tsan_rtl.cpp 35 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
//===-- tsan_rtl.cpp ------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Main file (entry points) for the TSan run-time.
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_file.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
#include "tsan_defs.h"
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "tsan_mman.h"
#include "tsan_suppressions.h"
#include "tsan_symbolize.h"
#include "ubsan/ubsan_init.h"

#ifdef __SSE3__
// <emmintrin.h> transitively includes <stdlib.h>,
// and it's prohibited to include std headers into tsan runtime.
// So we do this dirty trick.
#define _MM_MALLOC_H_INCLUDED
#define __MM_MALLOC_H
#include <emmintrin.h>
typedef __m128i m128;
#endif

volatile int __tsan_resumed = 0;

extern "C" void __tsan_resume() {
  __tsan_resumed = 1;
}

namespace __tsan {

#if !SANITIZER_GO && !SANITIZER_MAC
__attribute__((tls_model("initial-exec")))
THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
#endif
static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
Context *ctx;

// Can be overriden by a front-end.
#ifdef TSAN_EXTERNAL_HOOKS
bool OnFinalize(bool failed);
void OnInitialize();
#else
SANITIZER_WEAK_CXX_DEFAULT_IMPL
bool OnFinalize(bool failed) {
  return failed;
}
SANITIZER_WEAK_CXX_DEFAULT_IMPL
void OnInitialize() {}
#endif

static char thread_registry_placeholder[sizeof(ThreadRegistry)];

static ThreadContextBase *CreateThreadContext(u32 tid) {
  // Map thread trace when context is created.
  char name[50];
  internal_snprintf(name, sizeof(name), "trace %u", tid);
  MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name);
  const uptr hdr = GetThreadTraceHeader(tid);
  internal_snprintf(name, sizeof(name), "trace header %u", tid);
  MapThreadTrace(hdr, sizeof(Trace), name);
  new((void*)hdr) Trace();
  // We are going to use only a small part of the trace with the default
  // value of history_size. However, the constructor writes to the whole trace.
  // Unmap the unused part.
  uptr hdr_end = hdr + sizeof(Trace);
  hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
  hdr_end = RoundUp(hdr_end, GetPageSizeCached());
  if (hdr_end < hdr + sizeof(Trace))
    UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
  void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
  return new(mem) ThreadContext(tid);
}

#if !SANITIZER_GO
static const u32 kThreadQuarantineSize = 16;
#else
static const u32 kThreadQuarantineSize = 64;
#endif

Context::Context()
  : initialized()
  , report_mtx(MutexTypeReport, StatMtxReport)
  , nreported()
  , nmissed_expected()
  , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
      CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
  , racy_mtx(MutexTypeRacy, StatMtxRacy)
  , racy_stacks()
  , racy_addresses()
  , fired_suppressions_mtx(MutexTypeFired, StatMtxFired)
  , clock_alloc("clock allocator") {
  fired_suppressions.reserve(8);
}

// The objects are allocated in TLS, so one may rely on zero-initialization.
ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
                         unsigned reuse_count,
                         uptr stk_addr, uptr stk_size,
                         uptr tls_addr, uptr tls_size)
  : fast_state(tid, epoch)
  // Do not touch these, rely on zero initialization,
  // they may be accessed before the ctor.
  // , ignore_reads_and_writes()
  // , ignore_interceptors()
  , clock(tid, reuse_count)
#if !SANITIZER_GO
  , jmp_bufs()
#endif
  , tid(tid)
  , unique_id(unique_id)
  , stk_addr(stk_addr)
  , stk_size(stk_size)
  , tls_addr(tls_addr)
  , tls_size(tls_size)
#if !SANITIZER_GO
  , last_sleep_clock(tid)
#endif
{
}

