ConstantsTest.cpp 25.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
//===- llvm/unittest/IR/ConstantsTest.cpp - Constants unit tests ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Constants.h"
#include "llvm-c/Core.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"

namespace llvm {
namespace {

TEST(ConstantsTest, Integer_i1) {
  LLVMContext Context;
  IntegerType *Int1 = IntegerType::get(Context, 1);
  Constant* One = ConstantInt::get(Int1, 1, true);
  Constant* Zero = ConstantInt::get(Int1, 0);
  Constant* NegOne = ConstantInt::get(Int1, static_cast<uint64_t>(-1), true);
  EXPECT_EQ(NegOne, ConstantInt::getSigned(Int1, -1));
  Constant* Undef = UndefValue::get(Int1);

  // Input:  @b = constant i1 add(i1 1 , i1 1)
  // Output: @b = constant i1 false
  EXPECT_EQ(Zero, ConstantExpr::getAdd(One, One));

  // @c = constant i1 add(i1 -1, i1 1)
  // @c = constant i1 false
  EXPECT_EQ(Zero, ConstantExpr::getAdd(NegOne, One));

  // @d = constant i1 add(i1 -1, i1 -1)
  // @d = constant i1 false
  EXPECT_EQ(Zero, ConstantExpr::getAdd(NegOne, NegOne));

  // @e = constant i1 sub(i1 -1, i1 1)
  // @e = constant i1 false
  EXPECT_EQ(Zero, ConstantExpr::getSub(NegOne, One));

  // @f = constant i1 sub(i1 1 , i1 -1)
  // @f = constant i1 false
  EXPECT_EQ(Zero, ConstantExpr::getSub(One, NegOne));

  // @g = constant i1 sub(i1 1 , i1 1)
  // @g = constant i1 false
  EXPECT_EQ(Zero, ConstantExpr::getSub(One, One));

  // @h = constant i1 shl(i1 1 , i1 1)  ; undefined
  // @h = constant i1 undef
  EXPECT_EQ(Undef, ConstantExpr::getShl(One, One));

  // @i = constant i1 shl(i1 1 , i1 0)
  // @i = constant i1 true
  EXPECT_EQ(One, ConstantExpr::getShl(One, Zero));

  // @j = constant i1 lshr(i1 1, i1 1)  ; undefined
  // @j = constant i1 undef
  EXPECT_EQ(Undef, ConstantExpr::getLShr(One, One));

  // @m = constant i1 ashr(i1 1, i1 1)  ; undefined
  // @m = constant i1 undef
  EXPECT_EQ(Undef, ConstantExpr::getAShr(One, One));

  // @n = constant i1 mul(i1 -1, i1 1)
  // @n = constant i1 true
  EXPECT_EQ(One, ConstantExpr::getMul(NegOne, One));

  // @o = constant i1 sdiv(i1 -1, i1 1) ; overflow
  // @o = constant i1 true
  EXPECT_EQ(One, ConstantExpr::getSDiv(NegOne, One));

  // @p = constant i1 sdiv(i1 1 , i1 -1); overflow
  // @p = constant i1 true
  EXPECT_EQ(One, ConstantExpr::getSDiv(One, NegOne));

  // @q = constant i1 udiv(i1 -1, i1 1)
  // @q = constant i1 true
  EXPECT_EQ(One, ConstantExpr::getUDiv(NegOne, One));

  // @r = constant i1 udiv(i1 1, i1 -1)
  // @r = constant i1 true
  EXPECT_EQ(One, ConstantExpr::getUDiv(One, NegOne));

  // @s = constant i1 srem(i1 -1, i1 1) ; overflow
  // @s = constant i1 false
  EXPECT_EQ(Zero, ConstantExpr::getSRem(NegOne, One));

  // @t = constant i1 urem(i1 -1, i1 1)
  // @t = constant i1 false
  EXPECT_EQ(Zero, ConstantExpr::getURem(NegOne, One));

