MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr,                  \
                    ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
                    false)

#define COMMON_INTERCEPTOR_ENTER(ctx, func, ...)      \
  SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__);         \
  TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
  ctx = (void *)&_ctx;                                \
  (void) ctx;

#define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
  SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__);              \
  TsanInterceptorContext _ctx = {thr, caller_pc, pc};     \
  ctx = (void *)&_ctx;                                    \
  (void) ctx;

#define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
  if (path)                                           \
    Acquire(thr, pc, File2addr(path));                \
  if (file) {                                         \
    int fd = fileno_unlocked(file);                   \
    if (fd >= 0) FdFileCreate(thr, pc, fd);           \
  }

#define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
  if (file) {                                    \
    int fd = fileno_unlocked(file);              \
    if (fd >= 0) FdClose(thr, pc, fd);           \
  }

#define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
  libignore()->OnLibraryLoaded(filename)

#define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
  libignore()->OnLibraryUnloaded()

#define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
  Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)

#define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
  Release(((TsanInterceptorContext *) ctx)->thr, pc, u)

#define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
  Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))

#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
  FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)

#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
  FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)

#define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
  FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)

#define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
  FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)

#define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
  ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)

#define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
  __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)

#define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)

#define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
  OnExit(((TsanInterceptorContext *) ctx)->thr)

#define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
  MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
            ((TsanInterceptorContext *)ctx)->pc, (uptr)m)

#define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
  MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
            ((TsanInterceptorContext *)ctx)->pc, (uptr)m)

#define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
  MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
            ((TsanInterceptorContext *)ctx)->pc, (uptr)m)

#define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
  MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
            ((TsanInterceptorContext *)ctx)->pc, (uptr)m)

#define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
  MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
                     ((TsanInterceptorContext *)ctx)->pc, (uptr)m)

#define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd,  \
                                     off)                                   \
  do {                                                                      \
    return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
                            off);                                           \
  } while (false)

#if !SANITIZER_MAC
#define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
  HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
      ((TsanInterceptorContext *)ctx)->pc, msg)
#endif

#define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end)                           \
  if (TsanThread *t = GetCurrentThread()) {                                    \
    *begin = t->tls_begin();                                                   \
    *end = t->tls_end();                                                       \
  } else {                                                                     \
    *begin = *end = 0;                                                         \
  }

#define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
  SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()

#define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
  SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()

#include "sanitizer_common/sanitizer_common_interceptors.inc"

static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
                          __sanitizer_sigaction *old);
static __sanitizer_sighandler_ptr signal_impl(int sig,
                                              __sanitizer_sighandler_ptr h);

#define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
  { return sigaction_impl(signo, act, oldact); }

#define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
  { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }

#include "sanitizer_common/sanitizer_signal_interceptors.inc"

int sigaction_impl(int sig, const __sanitizer_sigaction *act,
                   __sanitizer_sigaction *old) {
  // Note: if we call REAL(sigaction) directly for any reason without proxying
  // the signal handler through rtl_sigaction, very bad things will happen.
  // The handler will run synchronously and corrupt tsan per-thread state.
  SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
  __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
  __sanitizer_sigaction old_stored;
  if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
  __sanitizer_sigaction newact;
  if (act) {
    // Copy act into sigactions[sig].
    // Can't use struct copy, because compiler can emit call to memcpy.
    // Can't use internal_memcpy, because it copies byte-by-byte,
    // and signal handler reads the handler concurrently. It it can read
    // some bytes from old value and some bytes from new value.
    // Use volatile to prevent insertion of memcpy.
    sigactions[sig].handler =
        *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
    sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
    internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
                    sizeof(sigactions[sig].sa_mask));
#if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
    sigactions[sig].sa_restorer = act->sa_restorer;
#endif
    internal_memcpy(&newact, act, sizeof(newact));
    internal_sigfillset(&newact.sa_mask);
    if ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl) {
      if (newact.sa_flags & SA_SIGINFO)
        newact.sigaction = rtl_sigaction;
      else
        newact.handler = rtl_sighandler;
    }
    ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
    act = &newact;
  }
  int res = REAL(sigaction)(sig, act, old);
  if (res == 0 && old) {
    uptr cb = (uptr)old->sigaction;
    if (cb == (uptr)rtl_sigaction || cb == (uptr)rtl_sighandler) {
      internal_memcpy(old, &old_stored, sizeof(*old));
    }
  }
  return res;
}

static __sanitizer_sighandler_ptr signal_impl(int sig,
                                              __sanitizer_sighandler_ptr h) {
  __sanitizer_sigaction act;
  act.handler = h;
  internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
  act.sa_flags = 0;
  __sanitizer_sigaction old;
  int res = sigaction_symname(sig, &act, &old);
  if (res) return (__sanitizer_sighandler_ptr)sig_err;
  return old.handler;
}