#if !SANITIZER_GO
static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
  uptr n_threads;
  uptr n_running_threads;
  ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
  InternalMmapVector<char> buf(4096);
  WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
  WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
}

static void *BackgroundThread(void *arg) {
  // This is a non-initialized non-user thread, nothing to see here.
  // We don't use ScopedIgnoreInterceptors, because we want ignores to be
  // enabled even when the thread function exits (e.g. during pthread thread
  // shutdown code).
  cur_thread_init();
  cur_thread()->ignore_interceptors++;
  const u64 kMs2Ns = 1000 * 1000;

  fd_t mprof_fd = kInvalidFd;
  if (flags()->profile_memory && flags()->profile_memory[0]) {
    if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
      mprof_fd = 1;
    } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
      mprof_fd = 2;
    } else {
      InternalScopedString filename(kMaxPathLength);
      filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
      fd_t fd = OpenFile(filename.data(), WrOnly);
      if (fd == kInvalidFd) {
        Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
            &filename[0]);
      } else {
        mprof_fd = fd;
      }
    }
  }

  u64 last_flush = NanoTime();
  uptr last_rss = 0;
  for (int i = 0;
      atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
      i++) {
    SleepForMillis(100);
    u64 now = NanoTime();

    // Flush memory if requested.
    if (flags()->flush_memory_ms > 0) {
      if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
        VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
        FlushShadowMemory();
        last_flush = NanoTime();
      }
    }
    // GetRSS can be expensive on huge programs, so don't do it every 100ms.
    if (flags()->memory_limit_mb > 0) {
      uptr rss = GetRSS();
      uptr limit = uptr(flags()->memory_limit_mb) << 20;
      VPrintf(1, "ThreadSanitizer: memory flush check"
                 " RSS=%llu LAST=%llu LIMIT=%llu\n",
              (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
      if (2 * rss > limit + last_rss) {
        VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
        FlushShadowMemory();
        rss = GetRSS();
        VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
      }
      last_rss = rss;
    }

    // Write memory profile if requested.
    if (mprof_fd != kInvalidFd)
      MemoryProfiler(ctx, mprof_fd, i);

    // Flush symbolizer cache if requested.
    if (flags()->flush_symbolizer_ms > 0) {
      u64 last = atomic_load(&ctx->last_symbolize_time_ns,
                             memory_order_relaxed);
      if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
        Lock l(&ctx->report_mtx);
        ScopedErrorReportLock l2;
        SymbolizeFlush();
        atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
      }
    }
  }
  return nullptr;
}

static void StartBackgroundThread() {
  ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
}

#ifndef __mips__
static void StopBackgroundThread() {
  atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
  internal_join_thread(ctx->background_thread);
  ctx->background_thread = 0;
}
#endif
#endif

void DontNeedShadowFor(uptr addr, uptr size) {
  ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size));
}

#if !SANITIZER_GO
void UnmapShadow(ThreadState *thr, uptr addr, uptr size) {
  if (size == 0) return;
  DontNeedShadowFor(addr, size);
  ScopedGlobalProcessor sgp;
  ctx->metamap.ResetRange(thr->proc(), addr, size);
}
#endif

void MapShadow(uptr addr, uptr size) {
  // Global data is not 64K aligned, but there are no adjacent mappings,
  // so we can get away with unaligned mapping.
  // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
  const uptr kPageSize = GetPageSizeCached();
  uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
  uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
  if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin,
                               "shadow"))
    Die();

  // Meta shadow is 2:1, so tread carefully.
  static bool data_mapped = false;
  static uptr mapped_meta_end = 0;
  uptr meta_begin = (uptr)MemToMeta(addr);
  uptr meta_end = (uptr)MemToMeta(addr + size);
  meta_begin = RoundDownTo(meta_begin, 64 << 10);
  meta_end = RoundUpTo(meta_end, 64 << 10);
  if (!data_mapped) {
    // First call maps data+bss.
    data_mapped = true;
    if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
                                 "meta shadow"))
      Die();
  } else {
    // Mapping continous heap.
    // Windows wants 64K alignment.
    meta_begin = RoundDownTo(meta_begin, 64 << 10);
    meta_end = RoundUpTo(meta_end, 64 << 10);
    if (meta_end <= mapped_meta_end)
      return;
    if (meta_begin < mapped_meta_end)
      meta_begin = mapped_meta_end;
    if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
                                 "meta shadow"))
      Die();
    mapped_meta_end = meta_end;
  }
  VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
      addr, addr+size, meta_begin, meta_end);
}