  // @u = constant i1 srem(i1  1, i1 -1) ; overflow
  // @u = constant i1 false
  EXPECT_EQ(Zero, ConstantExpr::getSRem(One, NegOne));
}

TEST(ConstantsTest, IntSigns) {
  LLVMContext Context;
  IntegerType *Int8Ty = Type::getInt8Ty(Context);
  EXPECT_EQ(100, ConstantInt::get(Int8Ty, 100, false)->getSExtValue());
  EXPECT_EQ(100, ConstantInt::get(Int8Ty, 100, true)->getSExtValue());
  EXPECT_EQ(100, ConstantInt::getSigned(Int8Ty, 100)->getSExtValue());
  EXPECT_EQ(-50, ConstantInt::get(Int8Ty, 206)->getSExtValue());
  EXPECT_EQ(-50, ConstantInt::getSigned(Int8Ty, -50)->getSExtValue());
  EXPECT_EQ(206U, ConstantInt::getSigned(Int8Ty, -50)->getZExtValue());

  // Overflow is handled by truncation.
  EXPECT_EQ(0x3b, ConstantInt::get(Int8Ty, 0x13b)->getSExtValue());
}

TEST(ConstantsTest, FP128Test) {
  LLVMContext Context;
  Type *FP128Ty = Type::getFP128Ty(Context);

  IntegerType *Int128Ty = Type::getIntNTy(Context, 128);
  Constant *Zero128 = Constant::getNullValue(Int128Ty);
  Constant *X = ConstantExpr::getUIToFP(Zero128, FP128Ty);
  EXPECT_TRUE(isa<ConstantFP>(X));
}

TEST(ConstantsTest, PointerCast) {
  LLVMContext C;
  Type *Int8PtrTy = Type::getInt8PtrTy(C);
  Type *Int32PtrTy = Type::getInt32PtrTy(C);
  Type *Int64Ty = Type::getInt64Ty(C);
  VectorType *Int8PtrVecTy = FixedVectorType::get(Int8PtrTy, 4);
  VectorType *Int32PtrVecTy = FixedVectorType::get(Int32PtrTy, 4);
  VectorType *Int64VecTy = FixedVectorType::get(Int64Ty, 4);

  // ptrtoint i8* to i64
  EXPECT_EQ(Constant::getNullValue(Int64Ty),
            ConstantExpr::getPointerCast(
              Constant::getNullValue(Int8PtrTy), Int64Ty));

  // bitcast i8* to i32*
  EXPECT_EQ(Constant::getNullValue(Int32PtrTy),
            ConstantExpr::getPointerCast(
              Constant::getNullValue(Int8PtrTy), Int32PtrTy));

  // ptrtoint <4 x i8*> to <4 x i64>
  EXPECT_EQ(Constant::getNullValue(Int64VecTy),
            ConstantExpr::getPointerCast(
              Constant::getNullValue(Int8PtrVecTy), Int64VecTy));

  // bitcast <4 x i8*> to <4 x i32*>
  EXPECT_EQ(Constant::getNullValue(Int32PtrVecTy),
            ConstantExpr::getPointerCast(
              Constant::getNullValue(Int8PtrVecTy), Int32PtrVecTy));

  Type *Int32Ptr1Ty = Type::getInt32PtrTy(C, 1);
  ConstantInt *K = ConstantInt::get(Type::getInt64Ty(C), 1234);

  // Make sure that addrspacecast of inttoptr is not folded away.
  EXPECT_NE(K,
            ConstantExpr::getAddrSpaceCast(
              ConstantExpr::getIntToPtr(K, Int32PtrTy), Int32Ptr1Ty));
  EXPECT_NE(K,
            ConstantExpr::getAddrSpaceCast(
              ConstantExpr::getIntToPtr(K, Int32Ptr1Ty), Int32PtrTy));

  Constant *NullInt32Ptr0 = Constant::getNullValue(Int32PtrTy);
  Constant *NullInt32Ptr1 = Constant::getNullValue(Int32Ptr1Ty);