#define TSAN_SYSCALL() \
  ThreadState *thr = cur_thread(); \
  if (thr->ignore_interceptors) \
    return; \
  ScopedSyscall scoped_syscall(thr) \
/**/

struct ScopedSyscall {
  ThreadState *thr;

  explicit ScopedSyscall(ThreadState *thr)
      : thr(thr) {
    Initialize(thr);
  }

  ~ScopedSyscall() {
    ProcessPendingSignals(thr);
  }
};

#if !SANITIZER_FREEBSD && !SANITIZER_MAC
static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
  TSAN_SYSCALL();
  MemoryAccessRange(thr, pc, p, s, write);
}

static void syscall_acquire(uptr pc, uptr addr) {
  TSAN_SYSCALL();
  Acquire(thr, pc, addr);
  DPrintf("syscall_acquire(%p)\n", addr);
}

static void syscall_release(uptr pc, uptr addr) {
  TSAN_SYSCALL();
  DPrintf("syscall_release(%p)\n", addr);
  Release(thr, pc, addr);
}

static void syscall_fd_close(uptr pc, int fd) {
  TSAN_SYSCALL();
  FdClose(thr, pc, fd);
}

static USED void syscall_fd_acquire(uptr pc, int fd) {
  TSAN_SYSCALL();
  FdAcquire(thr, pc, fd);
  DPrintf("syscall_fd_acquire(%p)\n", fd);
}

static USED void syscall_fd_release(uptr pc, int fd) {
  TSAN_SYSCALL();
  DPrintf("syscall_fd_release(%p)\n", fd);
  FdRelease(thr, pc, fd);
}

static void syscall_pre_fork(uptr pc) {
  TSAN_SYSCALL();
  ForkBefore(thr, pc);
}

static void syscall_post_fork(uptr pc, int pid) {
  TSAN_SYSCALL();
  if (pid == 0) {
    // child
    ForkChildAfter(thr, pc);
    FdOnFork(thr, pc);
  } else if (pid > 0) {
    // parent
    ForkParentAfter(thr, pc);
  } else {
    // error
    ForkParentAfter(thr, pc);
  }
}
#endif

#define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
  syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)

#define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
  syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)

#define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
  do {                                       \
    (void)(p);                               \
    (void)(s);                               \
  } while (false)

#define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
  do {                                        \
    (void)(p);                                \
    (void)(s);                                \
  } while (false)

#define COMMON_SYSCALL_ACQUIRE(addr) \
    syscall_acquire(GET_CALLER_PC(), (uptr)(addr))

#define COMMON_SYSCALL_RELEASE(addr) \
    syscall_release(GET_CALLER_PC(), (uptr)(addr))

#define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)

#define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)

#define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)

#define COMMON_SYSCALL_PRE_FORK() \
  syscall_pre_fork(GET_CALLER_PC())

#define COMMON_SYSCALL_POST_FORK(res) \
  syscall_post_fork(GET_CALLER_PC(), res)

#include "sanitizer_common/sanitizer_common_syscalls.inc"
#include "sanitizer_common/sanitizer_syscalls_netbsd.inc"

#ifdef NEED_TLS_GET_ADDR
// Define own interceptor instead of sanitizer_common's for three reasons:
// 1. It must not process pending signals.
//    Signal handlers may contain MOVDQA instruction (see below).
// 2. It must be as simple as possible to not contain MOVDQA.
// 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
//    is empty for tsan (meant only for msan).
// Note: __tls_get_addr can be called with mis-aligned stack due to:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
// So the interceptor must work with mis-aligned stack, in particular, does not
// execute MOVDQA with stack addresses.
TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
  void *res = REAL(__tls_get_addr)(arg);
  ThreadState *thr = cur_thread();
  if (!thr)
    return res;
  DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
                                        thr->tls_addr + thr->tls_size);
  if (!dtv)
    return res;
  // New DTLS block has been allocated.
  MemoryResetRange(thr, 0, dtv->beg, dtv->size);
  return res;
}
#endif

#if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void, _lwp_exit) {
  SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
  DestroyThreadState();
  REAL(_lwp_exit)();
}
#define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
#else
#define TSAN_MAYBE_INTERCEPT__LWP_EXIT
#endif