void MapThreadTrace(uptr addr, uptr size, const char *name) {
  DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
  CHECK_GE(addr, TraceMemBeg());
  CHECK_LE(addr + size, TraceMemEnd());
  CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
  if (!MmapFixedSuperNoReserve(addr, size, name)) {
    Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p)\n",
        addr, size);
    Die();
  }
}

static void CheckShadowMapping() {
  uptr beg, end;
  for (int i = 0; GetUserRegion(i, &beg, &end); i++) {
    // Skip cases for empty regions (heap definition for architectures that
    // do not use 64-bit allocator).
    if (beg == end)
      continue;
    VPrintf(3, "checking shadow region %p-%p\n", beg, end);
    uptr prev = 0;
    for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
      for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
        const uptr p = RoundDown(p0 + x, kShadowCell);
        if (p < beg || p >= end)
          continue;
        const uptr s = MemToShadow(p);
        const uptr m = (uptr)MemToMeta(p);
        VPrintf(3, "  checking pointer %p: shadow=%p meta=%p\n", p, s, m);
        CHECK(IsAppMem(p));
        CHECK(IsShadowMem(s));
        CHECK_EQ(p, ShadowToMem(s));
        CHECK(IsMetaMem(m));
        if (prev) {
          // Ensure that shadow and meta mappings are linear within a single
          // user range. Lots of code that processes memory ranges assumes it.
          const uptr prev_s = MemToShadow(prev);
          const uptr prev_m = (uptr)MemToMeta(prev);
          CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
          CHECK_EQ((m - prev_m) / kMetaShadowSize,
                   (p - prev) / kMetaShadowCell);
        }
        prev = p;
      }
    }
  }
}

#if !SANITIZER_GO
static void OnStackUnwind(const SignalContext &sig, const void *,
                          BufferedStackTrace *stack) {
  stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
                common_flags()->fast_unwind_on_fatal);
}

static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
  HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
}
#endif

void Initialize(ThreadState *thr) {
  // Thread safe because done before all threads exist.
  static bool is_initialized = false;
  if (is_initialized)
    return;
  is_initialized = true;
  // We are not ready to handle interceptors yet.
  ScopedIgnoreInterceptors ignore;
  SanitizerToolName = "ThreadSanitizer";
  // Install tool-specific callbacks in sanitizer_common.
  SetCheckFailedCallback(TsanCheckFailed);

  ctx = new(ctx_placeholder) Context;
  const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS";
  const char *options = GetEnv(env_name);
  CacheBinaryName();
  CheckASLR();
  InitializeFlags(&ctx->flags, options, env_name);
  AvoidCVE_2016_2143();
  __sanitizer::InitializePlatformEarly();
  __tsan::InitializePlatformEarly();

#if !SANITIZER_GO
  // Re-exec ourselves if we need to set additional env or command line args.
  MaybeReexec();

  InitializeAllocator();
  ReplaceSystemMalloc();
#endif
  if (common_flags()->detect_deadlocks)
    ctx->dd = DDetector::Create(flags());
  Processor *proc = ProcCreate();
  ProcWire(proc, thr);
  InitializeInterceptors();
  CheckShadowMapping();
  InitializePlatform();
  InitializeMutex();
  InitializeDynamicAnnotations();
#if !SANITIZER_GO
  InitializeShadowMemory();
  InitializeAllocatorLate();
  InstallDeadlySignalHandlers(TsanOnDeadlySignal);
#endif
  // Setup correct file descriptor for error reports.
  __sanitizer_set_report_path(common_flags()->log_path);
  InitializeSuppressions();
#if !SANITIZER_GO
  InitializeLibIgnore();
  Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
#endif

  VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
          (int)internal_getpid());

  // Initialize thread 0.
  int tid = ThreadCreate(thr, 0, 0, true);
  CHECK_EQ(tid, 0);
  ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
#if TSAN_CONTAINS_UBSAN
  __ubsan::InitAsPlugin();
#endif
  ctx->initialized = true;

#if !SANITIZER_GO
  Symbolizer::LateInitialize();
#endif

  if (flags()->stop_on_start) {
    Printf("ThreadSanitizer is suspended at startup (pid %d)."
           " Call __tsan_resume().\n",
           (int)internal_getpid());
    while (__tsan_resumed == 0) {}
  }