  // Make sure that addrspacecast of null is not folded away.
  EXPECT_NE(Constant::getNullValue(Int32PtrTy),
            ConstantExpr::getAddrSpaceCast(NullInt32Ptr0, Int32Ptr1Ty));

  EXPECT_NE(Constant::getNullValue(Int32Ptr1Ty),
            ConstantExpr::getAddrSpaceCast(NullInt32Ptr1, Int32PtrTy));
}

#define CHECK(x, y)                                                            \
  {                                                                            \
    std::string __s;                                                           \
    raw_string_ostream __o(__s);                                               \
    Instruction *__I = cast<ConstantExpr>(x)->getAsInstruction();              \
    __I->print(__o);                                                           \
    __I->deleteValue();                                                        \
    __o.flush();                                                               \
    EXPECT_EQ(std::string("  <badref> = " y), __s);                            \
  }

TEST(ConstantsTest, AsInstructionsTest) {
  LLVMContext Context;
  std::unique_ptr<Module> M(new Module("MyModule", Context));

  Type *Int64Ty = Type::getInt64Ty(Context);
  Type *Int32Ty = Type::getInt32Ty(Context);
  Type *Int16Ty = Type::getInt16Ty(Context);
  Type *Int1Ty = Type::getInt1Ty(Context);
  Type *FloatTy = Type::getFloatTy(Context);
  Type *DoubleTy = Type::getDoubleTy(Context);

  Constant *Global = M->getOrInsertGlobal("dummy",
                                         PointerType::getUnqual(Int32Ty));
  Constant *Global2 = M->getOrInsertGlobal("dummy2",
                                         PointerType::getUnqual(Int32Ty));

  Constant *P0 = ConstantExpr::getPtrToInt(Global, Int32Ty);
  Constant *P1 = ConstantExpr::getUIToFP(P0, FloatTy);
  Constant *P2 = ConstantExpr::getUIToFP(P0, DoubleTy);
  Constant *P3 = ConstantExpr::getTrunc(P0, Int1Ty);
  Constant *P4 = ConstantExpr::getPtrToInt(Global2, Int32Ty);
  Constant *P5 = ConstantExpr::getUIToFP(P4, FloatTy);
  Constant *P6 = ConstantExpr::getBitCast(P4, FixedVectorType::get(Int16Ty, 2));

  Constant *One = ConstantInt::get(Int32Ty, 1);
  Constant *Two = ConstantInt::get(Int64Ty, 2);
  Constant *Big = ConstantInt::get(Context, APInt{256, uint64_t(-1), true});
  Constant *Elt = ConstantInt::get(Int16Ty, 2015);
  Constant *Undef16  = UndefValue::get(Int16Ty);
  Constant *Undef64  = UndefValue::get(Int64Ty);
  Constant *UndefV16 = UndefValue::get(P6->getType());

  #define P0STR "ptrtoint (i32** @dummy to i32)"
  #define P1STR "uitofp (i32 ptrtoint (i32** @dummy to i32) to float)"
  #define P2STR "uitofp (i32 ptrtoint (i32** @dummy to i32) to double)"
  #define P3STR "ptrtoint (i32** @dummy to i1)"
  #define P4STR "ptrtoint (i32** @dummy2 to i32)"
  #define P5STR "uitofp (i32 ptrtoint (i32** @dummy2 to i32) to float)"
  #define P6STR "bitcast (i32 ptrtoint (i32** @dummy2 to i32) to <2 x i16>)"

