tsan_mman.cpp 12.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
//===-- tsan_mman.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_allocator_report.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_mman.h"
#include "tsan_rtl.h"
#include "tsan_report.h"
#include "tsan_flags.h"

// May be overriden by front-end.
SANITIZER_WEAK_DEFAULT_IMPL
void __sanitizer_malloc_hook(void *ptr, uptr size) {
  (void)ptr;
  (void)size;
}

SANITIZER_WEAK_DEFAULT_IMPL
void __sanitizer_free_hook(void *ptr) {
  (void)ptr;
}

namespace __tsan {

struct MapUnmapCallback {
  void OnMap(uptr p, uptr size) const { }
  void OnUnmap(uptr p, uptr size) const {
    // We are about to unmap a chunk of user memory.
    // Mark the corresponding shadow memory as not needed.
    DontNeedShadowFor(p, size);
    // Mark the corresponding meta shadow memory as not needed.
    // Note the block does not contain any meta info at this point
    // (this happens after free).
    const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
    const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
    // Block came from LargeMmapAllocator, so must be large.
    // We rely on this in the calculations below.
    CHECK_GE(size, 2 * kPageSize);
    uptr diff = RoundUp(p, kPageSize) - p;
    if (diff != 0) {
      p += diff;
      size -= diff;
    }
    diff = p + size - RoundDown(p + size, kPageSize);
    if (diff != 0)
      size -= diff;
    uptr p_meta = (uptr)MemToMeta(p);
    ReleaseMemoryPagesToOS(p_meta, p_meta + size / kMetaRatio);
  }
};

static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
Allocator *allocator() {
  return reinterpret_cast<Allocator*>(&allocator_placeholder);
}

struct GlobalProc {
  Mutex mtx;
  Processor *proc;

  GlobalProc()
      : mtx(MutexTypeGlobalProc, StatMtxGlobalProc)
      , proc(ProcCreate()) {
  }
};

static char global_proc_placeholder[sizeof(GlobalProc)] ALIGNED(64);
GlobalProc *global_proc() {
  return reinterpret_cast<GlobalProc*>(&global_proc_placeholder);
}

ScopedGlobalProcessor::ScopedGlobalProcessor() {
  GlobalProc *gp = global_proc();
  ThreadState *thr = cur_thread();
  if (thr->proc())
    return;
  // If we don't have a proc, use the global one.
  // There are currently only two known case where this path is triggered:
  //   __interceptor_free
  //   __nptl_deallocate_tsd
  //   start_thread
  //   clone
  // and:
  //   ResetRange
  //   __interceptor_munmap
  //   __deallocate_stack
  //   start_thread
  //   clone
  // Ideally, we destroy thread state (and unwire proc) when a thread actually
  // exits (i.e. when we join/wait it). Then we would not need the global proc
  gp->mtx.Lock();
  ProcWire(gp->proc, thr);
}

ScopedGlobalProcessor::~ScopedGlobalProcessor() {
  GlobalProc *gp = global_proc();
  ThreadState *thr = cur_thread();
  if (thr->proc() != gp->proc)
    return;
  ProcUnwire(gp->proc, thr);
  gp->mtx.Unlock();
}

static constexpr uptr kMaxAllowedMallocSize = 1ull << 40;
static uptr max_user_defined_malloc_size;

void InitializeAllocator() {
  SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
  allocator()->Init(common_flags()->allocator_release_to_os_interval_ms);
  max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
                                     ? common_flags()->max_allocation_size_mb
                                           << 20
                                     : kMaxAllowedMallocSize;
}

void InitializeAllocatorLate() {
  new(global_proc()) GlobalProc();
}

void AllocatorProcStart(Processor *proc) {
  allocator()->InitCache(&proc->alloc_cache);
  internal_allocator()->InitCache(&proc->internal_alloc_cache);
}

void AllocatorProcFinish(Processor *proc) {
  allocator()->DestroyCache(&proc->alloc_cache);
  internal_allocator()->DestroyCache(&proc->internal_alloc_cache);
}

void AllocatorPrintStats() {
  allocator()->PrintStats();
}

static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
  if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
      !flags()->report_signal_unsafe)
    return;
  VarSizeStackTrace stack;
  ObtainCurrentStack(thr, pc, &stack);
  if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
    return;
  ThreadRegistryLock l(ctx->thread_registry);
  ScopedReport rep(ReportTypeSignalUnsafe);
  rep.AddStack(stack, true);
  OutputReport(thr, rep);
}