  OnInitialize();
}

void MaybeSpawnBackgroundThread() {
  // On MIPS, TSan initialization is run before
  // __pthread_initialize_minimal_internal() is finished, so we can not spawn
  // new threads.
#if !SANITIZER_GO && !defined(__mips__)
  static atomic_uint32_t bg_thread = {};
  if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
      atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
    StartBackgroundThread();
    SetSandboxingCallback(StopBackgroundThread);
  }
#endif
}


int Finalize(ThreadState *thr) {
  bool failed = false;

  if (common_flags()->print_module_map == 1) PrintModuleMap();

  if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
    SleepForMillis(flags()->atexit_sleep_ms);

  // Wait for pending reports.
  ctx->report_mtx.Lock();
  { ScopedErrorReportLock l; }
  ctx->report_mtx.Unlock();

#if !SANITIZER_GO
  if (Verbosity()) AllocatorPrintStats();
#endif

  ThreadFinalize(thr);

  if (ctx->nreported) {
    failed = true;
#if !SANITIZER_GO
    Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
#else
    Printf("Found %d data race(s)\n", ctx->nreported);
#endif
  }

  if (ctx->nmissed_expected) {
    failed = true;
    Printf("ThreadSanitizer: missed %d expected races\n",
        ctx->nmissed_expected);
  }

  if (common_flags()->print_suppressions)
    PrintMatchedSuppressions();
#if !SANITIZER_GO
  if (flags()->print_benign)
    PrintMatchedBenignRaces();
#endif

  failed = OnFinalize(failed);

#if TSAN_COLLECT_STATS
  StatAggregate(ctx->stat, thr->stat);
  StatOutput(ctx->stat);
#endif

  return failed ? common_flags()->exitcode : 0;
}

#if !SANITIZER_GO
void ForkBefore(ThreadState *thr, uptr pc) {
  ctx->thread_registry->Lock();
  ctx->report_mtx.Lock();
  // Ignore memory accesses in the pthread_atfork callbacks.
  // If any of them triggers a data race we will deadlock
  // on the report_mtx.
  // We could ignore interceptors and sync operations as well,
  // but so far it's unclear if it will do more good or harm.
  // Unnecessarily ignoring things can lead to false positives later.
  ThreadIgnoreBegin(thr, pc);
}

void ForkParentAfter(ThreadState *thr, uptr pc) {
  ThreadIgnoreEnd(thr, pc);  // Begin is in ForkBefore.
  ctx->report_mtx.Unlock();
  ctx->thread_registry->Unlock();
}

void ForkChildAfter(ThreadState *thr, uptr pc) {
  ThreadIgnoreEnd(thr, pc);  // Begin is in ForkBefore.
  ctx->report_mtx.Unlock();
  ctx->thread_registry->Unlock();

  uptr nthread = 0;
  ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
  VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
      " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
  if (nthread == 1) {
    StartBackgroundThread();
  } else {
    // We've just forked a multi-threaded process. We cannot reasonably function
    // after that (some mutexes may be locked before fork). So just enable
    // ignores for everything in the hope that we will exec soon.
    ctx->after_multithreaded_fork = true;
    thr->ignore_interceptors++;
    ThreadIgnoreBegin(thr, pc);
    ThreadIgnoreSyncBegin(thr, pc);
  }
}
#endif

#if SANITIZER_GO
NOINLINE
void GrowShadowStack(ThreadState *thr) {
  const int sz = thr->shadow_stack_end - thr->shadow_stack;
  const int newsz = 2 * sz;
  uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
      newsz * sizeof(uptr));
  internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
  internal_free(thr->shadow_stack);
  thr->shadow_stack = newstack;
  thr->shadow_stack_pos = newstack + sz;
  thr->shadow_stack_end = newstack + newsz;
}
#endif

u32 CurrentStackId(ThreadState *thr, uptr pc) {
  if (!thr->is_inited)  // May happen during bootstrap.
    return 0;
  if (pc != 0) {
#if !SANITIZER_GO
    DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
#else
    if (thr->shadow_stack_pos == thr->shadow_stack_end)
      GrowShadowStack(thr);
#endif
    thr->shadow_stack_pos[0] = pc;
    thr->shadow_stack_pos++;
  }
  u32 id = StackDepotPut(
      StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
  if (pc != 0)
    thr->shadow_stack_pos--;
  return id;
}