#if SANITIZER_FREEBSD
TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
  SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
  DestroyThreadState();
  REAL(thr_exit(state));
}
#define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
#else
#define TSAN_MAYBE_INTERCEPT_THR_EXIT
#endif

TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
  void *c)

namespace __tsan {

static void finalize(void *arg) {
  ThreadState *thr = cur_thread();
  int status = Finalize(thr);
  // Make sure the output is not lost.
  FlushStreams();
  if (status)
    Die();
}

#if !SANITIZER_MAC && !SANITIZER_ANDROID
static void unreachable() {
  Report("FATAL: ThreadSanitizer: unreachable called\n");
  Die();
}
#endif

// Define default implementation since interception of libdispatch  is optional.
SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {}

void InitializeInterceptors() {
#if !SANITIZER_MAC
  // We need to setup it early, because functions like dlsym() can call it.
  REAL(memset) = internal_memset;
  REAL(memcpy) = internal_memcpy;
#endif

  // Instruct libc malloc to consume less memory.
#if SANITIZER_LINUX
  mallopt(1, 0);  // M_MXFAST
  mallopt(-3, 32*1024);  // M_MMAP_THRESHOLD
#endif

  new(interceptor_ctx()) InterceptorContext();

  InitializeCommonInterceptors();
  InitializeSignalInterceptors();
  InitializeLibdispatchInterceptors();

#if !SANITIZER_MAC
  // We can not use TSAN_INTERCEPT to get setjmp addr,
  // because it does &setjmp and setjmp is not present in some versions of libc.
  using __interception::InterceptFunction;
  InterceptFunction(TSAN_STRING_SETJMP, (uptr*)&REAL(setjmp_symname), 0, 0);
  InterceptFunction("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
  InterceptFunction(TSAN_STRING_SIGSETJMP, (uptr*)&REAL(sigsetjmp_symname), 0,
                    0);
#if !SANITIZER_NETBSD
  InterceptFunction("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
#endif
#endif

  TSAN_INTERCEPT(longjmp_symname);
  TSAN_INTERCEPT(siglongjmp_symname);
#if SANITIZER_NETBSD
  TSAN_INTERCEPT(_longjmp);
#endif

  TSAN_INTERCEPT(malloc);
  TSAN_INTERCEPT(__libc_memalign);
  TSAN_INTERCEPT(calloc);
  TSAN_INTERCEPT(realloc);
  TSAN_INTERCEPT(reallocarray);
  TSAN_INTERCEPT(free);
  TSAN_INTERCEPT(cfree);
  TSAN_INTERCEPT(munmap);
  TSAN_MAYBE_INTERCEPT_MEMALIGN;
  TSAN_INTERCEPT(valloc);
  TSAN_MAYBE_INTERCEPT_PVALLOC;
  TSAN_INTERCEPT(posix_memalign);

  TSAN_INTERCEPT(strcpy);
  TSAN_INTERCEPT(strncpy);
  TSAN_INTERCEPT(strdup);

  TSAN_INTERCEPT(pthread_create);
  TSAN_INTERCEPT(pthread_join);
  TSAN_INTERCEPT(pthread_detach);
  TSAN_INTERCEPT(pthread_exit);
  #if SANITIZER_LINUX
  TSAN_INTERCEPT(pthread_tryjoin_np);
  TSAN_INTERCEPT(pthread_timedjoin_np);
  #endif

  TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
  TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
  TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
  TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
  TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
  TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);

  TSAN_INTERCEPT(pthread_mutex_init);
  TSAN_INTERCEPT(pthread_mutex_destroy);
  TSAN_INTERCEPT(pthread_mutex_trylock);
  TSAN_INTERCEPT(pthread_mutex_timedlock);

  TSAN_INTERCEPT(pthread_spin_init);
  TSAN_INTERCEPT(pthread_spin_destroy);
  TSAN_INTERCEPT(pthread_spin_lock);
  TSAN_INTERCEPT(pthread_spin_trylock);
  TSAN_INTERCEPT(pthread_spin_unlock);

  TSAN_INTERCEPT(pthread_rwlock_init);
  TSAN_INTERCEPT(pthread_rwlock_destroy);
  TSAN_INTERCEPT(pthread_rwlock_rdlock);
  TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
  TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
  TSAN_INTERCEPT(pthread_rwlock_wrlock);
  TSAN_INTERCEPT(pthread_rwlock_trywrlock);
  TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
  TSAN_INTERCEPT(pthread_rwlock_unlock);

  TSAN_INTERCEPT(pthread_barrier_init);
  TSAN_INTERCEPT(pthread_barrier_destroy);
  TSAN_INTERCEPT(pthread_barrier_wait);

