atomic.ll 13 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -S < %s -instcombine | FileCheck %s

target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-apple-macosx10.7.0"

; Check transforms involving atomic operations

define i32 @test1(i32* %p) {
; CHECK-LABEL: @test1(
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
; CHECK-NEXT:    [[Z:%.*]] = shl i32 [[X]], 1
; CHECK-NEXT:    ret i32 [[Z]]
;
  %x = load atomic i32, i32* %p seq_cst, align 4
  %y = load i32, i32* %p, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

define i32 @test2(i32* %p) {
; CHECK-LABEL: @test2(
; CHECK-NEXT:    [[X:%.*]] = load volatile i32, i32* [[P:%.*]], align 4
; CHECK-NEXT:    [[Y:%.*]] = load volatile i32, i32* [[P]], align 4
; CHECK-NEXT:    [[Z:%.*]] = add i32 [[X]], [[Y]]
; CHECK-NEXT:    ret i32 [[Z]]
;
  %x = load volatile i32, i32* %p, align 4
  %y = load volatile i32, i32* %p, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; The exact semantics of mixing volatile and non-volatile on the same
; memory location are a bit unclear, but conservatively, we know we don't
; want to remove the volatile.
define i32 @test3(i32* %p) {
; CHECK-LABEL: @test3(
; CHECK-NEXT:    [[X:%.*]] = load volatile i32, i32* [[P:%.*]], align 4
; CHECK-NEXT:    [[Z:%.*]] = shl i32 [[X]], 1
; CHECK-NEXT:    ret i32 [[Z]]
;
  %x = load volatile i32, i32* %p, align 4
  %y = load i32, i32* %p, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; Forwarding from a stronger ordered atomic is fine
define i32 @test4(i32* %p) {
; CHECK-LABEL: @test4(
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
; CHECK-NEXT:    [[Z:%.*]] = shl i32 [[X]], 1
; CHECK-NEXT:    ret i32 [[Z]]
;
  %x = load atomic i32, i32* %p seq_cst, align 4
  %y = load atomic i32, i32* %p unordered, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; Forwarding from a non-atomic is not.  (The earlier load
; could in priciple be promoted to atomic and then forwarded,
; but we can't just  drop the atomic from the load.)
define i32 @test5(i32* %p) {
; CHECK-LABEL: @test5(
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] unordered, align 4
; CHECK-NEXT:    [[Z:%.*]] = shl i32 [[X]], 1
; CHECK-NEXT:    ret i32 [[Z]]
;
  %x = load atomic i32, i32* %p unordered, align 4
  %y = load i32, i32* %p, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; Forwarding atomic to atomic is fine
define i32 @test6(i32* %p) {
; CHECK-LABEL: @test6(
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] unordered, align 4
; CHECK-NEXT:    [[Z:%.*]] = shl i32 [[X]], 1
; CHECK-NEXT:    ret i32 [[Z]]
;
  %x = load atomic i32, i32* %p unordered, align 4
  %y = load atomic i32, i32* %p unordered, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; FIXME: we currently don't do anything for monotonic
define i32 @test7(i32* %p) {
; CHECK-LABEL: @test7(
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
; CHECK-NEXT:    [[Y:%.*]] = load atomic i32, i32* [[P]] monotonic, align 4
; CHECK-NEXT:    [[Z:%.*]] = add i32 [[X]], [[Y]]
; CHECK-NEXT:    ret i32 [[Z]]
;
  %x = load atomic i32, i32* %p seq_cst, align 4
  %y = load atomic i32, i32* %p monotonic, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; FIXME: We could forward in racy code
define i32 @test8(i32* %p) {
; CHECK-LABEL: @test8(
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[P:%.*]] seq_cst, align 4
; CHECK-NEXT:    [[Y:%.*]] = load atomic i32, i32* [[P]] acquire, align 4
; CHECK-NEXT:    [[Z:%.*]] = add i32 [[X]], [[Y]]
; CHECK-NEXT:    ret i32 [[Z]]
;
  %x = load atomic i32, i32* %p seq_cst, align 4
  %y = load atomic i32, i32* %p acquire, align 4
  %z = add i32 %x, %y
  ret i32 %z
}

