redundant-right-shift-input-masking.ll
8.07 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instcombine -S | FileCheck %s
; If we have:
; (data & (-1 << nbits)) outer>> nbits
; Or
; ((data inner>> nbits) << nbits) outer>> nbits
; The mask is redundant, and can be dropped:
; data outer>> nbits
; This is valid for both lshr and ashr in both positions and any combination.
; We must *not* preserve 'exact' on that final right-shift.
define i32 @t0_lshr(i32 %data, i32 %nbits) {
; CHECK-LABEL: @t0_lshr(
; CHECK-NEXT: [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
; CHECK-NEXT: [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
; CHECK-NEXT: [[T2:%.*]] = lshr exact i32 [[T1]], [[NBITS]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = shl i32 -1, %nbits
%t1 = and i32 %t0, %data
%t2 = lshr exact i32 %t1, %nbits ; while there, test that we *don't* propagate 'exact'
ret i32 %t2
}
define i32 @t1_sshr(i32 %data, i32 %nbits) {
; CHECK-LABEL: @t1_sshr(
; CHECK-NEXT: [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
; CHECK-NEXT: [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
; CHECK-NEXT: [[T2:%.*]] = ashr exact i32 [[T1]], [[NBITS]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = shl i32 -1, %nbits
%t1 = and i32 %t0, %data
%t2 = ashr exact i32 %t1, %nbits ; while there, test that we *don't* propagate 'exact'
ret i32 %t2
}
; Vectors
define <4 x i32> @t2_vec(<4 x i32> %data, <4 x i32> %nbits) {
; CHECK-LABEL: @t2_vec(
; CHECK-NEXT: [[T0:%.*]] = shl <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>, [[NBITS:%.*]]
; CHECK-NEXT: [[T1:%.*]] = and <4 x i32> [[T0]], [[DATA:%.*]]
; CHECK-NEXT: [[T2:%.*]] = lshr <4 x i32> [[T1]], [[NBITS]]
; CHECK-NEXT: ret <4 x i32> [[T2]]
;
%t0 = shl <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>, %nbits
%t1 = and <4 x i32> %t0, %data
%t2 = lshr <4 x i32> %t1, %nbits
ret <4 x i32> %t2
}
define <4 x i32> @t3_vec_undef(<4 x i32> %data, <4 x i32> %nbits) {
; CHECK-LABEL: @t3_vec_undef(
; CHECK-NEXT: [[T0:%.*]] = shl <4 x i32> <i32 -1, i32 -1, i32 undef, i32 -1>, [[NBITS:%.*]]
; CHECK-NEXT: [[T1:%.*]] = and <4 x i32> [[T0]], [[DATA:%.*]]
; CHECK-NEXT: [[T2:%.*]] = lshr <4 x i32> [[T1]], [[NBITS]]
; CHECK-NEXT: ret <4 x i32> [[T2]]
;
%t0 = shl <4 x i32> <i32 -1, i32 -1, i32 undef, i32 -1>, %nbits
%t1 = and <4 x i32> %t0, %data
%t2 = lshr <4 x i32> %t1, %nbits
ret <4 x i32> %t2
}
; Extra uses
declare void @use32(i32)
define i32 @t4_extrause0(i32 %data, i32 %nbits) {
; CHECK-LABEL: @t4_extrause0(
; CHECK-NEXT: [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
; CHECK-NEXT: call void @use32(i32 [[T0]])
; CHECK-NEXT: [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
; CHECK-NEXT: [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = shl i32 -1, %nbits
call void @use32(i32 %t0)
%t1 = and i32 %t0, %data
%t2 = lshr i32 %t1, %nbits
ret i32 %t2
}
define i32 @t5_extrause1(i32 %data, i32 %nbits) {
; CHECK-LABEL: @t5_extrause1(
; CHECK-NEXT: [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
; CHECK-NEXT: [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
; CHECK-NEXT: call void @use32(i32 [[T1]])
; CHECK-NEXT: [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = shl i32 -1, %nbits
%t1 = and i32 %t0, %data
call void @use32(i32 %t1)
%t2 = lshr i32 %t1, %nbits
ret i32 %t2
}
define i32 @t6_extrause2(i32 %data, i32 %nbits) {
; CHECK-LABEL: @t6_extrause2(
; CHECK-NEXT: [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
; CHECK-NEXT: call void @use32(i32 [[T0]])
; CHECK-NEXT: [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
; CHECK-NEXT: call void @use32(i32 [[T1]])
; CHECK-NEXT: [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = shl i32 -1, %nbits
call void @use32(i32 %t0)
%t1 = and i32 %t0, %data
call void @use32(i32 %t1)
%t2 = lshr i32 %t1, %nbits
ret i32 %t2
}
; Non-canonical mask pattern. Let's just test a single case with all-extra uses.