  CHECK(ConstantExpr::getNeg(P0), "sub i32 0, " P0STR);
  CHECK(ConstantExpr::getFNeg(P1), "fneg float " P1STR);
  CHECK(ConstantExpr::getNot(P0), "xor i32 " P0STR ", -1");
  CHECK(ConstantExpr::getAdd(P0, P0), "add i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getAdd(P0, P0, false, true), "add nsw i32 " P0STR ", "
        P0STR);
  CHECK(ConstantExpr::getAdd(P0, P0, true, true), "add nuw nsw i32 " P0STR ", "
        P0STR);
  CHECK(ConstantExpr::getFAdd(P1, P1), "fadd float " P1STR ", " P1STR);
  CHECK(ConstantExpr::getSub(P0, P0), "sub i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getFSub(P1, P1), "fsub float " P1STR ", " P1STR);
  CHECK(ConstantExpr::getMul(P0, P0), "mul i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getFMul(P1, P1), "fmul float " P1STR ", " P1STR);
  CHECK(ConstantExpr::getUDiv(P0, P0), "udiv i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getSDiv(P0, P0), "sdiv i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getFDiv(P1, P1), "fdiv float " P1STR ", " P1STR);
  CHECK(ConstantExpr::getURem(P0, P0), "urem i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getSRem(P0, P0), "srem i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getFRem(P1, P1), "frem float " P1STR ", " P1STR);
  CHECK(ConstantExpr::getAnd(P0, P0), "and i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getOr(P0, P0), "or i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getXor(P0, P0), "xor i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getShl(P0, P0), "shl i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getShl(P0, P0, true), "shl nuw i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getShl(P0, P0, false, true), "shl nsw i32 " P0STR ", "
        P0STR);
  CHECK(ConstantExpr::getLShr(P0, P0, false), "lshr i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getLShr(P0, P0, true), "lshr exact i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getAShr(P0, P0, false), "ashr i32 " P0STR ", " P0STR);
  CHECK(ConstantExpr::getAShr(P0, P0, true), "ashr exact i32 " P0STR ", " P0STR);

  CHECK(ConstantExpr::getSExt(P0, Int64Ty), "sext i32 " P0STR " to i64");
  CHECK(ConstantExpr::getZExt(P0, Int64Ty), "zext i32 " P0STR " to i64");
  CHECK(ConstantExpr::getFPTrunc(P2, FloatTy), "fptrunc double " P2STR
        " to float");
  CHECK(ConstantExpr::getFPExtend(P1, DoubleTy), "fpext float " P1STR
        " to double");

  CHECK(ConstantExpr::getExactUDiv(P0, P0), "udiv exact i32 " P0STR ", " P0STR);

  CHECK(ConstantExpr::getSelect(P3, P0, P4), "select i1 " P3STR ", i32 " P0STR
        ", i32 " P4STR);
  CHECK(ConstantExpr::getICmp(CmpInst::ICMP_EQ, P0, P4), "icmp eq i32 " P0STR
        ", " P4STR);
  CHECK(ConstantExpr::getFCmp(CmpInst::FCMP_ULT, P1, P5), "fcmp ult float "
        P1STR ", " P5STR);

  std::vector<Constant*> V;
  V.push_back(One);
  // FIXME: getGetElementPtr() actually creates an inbounds ConstantGEP,
  //        not a normal one!
  //CHECK(ConstantExpr::getGetElementPtr(Global, V, false),
  //      "getelementptr i32*, i32** @dummy, i32 1");
  CHECK(ConstantExpr::getInBoundsGetElementPtr(PointerType::getUnqual(Int32Ty),
                                               Global, V),
        "getelementptr inbounds i32*, i32** @dummy, i32 1");

  CHECK(ConstantExpr::getExtractElement(P6, One), "extractelement <2 x i16> "
        P6STR ", i32 1");

  EXPECT_EQ(Undef16, ConstantExpr::getExtractElement(P6, Two));
  EXPECT_EQ(Undef16, ConstantExpr::getExtractElement(P6, Big));
  EXPECT_EQ(Undef16, ConstantExpr::getExtractElement(P6, Undef64));