void *user_alloc_internal(ThreadState *thr, uptr pc, uptr sz, uptr align,
                          bool signal) {
  if (sz >= kMaxAllowedMallocSize || align >= kMaxAllowedMallocSize ||
      sz > max_user_defined_malloc_size) {
    if (AllocatorMayReturnNull())
      return nullptr;
    uptr malloc_limit =
        Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
    GET_STACK_TRACE_FATAL(thr, pc);
    ReportAllocationSizeTooBig(sz, malloc_limit, &stack);
  }
  void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align);
  if (UNLIKELY(!p)) {
    SetAllocatorOutOfMemory();
    if (AllocatorMayReturnNull())
      return nullptr;
    GET_STACK_TRACE_FATAL(thr, pc);
    ReportOutOfMemory(sz, &stack);
  }
  if (ctx && ctx->initialized)
    OnUserAlloc(thr, pc, (uptr)p, sz, true);
  if (signal)
    SignalUnsafeCall(thr, pc);
  return p;
}

void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
  ScopedGlobalProcessor sgp;
  if (ctx && ctx->initialized)
    OnUserFree(thr, pc, (uptr)p, true);
  allocator()->Deallocate(&thr->proc()->alloc_cache, p);
  if (signal)
    SignalUnsafeCall(thr, pc);
}

void *user_alloc(ThreadState *thr, uptr pc, uptr sz) {
  return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, kDefaultAlignment));
}

void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
  if (UNLIKELY(CheckForCallocOverflow(size, n))) {
    if (AllocatorMayReturnNull())
      return SetErrnoOnNull(nullptr);
    GET_STACK_TRACE_FATAL(thr, pc);
    ReportCallocOverflow(n, size, &stack);
  }
  void *p = user_alloc_internal(thr, pc, n * size);
  if (p)
    internal_memset(p, 0, n * size);
  return SetErrnoOnNull(p);
}

void *user_reallocarray(ThreadState *thr, uptr pc, void *p, uptr size, uptr n) {
  if (UNLIKELY(CheckForCallocOverflow(size, n))) {
    if (AllocatorMayReturnNull())
      return SetErrnoOnNull(nullptr);
    GET_STACK_TRACE_FATAL(thr, pc);
    ReportReallocArrayOverflow(size, n, &stack);
  }
  return user_realloc(thr, pc, p, size * n);
}

void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
  DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
  ctx->metamap.AllocBlock(thr, pc, p, sz);
  if (write && thr->ignore_reads_and_writes == 0)
    MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
  else
    MemoryResetRange(thr, pc, (uptr)p, sz);
}

void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
  CHECK_NE(p, (void*)0);
  uptr sz = ctx->metamap.FreeBlock(thr->proc(), p);
  DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
  if (write && thr->ignore_reads_and_writes == 0)
    MemoryRangeFreed(thr, pc, (uptr)p, sz);
}

void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
  // FIXME: Handle "shrinking" more efficiently,
  // it seems that some software actually does this.
  if (!p)
    return SetErrnoOnNull(user_alloc_internal(thr, pc, sz));
  if (!sz) {
    user_free(thr, pc, p);
    return nullptr;
  }
  void *new_p = user_alloc_internal(thr, pc, sz);
  if (new_p) {
    uptr old_sz = user_alloc_usable_size(p);
    internal_memcpy(new_p, p, min(old_sz, sz));
    user_free(thr, pc, p);
  }
  return SetErrnoOnNull(new_p);
}

void *user_memalign(ThreadState *thr, uptr pc, uptr align, uptr sz) {
  if (UNLIKELY(!IsPowerOfTwo(align))) {
    errno = errno_EINVAL;
    if (AllocatorMayReturnNull())
      return nullptr;
    GET_STACK_TRACE_FATAL(thr, pc);
    ReportInvalidAllocationAlignment(align, &stack);
  }
  return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
}