define i32 @t7_noncanonical_lshr_lshr_extrauses(i32 %data, i32 %nbits) {
; CHECK-LABEL: @t7_noncanonical_lshr_lshr_extrauses(
; CHECK-NEXT: [[T0:%.*]] = lshr i32 [[DATA:%.*]], [[NBITS:%.*]]
; CHECK-NEXT: call void @use32(i32 [[T0]])
; CHECK-NEXT: [[T1:%.*]] = shl i32 [[T0]], [[NBITS]]
; CHECK-NEXT: call void @use32(i32 [[T1]])
; CHECK-NEXT: [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = lshr i32 %data, %nbits
call void @use32(i32 %t0)
%t1 = shl i32 %t0, %nbits
call void @use32(i32 %t1)
%t2 = lshr i32 %t1, %nbits
ret i32 %t2
}
define i32 @t8_noncanonical_lshr_ashr_extrauses(i32 %data, i32 %nbits) {
; CHECK-LABEL: @t8_noncanonical_lshr_ashr_extrauses(
; CHECK-NEXT: [[T0:%.*]] = lshr i32 [[DATA:%.*]], [[NBITS:%.*]]
; CHECK-NEXT: call void @use32(i32 [[T0]])
; CHECK-NEXT: [[T1:%.*]] = shl i32 [[T0]], [[NBITS]]
; CHECK-NEXT: call void @use32(i32 [[T1]])
; CHECK-NEXT: [[T2:%.*]] = ashr i32 [[T1]], [[NBITS]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = lshr i32 %data, %nbits
call void @use32(i32 %t0)
%t1 = shl i32 %t0, %nbits
call void @use32(i32 %t1)
%t2 = ashr i32 %t1, %nbits
ret i32 %t2
}
define i32 @t9_noncanonical_ashr_lshr_extrauses(i32 %data, i32 %nbits) {
; CHECK-LABEL: @t9_noncanonical_ashr_lshr_extrauses(
; CHECK-NEXT: [[T0:%.*]] = ashr i32 [[DATA:%.*]], [[NBITS:%.*]]
; CHECK-NEXT: call void @use32(i32 [[T0]])
; CHECK-NEXT: [[T1:%.*]] = shl i32 [[T0]], [[NBITS]]
; CHECK-NEXT: call void @use32(i32 [[T1]])
; CHECK-NEXT: [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = ashr i32 %data, %nbits
call void @use32(i32 %t0)
%t1 = shl i32 %t0, %nbits
call void @use32(i32 %t1)
%t2 = lshr i32 %t1, %nbits
ret i32 %t2
}
define i32 @t10_noncanonical_ashr_ashr_extrauses(i32 %data, i32 %nbits) {
; CHECK-LABEL: @t10_noncanonical_ashr_ashr_extrauses(
; CHECK-NEXT: [[T0:%.*]] = ashr i32 [[DATA:%.*]], [[NBITS:%.*]]
; CHECK-NEXT: call void @use32(i32 [[T0]])
; CHECK-NEXT: [[T1:%.*]] = shl i32 [[T0]], [[NBITS]]
; CHECK-NEXT: call void @use32(i32 [[T1]])
; CHECK-NEXT: [[T2:%.*]] = ashr i32 [[T1]], [[NBITS]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = ashr i32 %data, %nbits
call void @use32(i32 %t0)
%t1 = shl i32 %t0, %nbits
call void @use32(i32 %t1)
%t2 = ashr i32 %t1, %nbits
ret i32 %t2
}
; Commutativity
declare i32 @gen32()
define i32 @t11_commutative(i32 %nbits) {
; CHECK-LABEL: @t11_commutative(
; CHECK-NEXT: [[DATA:%.*]] = call i32 @gen32()
; CHECK-NEXT: [[T0:%.*]] = shl i32 -1, [[NBITS:%.*]]
; CHECK-NEXT: [[T1:%.*]] = and i32 [[DATA]], [[T0]]
; CHECK-NEXT: [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
; CHECK-NEXT: ret i32 [[T2]]
;
%data = call i32 @gen32()
%t0 = shl i32 -1, %nbits
%t1 = and i32 %data, %t0 ; swapped
%t2 = lshr i32 %t1, %nbits
ret i32 %t2
}
; Negative tests
define i32 @n12(i32 %data, i32 %nbits) {
; CHECK-LABEL: @n12(
; CHECK-NEXT: [[T0:%.*]] = shl i32 2147483647, [[NBITS:%.*]]
; CHECK-NEXT: [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
; CHECK-NEXT: [[T2:%.*]] = lshr i32 [[T1]], [[NBITS]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = shl i32 2147483647, %nbits ; must be shifting -1
%t1 = and i32 %t0, %data
%t2 = lshr i32 %t1, %nbits
ret i32 %t2
}
define i32 @n13(i32 %data, i32 %nbits0, i32 %nbits1) {
; CHECK-LABEL: @n13(
; CHECK-NEXT: [[T0:%.*]] = shl i32 -1, [[NBITS0:%.*]]
; CHECK-NEXT: [[T1:%.*]] = and i32 [[T0]], [[DATA:%.*]]
; CHECK-NEXT: [[T2:%.*]] = lshr i32 [[T1]], [[NBITS1:%.*]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = shl i32 -1, %nbits0
%t1 = and i32 %t0, %data
%t2 = lshr i32 %t1, %nbits1 ; different shift amounts
ret i32 %t2
}
define i32 @n14(i32 %data, i32 %nbits0, i32 %nbits1, i32 %nbits2) {
; CHECK-LABEL: @n14(
; CHECK-NEXT: [[T0:%.*]] = lshr i32 [[DATA:%.*]], [[NBITS0:%.*]]
; CHECK-NEXT: call void @use32(i32 [[T0]])
; CHECK-NEXT: [[T1:%.*]] = shl i32 [[T0]], [[NBITS1:%.*]]
; CHECK-NEXT: call void @use32(i32 [[T1]])
; CHECK-NEXT: [[T2:%.*]] = lshr i32 [[T1]], [[NBITS2:%.*]]
; CHECK-NEXT: ret i32 [[T2]]
;
%t0 = lshr i32 %data, %nbits0
call void @use32(i32 %t0)
%t1 = shl i32 %t0, %nbits1 ; different shift amounts
call void @use32(i32 %t1)
%t2 = lshr i32 %t1, %nbits2 ; different shift amounts
ret i32 %t2
}