  EXPECT_EQ(Elt, ConstantExpr::getExtractElement(
                 ConstantExpr::getInsertElement(P6, Elt, One), One));
  EXPECT_EQ(UndefV16, ConstantExpr::getInsertElement(P6, Elt, Two));
  EXPECT_EQ(UndefV16, ConstantExpr::getInsertElement(P6, Elt, Big));
  EXPECT_EQ(UndefV16, ConstantExpr::getInsertElement(P6, Elt, Undef64));
}

#ifdef GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
TEST(ConstantsTest, ReplaceWithConstantTest) {
  LLVMContext Context;
  std::unique_ptr<Module> M(new Module("MyModule", Context));

  Type *Int32Ty = Type::getInt32Ty(Context);
  Constant *One = ConstantInt::get(Int32Ty, 1);

  Constant *Global =
      M->getOrInsertGlobal("dummy", PointerType::getUnqual(Int32Ty));
  Constant *GEP = ConstantExpr::getGetElementPtr(
      PointerType::getUnqual(Int32Ty), Global, One);
  EXPECT_DEATH(Global->replaceAllUsesWith(GEP),
               "this->replaceAllUsesWith\\(expr\\(this\\)\\) is NOT valid!");
}

#endif
#endif

#undef CHECK

TEST(ConstantsTest, ConstantArrayReplaceWithConstant) {
  LLVMContext Context;
  std::unique_ptr<Module> M(new Module("MyModule", Context));

  Type *IntTy = Type::getInt8Ty(Context);
  ArrayType *ArrayTy = ArrayType::get(IntTy, 2);
  Constant *A01Vals[2] = {ConstantInt::get(IntTy, 0),
                          ConstantInt::get(IntTy, 1)};
  Constant *A01 = ConstantArray::get(ArrayTy, A01Vals);

  Constant *Global = new GlobalVariable(*M, IntTy, false,
                                        GlobalValue::ExternalLinkage, nullptr);
  Constant *GlobalInt = ConstantExpr::getPtrToInt(Global, IntTy);
  Constant *A0GVals[2] = {ConstantInt::get(IntTy, 0), GlobalInt};
  Constant *A0G = ConstantArray::get(ArrayTy, A0GVals);
  ASSERT_NE(A01, A0G);

  GlobalVariable *RefArray =
      new GlobalVariable(*M, ArrayTy, false, GlobalValue::ExternalLinkage, A0G);
  ASSERT_EQ(A0G, RefArray->getInitializer());

  GlobalInt->replaceAllUsesWith(ConstantInt::get(IntTy, 1));
  ASSERT_EQ(A01, RefArray->getInitializer());
}

TEST(ConstantsTest, ConstantExprReplaceWithConstant) {
  LLVMContext Context;
  std::unique_ptr<Module> M(new Module("MyModule", Context));

  Type *IntTy = Type::getInt8Ty(Context);
  Constant *G1 = new GlobalVariable(*M, IntTy, false,
                                    GlobalValue::ExternalLinkage, nullptr);
  Constant *G2 = new GlobalVariable(*M, IntTy, false,
                                    GlobalValue::ExternalLinkage, nullptr);
  ASSERT_NE(G1, G2);

  Constant *Int1 = ConstantExpr::getPtrToInt(G1, IntTy);
  Constant *Int2 = ConstantExpr::getPtrToInt(G2, IntTy);
  ASSERT_NE(Int1, Int2);

  GlobalVariable *Ref =
      new GlobalVariable(*M, IntTy, false, GlobalValue::ExternalLinkage, Int1);
  ASSERT_EQ(Int1, Ref->getInitializer());

  G1->replaceAllUsesWith(G2);
  ASSERT_EQ(Int2, Ref->getInitializer());
}

TEST(ConstantsTest, GEPReplaceWithConstant) {
  LLVMContext Context;
  std::unique_ptr<Module> M(new Module("MyModule", Context));