void TraceSwitch(ThreadState *thr) {
#if !SANITIZER_GO
  if (ctx->after_multithreaded_fork)
    return;
#endif
  thr->nomalloc++;
  Trace *thr_trace = ThreadTrace(thr->tid);
  Lock l(&thr_trace->mtx);
  unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
  TraceHeader *hdr = &thr_trace->headers[trace];
  hdr->epoch0 = thr->fast_state.epoch();
  ObtainCurrentStack(thr, 0, &hdr->stack0);
  hdr->mset0 = thr->mset;
  thr->nomalloc--;
}

Trace *ThreadTrace(int tid) {
  return (Trace*)GetThreadTraceHeader(tid);
}

uptr TraceTopPC(ThreadState *thr) {
  Event *events = (Event*)GetThreadTrace(thr->tid);
  uptr pc = events[thr->fast_state.GetTracePos()];
  return pc;
}

uptr TraceSize() {
  return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
}

uptr TraceParts() {
  return TraceSize() / kTracePartSize;
}

#if !SANITIZER_GO
extern "C" void __tsan_trace_switch() {
  TraceSwitch(cur_thread());
}

extern "C" void __tsan_report_race() {
  ReportRace(cur_thread());
}
#endif

ALWAYS_INLINE
Shadow LoadShadow(u64 *p) {
  u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
  return Shadow(raw);
}

ALWAYS_INLINE
void StoreShadow(u64 *sp, u64 s) {
  atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
}

ALWAYS_INLINE
void StoreIfNotYetStored(u64 *sp, u64 *s) {
  StoreShadow(sp, *s);
  *s = 0;
}

ALWAYS_INLINE
void HandleRace(ThreadState *thr, u64 *shadow_mem,
                              Shadow cur, Shadow old) {
  thr->racy_state[0] = cur.raw();
  thr->racy_state[1] = old.raw();
  thr->racy_shadow_addr = shadow_mem;
#if !SANITIZER_GO
  HACKY_CALL(__tsan_report_race);
#else
  ReportRace(thr);
#endif
}

static inline bool HappensBefore(Shadow old, ThreadState *thr) {
  return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
}

ALWAYS_INLINE
void MemoryAccessImpl1(ThreadState *thr, uptr addr,
    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
    u64 *shadow_mem, Shadow cur) {
  StatInc(thr, StatMop);
  StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
  StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));

  // This potentially can live in an MMX/SSE scratch register.
  // The required intrinsics are:
  // __m128i _mm_move_epi64(__m128i*);
  // _mm_storel_epi64(u64*, __m128i);
  u64 store_word = cur.raw();
  bool stored = false;

  // scan all the shadow values and dispatch to 4 categories:
  // same, replace, candidate and race (see comments below).
  // we consider only 3 cases regarding access sizes:
  // equal, intersect and not intersect. initially I considered
  // larger and smaller as well, it allowed to replace some
  // 'candidates' with 'same' or 'replace', but I think
  // it's just not worth it (performance- and complexity-wise).

  Shadow old(0);

  // It release mode we manually unroll the loop,
  // because empirically gcc generates better code this way.
  // However, we can't afford unrolling in debug mode, because the function
  // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
  // threads, which is not enough for the unrolled loop.
#if SANITIZER_DEBUG
  for (int idx = 0; idx < 4; idx++) {
#include "tsan_update_shadow_word_inl.h"
  }
#else
  int idx = 0;
#include "tsan_update_shadow_word_inl.h"
  idx = 1;
  if (stored) {
#include "tsan_update_shadow_word_inl.h"
  } else {
#include "tsan_update_shadow_word_inl.h"
  }
  idx = 2;
  if (stored) {
#include "tsan_update_shadow_word_inl.h"
  } else {
#include "tsan_update_shadow_word_inl.h"
  }
  idx = 3;
  if (stored) {
#include "tsan_update_shadow_word_inl.h"
  } else {
#include "tsan_update_shadow_word_inl.h"
  }
#endif