; An unordered access to null is still unreachable.  There's no
; ordering imposed.
define i32 @test9() {
; CHECK-LABEL: @test9(
; CHECK-NEXT:    store i32 undef, i32* null, align 536870912
; CHECK-NEXT:    ret i32 undef
;
  %x = load atomic i32, i32* null unordered, align 4
  ret i32 %x
}

define i32 @test9_no_null_opt() #0 {
; CHECK-LABEL: @test9_no_null_opt(
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* null unordered, align 536870912
; CHECK-NEXT:    ret i32 [[X]]
;
  %x = load atomic i32, i32* null unordered, align 4
  ret i32 %x
}

; FIXME: Could also fold
define i32 @test10() {
; CHECK-LABEL: @test10(
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* null monotonic, align 536870912
; CHECK-NEXT:    ret i32 [[X]]
;
  %x = load atomic i32, i32* null monotonic, align 4
  ret i32 %x
}

define i32 @test10_no_null_opt() #0 {
; CHECK-LABEL: @test10_no_null_opt(
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* null monotonic, align 536870912
; CHECK-NEXT:    ret i32 [[X]]
;
  %x = load atomic i32, i32* null monotonic, align 4
  ret i32 %x
}

; Would this be legal to fold?  Probably?
define i32 @test11() {
; CHECK-LABEL: @test11(
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* null seq_cst, align 536870912
; CHECK-NEXT:    ret i32 [[X]]
;
  %x = load atomic i32, i32* null seq_cst, align 4
  ret i32 %x
}

define i32 @test11_no_null_opt() #0 {
; CHECK-LABEL: @test11_no_null_opt(
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* null seq_cst, align 536870912
; CHECK-NEXT:    ret i32 [[X]]
;
  %x = load atomic i32, i32* null seq_cst, align 4
  ret i32 %x
}

; An unordered access to null is still unreachable.  There's no
; ordering imposed.
define i32 @test12() {
; CHECK-LABEL: @test12(
; CHECK-NEXT:    store atomic i32 undef, i32* null unordered, align 536870912
; CHECK-NEXT:    ret i32 0
;
  store atomic i32 0, i32* null unordered, align 4
  ret i32 0
}

define i32 @test12_no_null_opt() #0 {
; CHECK-LABEL: @test12_no_null_opt(
; CHECK-NEXT:    store atomic i32 0, i32* null unordered, align 536870912
; CHECK-NEXT:    ret i32 0
;
  store atomic i32 0, i32* null unordered, align 4
  ret i32 0
}

; FIXME: Could also fold
define i32 @test13() {
; CHECK-LABEL: @test13(
; CHECK-NEXT:    store atomic i32 0, i32* null monotonic, align 536870912
; CHECK-NEXT:    ret i32 0
;
  store atomic i32 0, i32* null monotonic, align 4
  ret i32 0
}

define i32 @test13_no_null_opt() #0 {
; CHECK-LABEL: @test13_no_null_opt(
; CHECK-NEXT:    store atomic i32 0, i32* null monotonic, align 536870912
; CHECK-NEXT:    ret i32 0
;
  store atomic i32 0, i32* null monotonic, align 4
  ret i32 0
}

; Would this be legal to fold?  Probably?
define i32 @test14() {
; CHECK-LABEL: @test14(
; CHECK-NEXT:    store atomic i32 0, i32* null seq_cst, align 536870912
; CHECK-NEXT:    ret i32 0
;
  store atomic i32 0, i32* null seq_cst, align 4
  ret i32 0
}

define i32 @test14_no_null_opt() #0 {
; CHECK-LABEL: @test14_no_null_opt(
; CHECK-NEXT:    store atomic i32 0, i32* null seq_cst, align 536870912
; CHECK-NEXT:    ret i32 0
;
  store atomic i32 0, i32* null seq_cst, align 4
  ret i32 0
}

@a = external global i32
@b = external global i32

define i32 @test15(i1 %cnd) {
; CHECK-LABEL: @test15(
; CHECK-NEXT:    [[A_VAL:%.*]] = load atomic i32, i32* @a unordered, align 4
; CHECK-NEXT:    [[B_VAL:%.*]] = load atomic i32, i32* @b unordered, align 4
; CHECK-NEXT:    [[X:%.*]] = select i1 [[CND:%.*]], i32 [[A_VAL]], i32 [[B_VAL]]
; CHECK-NEXT:    ret i32 [[X]]
;
  %addr = select i1 %cnd, i32* @a, i32* @b
  %x = load atomic i32, i32* %addr unordered, align 4
  ret i32 %x
}