  Type *IntTy = Type::getInt32Ty(Context);
  Type *PtrTy = PointerType::get(IntTy, 0);
  auto *C1 = ConstantInt::get(IntTy, 1);
  auto *Placeholder = new GlobalVariable(
      *M, IntTy, false, GlobalValue::ExternalWeakLinkage, nullptr);
  auto *GEP = ConstantExpr::getGetElementPtr(IntTy, Placeholder, C1);
  ASSERT_EQ(GEP->getOperand(0), Placeholder);

  auto *Ref =
      new GlobalVariable(*M, PtrTy, false, GlobalValue::ExternalLinkage, GEP);
  ASSERT_EQ(GEP, Ref->getInitializer());

  auto *Global = new GlobalVariable(*M, PtrTy, false,
                                    GlobalValue::ExternalLinkage, nullptr);
  auto *Alias = GlobalAlias::create(IntTy, 0, GlobalValue::ExternalLinkage,
                                    "alias", Global, M.get());
  Placeholder->replaceAllUsesWith(Alias);
  ASSERT_EQ(GEP, Ref->getInitializer());
  ASSERT_EQ(GEP->getOperand(0), Alias);
}

TEST(ConstantsTest, AliasCAPI) {
  LLVMContext Context;
  SMDiagnostic Error;
  std::unique_ptr<Module> M =
      parseAssemblyString("@g = global i32 42", Error, Context);
  GlobalVariable *G = M->getGlobalVariable("g");
  Type *I16Ty = Type::getInt16Ty(Context);
  Type *I16PTy = PointerType::get(I16Ty, 0);
  Constant *Aliasee = ConstantExpr::getBitCast(G, I16PTy);
  LLVMValueRef AliasRef =
      LLVMAddAlias(wrap(M.get()), wrap(I16PTy), wrap(Aliasee), "a");
  ASSERT_EQ(unwrap<GlobalAlias>(AliasRef)->getAliasee(), Aliasee);
}

static std::string getNameOfType(Type *T) {
  std::string S;
  raw_string_ostream RSOS(S);
  T->print(RSOS);
  return S;
}

TEST(ConstantsTest, BuildConstantDataArrays) {
  LLVMContext Context;
  std::unique_ptr<Module> M(new Module("MyModule", Context));

  for (Type *T : {Type::getInt8Ty(Context), Type::getInt16Ty(Context),
                  Type::getInt32Ty(Context), Type::getInt64Ty(Context)}) {
    ArrayType *ArrayTy = ArrayType::get(T, 2);
    Constant *Vals[] = {ConstantInt::get(T, 0), ConstantInt::get(T, 1)};
    Constant *CDV = ConstantArray::get(ArrayTy, Vals);
    ASSERT_TRUE(dyn_cast<ConstantDataArray>(CDV) != nullptr)
        << " T = " << getNameOfType(T);
  }

  for (Type *T : {Type::getHalfTy(Context), Type::getFloatTy(Context),
                  Type::getDoubleTy(Context)}) {
    ArrayType *ArrayTy = ArrayType::get(T, 2);
    Constant *Vals[] = {ConstantFP::get(T, 0), ConstantFP::get(T, 1)};
    Constant *CDV = ConstantArray::get(ArrayTy, Vals);
    ASSERT_TRUE(dyn_cast<ConstantDataArray>(CDV) != nullptr)
        << " T = " << getNameOfType(T);
  }
}

TEST(ConstantsTest, BuildConstantDataVectors) {
  LLVMContext Context;
  std::unique_ptr<Module> M(new Module("MyModule", Context));

  for (Type *T : {Type::getInt8Ty(Context), Type::getInt16Ty(Context),
                  Type::getInt32Ty(Context), Type::getInt64Ty(Context)}) {
    Constant *Vals[] = {ConstantInt::get(T, 0), ConstantInt::get(T, 1)};
    Constant *CDV = ConstantVector::get(Vals);
    ASSERT_TRUE(dyn_cast<ConstantDataVector>(CDV) != nullptr)
        << " T = " << getNameOfType(T);
  }

  for (Type *T : {Type::getHalfTy(Context), Type::getFloatTy(Context),
                  Type::getDoubleTy(Context)}) {
    Constant *Vals[] = {ConstantFP::get(T, 0), ConstantFP::get(T, 1)};
    Constant *CDV = ConstantVector::get(Vals);
    ASSERT_TRUE(dyn_cast<ConstantDataVector>(CDV) != nullptr)
        << " T = " << getNameOfType(T);
  }
}