int user_posix_memalign(ThreadState *thr, uptr pc, void **memptr, uptr align,
                        uptr sz) {
  if (UNLIKELY(!CheckPosixMemalignAlignment(align))) {
    if (AllocatorMayReturnNull())
      return errno_EINVAL;
    GET_STACK_TRACE_FATAL(thr, pc);
    ReportInvalidPosixMemalignAlignment(align, &stack);
  }
  void *ptr = user_alloc_internal(thr, pc, sz, align);
  if (UNLIKELY(!ptr))
    // OOM error is already taken care of by user_alloc_internal.
    return errno_ENOMEM;
  CHECK(IsAligned((uptr)ptr, align));
  *memptr = ptr;
  return 0;
}

void *user_aligned_alloc(ThreadState *thr, uptr pc, uptr align, uptr sz) {
  if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(align, sz))) {
    errno = errno_EINVAL;
    if (AllocatorMayReturnNull())
      return nullptr;
    GET_STACK_TRACE_FATAL(thr, pc);
    ReportInvalidAlignedAllocAlignment(sz, align, &stack);
  }
  return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
}

void *user_valloc(ThreadState *thr, uptr pc, uptr sz) {
  return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, GetPageSizeCached()));
}

void *user_pvalloc(ThreadState *thr, uptr pc, uptr sz) {
  uptr PageSize = GetPageSizeCached();
  if (UNLIKELY(CheckForPvallocOverflow(sz, PageSize))) {
    errno = errno_ENOMEM;
    if (AllocatorMayReturnNull())
      return nullptr;
    GET_STACK_TRACE_FATAL(thr, pc);
    ReportPvallocOverflow(sz, &stack);
  }
  // pvalloc(0) should allocate one page.
  sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
  return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, PageSize));
}

uptr user_alloc_usable_size(const void *p) {
  if (p == 0)
    return 0;
  MBlock *b = ctx->metamap.GetBlock((uptr)p);
  if (!b)
    return 0;  // Not a valid pointer.
  if (b->siz == 0)
    return 1;  // Zero-sized allocations are actually 1 byte.
  return b->siz;
}

void invoke_malloc_hook(void *ptr, uptr size) {
  ThreadState *thr = cur_thread();
  if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
    return;
  __sanitizer_malloc_hook(ptr, size);
  RunMallocHooks(ptr, size);
}

void invoke_free_hook(void *ptr) {
  ThreadState *thr = cur_thread();
  if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
    return;
  __sanitizer_free_hook(ptr);
  RunFreeHooks(ptr);
}

void *internal_alloc(MBlockType typ, uptr sz) {
  ThreadState *thr = cur_thread();
  if (thr->nomalloc) {
    thr->nomalloc = 0;  // CHECK calls internal_malloc().
    CHECK(0);
  }
  return InternalAlloc(sz, &thr->proc()->internal_alloc_cache);
}

void internal_free(void *p) {
  ThreadState *thr = cur_thread();
  if (thr->nomalloc) {
    thr->nomalloc = 0;  // CHECK calls internal_malloc().
    CHECK(0);
  }
  InternalFree(p, &thr->proc()->internal_alloc_cache);
}

}  // namespace __tsan

using namespace __tsan;

extern "C" {
uptr __sanitizer_get_current_allocated_bytes() {
  uptr stats[AllocatorStatCount];
  allocator()->GetStats(stats);
  return stats[AllocatorStatAllocated];
}

uptr __sanitizer_get_heap_size() {
  uptr stats[AllocatorStatCount];
  allocator()->GetStats(stats);
  return stats[AllocatorStatMapped];
}

uptr __sanitizer_get_free_bytes() {
  return 1;
}

uptr __sanitizer_get_unmapped_bytes() {
  return 1;
}

uptr __sanitizer_get_estimated_allocated_size(uptr size) {
  return size;
}

int __sanitizer_get_ownership(const void *p) {
  return allocator()->GetBlockBegin(p) != 0;
}

uptr __sanitizer_get_allocated_size(const void *p) {
  return user_alloc_usable_size(p);
}

void __tsan_on_thread_idle() {
  ThreadState *thr = cur_thread();
  thr->clock.ResetCached(&thr->proc()->clock_cache);
  thr->last_sleep_clock.ResetCached(&thr->proc()->clock_cache);
  allocator()->SwallowCache(&thr->proc()->alloc_cache);
  internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache);
  ctx->metamap.OnProcIdle(thr->proc());
}
}  // extern "C"