  // we did not find any races and had already stored
  // the current access info, so we are done
  if (LIKELY(stored))
    return;
  // choose a random candidate slot and replace it
  StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
  StatInc(thr, StatShadowReplace);
  return;
 RACE:
  HandleRace(thr, shadow_mem, cur, old);
  return;
}

void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
    int size, bool kAccessIsWrite, bool kIsAtomic) {
  while (size) {
    int size1 = 1;
    int kAccessSizeLog = kSizeLog1;
    if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
      size1 = 8;
      kAccessSizeLog = kSizeLog8;
    } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
      size1 = 4;
      kAccessSizeLog = kSizeLog4;
    } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
      size1 = 2;
      kAccessSizeLog = kSizeLog2;
    }
    MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
    addr += size1;
    size -= size1;
  }
}

ALWAYS_INLINE
bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
  Shadow cur(a);
  for (uptr i = 0; i < kShadowCnt; i++) {
    Shadow old(LoadShadow(&s[i]));
    if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
        old.TidWithIgnore() == cur.TidWithIgnore() &&
        old.epoch() > sync_epoch &&
        old.IsAtomic() == cur.IsAtomic() &&
        old.IsRead() <= cur.IsRead())
      return true;
  }
  return false;
}

#if defined(__SSE3__)
#define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
    _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
    (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
ALWAYS_INLINE
bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
  // This is an optimized version of ContainsSameAccessSlow.
  // load current access into access[0:63]
  const m128 access     = _mm_cvtsi64_si128(a);
  // duplicate high part of access in addr0:
  // addr0[0:31]        = access[32:63]
  // addr0[32:63]       = access[32:63]
  // addr0[64:95]       = access[32:63]
  // addr0[96:127]      = access[32:63]
  const m128 addr0      = SHUF(access, access, 1, 1, 1, 1);
  // load 4 shadow slots
  const m128 shadow0    = _mm_load_si128((__m128i*)s);
  const m128 shadow1    = _mm_load_si128((__m128i*)s + 1);
  // load high parts of 4 shadow slots into addr_vect:
  // addr_vect[0:31]    = shadow0[32:63]
  // addr_vect[32:63]   = shadow0[96:127]
  // addr_vect[64:95]   = shadow1[32:63]
  // addr_vect[96:127]  = shadow1[96:127]
  m128 addr_vect        = SHUF(shadow0, shadow1, 1, 3, 1, 3);
  if (!is_write) {
    // set IsRead bit in addr_vect
    const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
    const m128 rw_mask  = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
    addr_vect           = _mm_or_si128(addr_vect, rw_mask);
  }
  // addr0 == addr_vect?
  const m128 addr_res   = _mm_cmpeq_epi32(addr0, addr_vect);
  // epoch1[0:63]       = sync_epoch
  const m128 epoch1     = _mm_cvtsi64_si128(sync_epoch);
  // epoch[0:31]        = sync_epoch[0:31]
  // epoch[32:63]       = sync_epoch[0:31]
  // epoch[64:95]       = sync_epoch[0:31]
  // epoch[96:127]      = sync_epoch[0:31]
  const m128 epoch      = SHUF(epoch1, epoch1, 0, 0, 0, 0);
  // load low parts of shadow cell epochs into epoch_vect:
  // epoch_vect[0:31]   = shadow0[0:31]
  // epoch_vect[32:63]  = shadow0[64:95]
  // epoch_vect[64:95]  = shadow1[0:31]
  // epoch_vect[96:127] = shadow1[64:95]
  const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
  // epoch_vect >= sync_epoch?
  const m128 epoch_res  = _mm_cmpgt_epi32(epoch_vect, epoch);
  // addr_res & epoch_res
  const m128 res        = _mm_and_si128(addr_res, epoch_res);
  // mask[0] = res[7]
  // mask[1] = res[15]
  // ...
  // mask[15] = res[127]
  const int mask        = _mm_movemask_epi8(res);
  return mask != 0;
}
#endif

ALWAYS_INLINE
bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
#if defined(__SSE3__)
  bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
  // NOTE: this check can fail if the shadow is concurrently mutated
  // by other threads. But it still can be useful if you modify
  // ContainsSameAccessFast and want to ensure that it's not completely broken.
  // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
  return res;
#else
  return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
#endif
}