; FIXME: This would be legal to transform
define i32 @test16(i1 %cnd) {
; CHECK-LABEL: @test16(
; CHECK-NEXT:    [[ADDR:%.*]] = select i1 [[CND:%.*]], i32* @a, i32* @b
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[ADDR]] monotonic, align 4
; CHECK-NEXT:    ret i32 [[X]]
;
  %addr = select i1 %cnd, i32* @a, i32* @b
  %x = load atomic i32, i32* %addr monotonic, align 4
  ret i32 %x
}

; FIXME: This would be legal to transform
define i32 @test17(i1 %cnd) {
; CHECK-LABEL: @test17(
; CHECK-NEXT:    [[ADDR:%.*]] = select i1 [[CND:%.*]], i32* @a, i32* @b
; CHECK-NEXT:    [[X:%.*]] = load atomic i32, i32* [[ADDR]] seq_cst, align 4
; CHECK-NEXT:    ret i32 [[X]]
;
  %addr = select i1 %cnd, i32* @a, i32* @b
  %x = load atomic i32, i32* %addr seq_cst, align 4
  ret i32 %x
}

define i32 @test22(i1 %cnd) {
; CHECK-LABEL: @test22(
; CHECK-NEXT:    br i1 [[CND:%.*]], label [[BLOCK1:%.*]], label [[BLOCK2:%.*]]
; CHECK:       block1:
; CHECK-NEXT:    br label [[MERGE:%.*]]
; CHECK:       block2:
; CHECK-NEXT:    br label [[MERGE]]
; CHECK:       merge:
; CHECK-NEXT:    [[STOREMERGE:%.*]] = phi i32 [ 2, [[BLOCK2]] ], [ 1, [[BLOCK1]] ]
; CHECK-NEXT:    store atomic i32 [[STOREMERGE]], i32* @a unordered, align 4
; CHECK-NEXT:    ret i32 0
;
  br i1 %cnd, label %block1, label %block2

block1:
  store atomic i32 1, i32* @a unordered, align 4
  br label %merge
block2:
  store atomic i32 2, i32* @a unordered, align 4
  br label %merge

merge:
  ret i32 0
}

; TODO: probably also legal here
define i32 @test23(i1 %cnd) {
; CHECK-LABEL: @test23(
; CHECK-NEXT:    br i1 [[CND:%.*]], label [[BLOCK1:%.*]], label [[BLOCK2:%.*]]
; CHECK:       block1:
; CHECK-NEXT:    store atomic i32 1, i32* @a monotonic, align 4
; CHECK-NEXT:    br label [[MERGE:%.*]]
; CHECK:       block2:
; CHECK-NEXT:    store atomic i32 2, i32* @a monotonic, align 4
; CHECK-NEXT:    br label [[MERGE]]
; CHECK:       merge:
; CHECK-NEXT:    ret i32 0
;
  br i1 %cnd, label %block1, label %block2

block1:
  store atomic i32 1, i32* @a monotonic, align 4
  br label %merge
block2:
  store atomic i32 2, i32* @a monotonic, align 4
  br label %merge

merge:
  ret i32 0
}

declare void @clobber()

define i32 @test18(float* %p) {
; CHECK-LABEL: @test18(
; CHECK-NEXT:    [[TMP1:%.*]] = bitcast float* [[P:%.*]] to i32*
; CHECK-NEXT:    [[X1:%.*]] = load atomic i32, i32* [[TMP1]] unordered, align 4
; CHECK-NEXT:    call void @clobber()
; CHECK-NEXT:    [[TMP2:%.*]] = bitcast float* [[P]] to i32*
; CHECK-NEXT:    store atomic i32 [[X1]], i32* [[TMP2]] unordered, align 4
; CHECK-NEXT:    ret i32 0
;
  %x = load atomic float, float* %p unordered, align 4
  call void @clobber() ;; keep the load around
  store atomic float %x, float* %p unordered, align 4
  ret i32 0
}