  TSAN_INTERCEPT(pthread_once);

  TSAN_INTERCEPT(fstat);
  TSAN_MAYBE_INTERCEPT___FXSTAT;
  TSAN_MAYBE_INTERCEPT_FSTAT64;
  TSAN_MAYBE_INTERCEPT___FXSTAT64;
  TSAN_INTERCEPT(open);
  TSAN_MAYBE_INTERCEPT_OPEN64;
  TSAN_INTERCEPT(creat);
  TSAN_MAYBE_INTERCEPT_CREAT64;
  TSAN_INTERCEPT(dup);
  TSAN_INTERCEPT(dup2);
  TSAN_INTERCEPT(dup3);
  TSAN_MAYBE_INTERCEPT_EVENTFD;
  TSAN_MAYBE_INTERCEPT_SIGNALFD;
  TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
  TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
  TSAN_INTERCEPT(socket);
  TSAN_INTERCEPT(socketpair);
  TSAN_INTERCEPT(connect);
  TSAN_INTERCEPT(bind);
  TSAN_INTERCEPT(listen);
  TSAN_MAYBE_INTERCEPT_EPOLL;
  TSAN_INTERCEPT(close);
  TSAN_MAYBE_INTERCEPT___CLOSE;
  TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
  TSAN_INTERCEPT(pipe);
  TSAN_INTERCEPT(pipe2);

  TSAN_INTERCEPT(unlink);
  TSAN_INTERCEPT(tmpfile);
  TSAN_MAYBE_INTERCEPT_TMPFILE64;
  TSAN_INTERCEPT(abort);
  TSAN_INTERCEPT(rmdir);
  TSAN_INTERCEPT(closedir);

  TSAN_INTERCEPT(sigsuspend);
  TSAN_INTERCEPT(sigblock);
  TSAN_INTERCEPT(sigsetmask);
  TSAN_INTERCEPT(pthread_sigmask);
  TSAN_INTERCEPT(raise);
  TSAN_INTERCEPT(kill);
  TSAN_INTERCEPT(pthread_kill);
  TSAN_INTERCEPT(sleep);
  TSAN_INTERCEPT(usleep);
  TSAN_INTERCEPT(nanosleep);
  TSAN_INTERCEPT(pause);
  TSAN_INTERCEPT(gettimeofday);
  TSAN_INTERCEPT(getaddrinfo);

  TSAN_INTERCEPT(fork);
  TSAN_INTERCEPT(vfork);
#if !SANITIZER_ANDROID
  TSAN_INTERCEPT(dl_iterate_phdr);
#endif
  TSAN_MAYBE_INTERCEPT_ON_EXIT;
  TSAN_INTERCEPT(__cxa_atexit);
  TSAN_INTERCEPT(_exit);

#ifdef NEED_TLS_GET_ADDR
  TSAN_INTERCEPT(__tls_get_addr);
#endif

  TSAN_MAYBE_INTERCEPT__LWP_EXIT;
  TSAN_MAYBE_INTERCEPT_THR_EXIT;

#if !SANITIZER_MAC && !SANITIZER_ANDROID
  // Need to setup it, because interceptors check that the function is resolved.
  // But atexit is emitted directly into the module, so can't be resolved.
  REAL(atexit) = (int(*)(void(*)()))unreachable;
#endif

  if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
    Printf("ThreadSanitizer: failed to setup atexit callback\n");
    Die();
  }

#if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
  if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
    Printf("ThreadSanitizer: failed to create thread key\n");
    Die();
  }
#endif

  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);

  FdInit();
}

}  // namespace __tsan

// Invisible barrier for tests.
// There were several unsuccessful iterations for this functionality:
// 1. Initially it was implemented in user code using
//    REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
//    MacOS. Futexes are linux-specific for this matter.
// 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
//    "as-if synchronized via sleep" messages in reports which failed some
//    output tests.
// 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
//    visible events, which lead to "failed to restore stack trace" failures.
// Note that no_sanitize_thread attribute does not turn off atomic interception
// so attaching it to the function defined in user code does not help.
// That's why we now have what we have.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
  if (count >= (1 << 8)) {
      Printf("barrier_init: count is too large (%d)\n", count);
      Die();
  }
  // 8 lsb is thread count, the remaining are count of entered threads.
  *barrier = count;
}

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_testonly_barrier_wait(u64 *barrier) {
  unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
  unsigned old_epoch = (old >> 8) / (old & 0xff);
  for (;;) {
    unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
    unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
    if (cur_epoch != old_epoch)
      return;
    internal_sched_yield();
  }
}