ALWAYS_INLINE USED
void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
  u64 *shadow_mem = (u64*)MemToShadow(addr);
  DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
      " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
      (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
      (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
      (uptr)shadow_mem[0], (uptr)shadow_mem[1],
      (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
#if SANITIZER_DEBUG
  if (!IsAppMem(addr)) {
    Printf("Access to non app mem %zx\n", addr);
    DCHECK(IsAppMem(addr));
  }
  if (!IsShadowMem((uptr)shadow_mem)) {
    Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
    DCHECK(IsShadowMem((uptr)shadow_mem));
  }
#endif

  if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) {
    // Access to .rodata section, no races here.
    // Measurements show that it can be 10-20% of all memory accesses.
    StatInc(thr, StatMop);
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    StatInc(thr, StatMopRodata);
    return;
  }

  FastState fast_state = thr->fast_state;
  if (UNLIKELY(fast_state.GetIgnoreBit())) {
    StatInc(thr, StatMop);
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    StatInc(thr, StatMopIgnored);
    return;
  }

  Shadow cur(fast_state);
  cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
  cur.SetWrite(kAccessIsWrite);
  cur.SetAtomic(kIsAtomic);

  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
      thr->fast_synch_epoch, kAccessIsWrite))) {
    StatInc(thr, StatMop);
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    StatInc(thr, StatMopSame);
    return;
  }

  if (kCollectHistory) {
    fast_state.IncrementEpoch();
    thr->fast_state = fast_state;
    TraceAddEvent(thr, fast_state, EventTypeMop, pc);
    cur.IncrementEpoch();
  }

  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
      shadow_mem, cur);
}

// Called by MemoryAccessRange in tsan_rtl_thread.cpp
ALWAYS_INLINE USED
void MemoryAccessImpl(ThreadState *thr, uptr addr,
    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
    u64 *shadow_mem, Shadow cur) {
  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
      thr->fast_synch_epoch, kAccessIsWrite))) {
    StatInc(thr, StatMop);
    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    StatInc(thr, StatMopSame);
    return;
  }

  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
      shadow_mem, cur);
}

static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
                           u64 val) {
  (void)thr;
  (void)pc;
  if (size == 0)
    return;
  // FIXME: fix me.
  uptr offset = addr % kShadowCell;
  if (offset) {
    offset = kShadowCell - offset;
    if (size <= offset)
      return;
    addr += offset;
    size -= offset;
  }
  DCHECK_EQ(addr % 8, 0);
  // If a user passes some insane arguments (memset(0)),
  // let it just crash as usual.
  if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
    return;
  // Don't want to touch lots of shadow memory.
  // If a program maps 10MB stack, there is no need reset the whole range.
  size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
  // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
  if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
    u64 *p = (u64*)MemToShadow(addr);
    CHECK(IsShadowMem((uptr)p));
    CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
    // FIXME: may overwrite a part outside the region
    for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
      p[i++] = val;
      for (uptr j = 1; j < kShadowCnt; j++)
        p[i++] = 0;
    }
  } else {
    // The region is big, reset only beginning and end.
    const uptr kPageSize = GetPageSizeCached();
    u64 *begin = (u64*)MemToShadow(addr);
    u64 *end = begin + size / kShadowCell * kShadowCnt;
    u64 *p = begin;
    // Set at least first kPageSize/2 to page boundary.
    while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
      *p++ = val;
      for (uptr j = 1; j < kShadowCnt; j++)
        *p++ = 0;
    }
    // Reset middle part.
    u64 *p1 = p;
    p = RoundDown(end, kPageSize);
    UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
    if (!MmapFixedSuperNoReserve((uptr)p1, (uptr)p - (uptr)p1))
      Die();
    // Set the ending.
    while (p < end) {
      *p++ = val;
      for (uptr j = 1; j < kShadowCnt; j++)
        *p++ = 0;
    }
  }
}

void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  MemoryRangeSet(thr, pc, addr, size, 0);
}