; TODO: probably also legal in this case
define i32 @test19(float* %p) {
; CHECK-LABEL: @test19(
; CHECK-NEXT:    [[X:%.*]] = load atomic float, float* [[P:%.*]] seq_cst, align 4
; CHECK-NEXT:    call void @clobber()
; CHECK-NEXT:    store atomic float [[X]], float* [[P]] seq_cst, align 4
; CHECK-NEXT:    ret i32 0
;
  %x = load atomic float, float* %p seq_cst, align 4
  call void @clobber() ;; keep the load around
  store atomic float %x, float* %p seq_cst, align 4
  ret i32 0
}

define i32 @test20(i32** %p, i8* %v) {
; CHECK-LABEL: @test20(
; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i32** [[P:%.*]] to i8**
; CHECK-NEXT:    store atomic i8* [[V:%.*]], i8** [[TMP1]] unordered, align 4
; CHECK-NEXT:    ret i32 0
;
  %cast = bitcast i8* %v to i32*
  store atomic i32* %cast, i32** %p unordered, align 4
  ret i32 0
}

define i32 @test21(i32** %p, i8* %v) {
; CHECK-LABEL: @test21(
; CHECK-NEXT:    [[CAST:%.*]] = bitcast i8* [[V:%.*]] to i32*
; CHECK-NEXT:    store atomic i32* [[CAST]], i32** [[P:%.*]] monotonic, align 4
; CHECK-NEXT:    ret i32 0
;
  %cast = bitcast i8* %v to i32*
  store atomic i32* %cast, i32** %p monotonic, align 4
  ret i32 0
}

define void @pr27490a(i8** %p1, i8** %p2) {
; CHECK-LABEL: @pr27490a(
; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i8** [[P1:%.*]] to i64*
; CHECK-NEXT:    [[L1:%.*]] = load i64, i64* [[TMP1]], align 8
; CHECK-NEXT:    [[TMP2:%.*]] = bitcast i8** [[P2:%.*]] to i64*
; CHECK-NEXT:    store volatile i64 [[L1]], i64* [[TMP2]], align 8
; CHECK-NEXT:    ret void
;
  %l = load i8*, i8** %p1
  store volatile i8* %l, i8** %p2
  ret void
}

define void @pr27490b(i8** %p1, i8** %p2) {
; CHECK-LABEL: @pr27490b(
; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i8** [[P1:%.*]] to i64*
; CHECK-NEXT:    [[L1:%.*]] = load i64, i64* [[TMP1]], align 8
; CHECK-NEXT:    [[TMP2:%.*]] = bitcast i8** [[P2:%.*]] to i64*
; CHECK-NEXT:    store atomic i64 [[L1]], i64* [[TMP2]] seq_cst, align 8
; CHECK-NEXT:    ret void
;
  %l = load i8*, i8** %p1
  store atomic i8* %l, i8** %p2 seq_cst, align 8
  ret void
}

;; At the moment, we can't form atomic vectors by folding since these are
;; not representable in the IR.  This was pr29121.  The right long term
;; solution is to extend the IR to handle this case.
define <2 x float> @no_atomic_vector_load(i64* %p) {
; CHECK-LABEL: @no_atomic_vector_load(
; CHECK-NEXT:    [[LOAD:%.*]] = load atomic i64, i64* [[P:%.*]] unordered, align 8
; CHECK-NEXT:    [[DOTCAST:%.*]] = bitcast i64 [[LOAD]] to <2 x float>
; CHECK-NEXT:    ret <2 x float> [[DOTCAST]]
;
  %load = load atomic i64, i64* %p unordered, align 8
  %.cast = bitcast i64 %load to <2 x float>
  ret <2 x float> %.cast
}

define void @no_atomic_vector_store(<2 x float> %p, i8* %p2) {
; CHECK-LABEL: @no_atomic_vector_store(
; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x float> [[P:%.*]] to i64
; CHECK-NEXT:    [[TMP2:%.*]] = bitcast i8* [[P2:%.*]] to i64*
; CHECK-NEXT:    store atomic i64 [[TMP1]], i64* [[TMP2]] unordered, align 8
; CHECK-NEXT:    ret void
;
  %1 = bitcast <2 x float> %p to i64
  %2 = bitcast i8* %p2 to i64*
  store atomic i64 %1, i64* %2 unordered, align 8
  ret void
}

attributes #0 = { null_pointer_is_valid }