void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  // Processing more than 1k (4k of shadow) is expensive,
  // can cause excessive memory consumption (user does not necessary touch
  // the whole range) and most likely unnecessary.
  if (size > 1024)
    size = 1024;
  CHECK_EQ(thr->is_freeing, false);
  thr->is_freeing = true;
  MemoryAccessRange(thr, pc, addr, size, true);
  thr->is_freeing = false;
  if (kCollectHistory) {
    thr->fast_state.IncrementEpoch();
    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
  }
  Shadow s(thr->fast_state);
  s.ClearIgnoreBit();
  s.MarkAsFreed();
  s.SetWrite(true);
  s.SetAddr0AndSizeLog(0, 3);
  MemoryRangeSet(thr, pc, addr, size, s.raw());
}

void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  if (kCollectHistory) {
    thr->fast_state.IncrementEpoch();
    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
  }
  Shadow s(thr->fast_state);
  s.ClearIgnoreBit();
  s.SetWrite(true);
  s.SetAddr0AndSizeLog(0, 3);
  MemoryRangeSet(thr, pc, addr, size, s.raw());
}

void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
                                         uptr size) {
  if (thr->ignore_reads_and_writes == 0)
    MemoryRangeImitateWrite(thr, pc, addr, size);
  else
    MemoryResetRange(thr, pc, addr, size);
}

ALWAYS_INLINE USED
void FuncEntry(ThreadState *thr, uptr pc) {
  StatInc(thr, StatFuncEnter);
  DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
  if (kCollectHistory) {
    thr->fast_state.IncrementEpoch();
    TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
  }

  // Shadow stack maintenance can be replaced with
  // stack unwinding during trace switch (which presumably must be faster).
  DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
#if !SANITIZER_GO
  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
#else
  if (thr->shadow_stack_pos == thr->shadow_stack_end)
    GrowShadowStack(thr);
#endif
  thr->shadow_stack_pos[0] = pc;
  thr->shadow_stack_pos++;
}

ALWAYS_INLINE USED
void FuncExit(ThreadState *thr) {
  StatInc(thr, StatFuncExit);
  DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
  if (kCollectHistory) {
    thr->fast_state.IncrementEpoch();
    TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
  }

  DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
#if !SANITIZER_GO
  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
#endif
  thr->shadow_stack_pos--;
}

void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) {
  DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
  thr->ignore_reads_and_writes++;
  CHECK_GT(thr->ignore_reads_and_writes, 0);
  thr->fast_state.SetIgnoreBit();
#if !SANITIZER_GO
  if (save_stack && !ctx->after_multithreaded_fork)
    thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
#endif
}

void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
  DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
  CHECK_GT(thr->ignore_reads_and_writes, 0);
  thr->ignore_reads_and_writes--;
  if (thr->ignore_reads_and_writes == 0) {
    thr->fast_state.ClearIgnoreBit();
#if !SANITIZER_GO
    thr->mop_ignore_set.Reset();
#endif
  }
}

#if !SANITIZER_GO
extern "C" SANITIZER_INTERFACE_ATTRIBUTE
uptr __tsan_testonly_shadow_stack_current_size() {
  ThreadState *thr = cur_thread();
  return thr->shadow_stack_pos - thr->shadow_stack;
}
#endif

void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) {
  DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
  thr->ignore_sync++;
  CHECK_GT(thr->ignore_sync, 0);
#if !SANITIZER_GO
  if (save_stack && !ctx->after_multithreaded_fork)
    thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
#endif
}

void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
  DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
  CHECK_GT(thr->ignore_sync, 0);
  thr->ignore_sync--;
#if !SANITIZER_GO
  if (thr->ignore_sync == 0)
    thr->sync_ignore_set.Reset();
#endif
}

bool MD5Hash::operator==(const MD5Hash &other) const {
  return hash[0] == other.hash[0] && hash[1] == other.hash[1];
}

#if SANITIZER_DEBUG
void build_consistency_debug() {}
#else
void build_consistency_release() {}
#endif

#if TSAN_COLLECT_STATS
void build_consistency_stats() {}
#else
void build_consistency_nostats() {}
#endif

}  // namespace __tsan

#if !SANITIZER_GO
// Must be included in this file to make sure everything is inlined.
#include "tsan_interface_inl.h"
#endif