TEST(ConstantsTest, BitcastToGEP) {
  LLVMContext Context;
  std::unique_ptr<Module> M(new Module("MyModule", Context));

  auto *i32 = Type::getInt32Ty(Context);
  auto *U = StructType::create(Context, "Unsized");
  Type *EltTys[] = {i32, U};
  auto *S = StructType::create(EltTys);

  auto *G = new GlobalVariable(*M, S, false,
                               GlobalValue::ExternalLinkage, nullptr);
  auto *PtrTy = PointerType::get(i32, 0);
  auto *C = ConstantExpr::getBitCast(G, PtrTy);
  ASSERT_EQ(cast<ConstantExpr>(C)->getOpcode(), Instruction::BitCast);
}

bool foldFuncPtrAndConstToNull(LLVMContext &Context, Module *TheModule,
                               uint64_t AndValue,
                               MaybeAlign FunctionAlign = llvm::None) {
  Type *VoidType(Type::getVoidTy(Context));
  FunctionType *FuncType(FunctionType::get(VoidType, false));
  Function *Func(Function::Create(
      FuncType, GlobalValue::ExternalLinkage, "", TheModule));

  if (FunctionAlign)
    Func->setAlignment(*FunctionAlign);

  IntegerType *ConstantIntType(Type::getInt32Ty(Context));
  ConstantInt *TheConstant(ConstantInt::get(ConstantIntType, AndValue));

  Constant *TheConstantExpr(
      ConstantExpr::getPtrToInt(Func, ConstantIntType));


  bool result = ConstantExpr::get(Instruction::And, TheConstantExpr,
                           TheConstant)->isNullValue();

  if (!TheModule) {
    // If the Module exists then it will delete the Function.
    delete Func;
  }

  return result;
}

TEST(ConstantsTest, FoldFunctionPtrAlignUnknownAnd2) {
  LLVMContext Context;
  Module TheModule("TestModule", Context);
  // When the DataLayout doesn't specify a function pointer alignment we
  // assume in this case that it is 4 byte aligned. This is a bug but we can't
  // fix it directly because it causes a code size regression on X86.
  // FIXME: This test should be changed once existing targets have
  // appropriate defaults. See associated FIXME in ConstantFoldBinaryInstruction
  ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, 2));
}

TEST(ConstantsTest, DontFoldFunctionPtrAlignUnknownAnd4) {
  LLVMContext Context;
  Module TheModule("TestModule", Context);
  ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 4));
}

TEST(ConstantsTest, FoldFunctionPtrAlign4) {
  LLVMContext Context;
  Module TheModule("TestModule", Context);
  const char* AlignmentStrings[] = { "Fi32", "Fn32" };

  for (unsigned AndValue = 1; AndValue <= 2; ++AndValue) {
    for (const char *AlignmentString : AlignmentStrings) {
      TheModule.setDataLayout(AlignmentString);
      ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, AndValue));
    }
  }
}

TEST(ConstantsTest, DontFoldFunctionPtrAlign1) {
  LLVMContext Context;
  Module TheModule("TestModule", Context);
  const char* AlignmentStrings[] = { "Fi8", "Fn8" };

  for (const char* AlignmentString : AlignmentStrings) {
    TheModule.setDataLayout(AlignmentString);
    ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 2));
  }
}

TEST(ConstantsTest, FoldFunctionAlign4PtrAlignMultiple) {
  LLVMContext Context;
  Module TheModule("TestModule", Context);
  TheModule.setDataLayout("Fn8");
  ASSERT_TRUE(foldFuncPtrAndConstToNull(Context, &TheModule, 2, Align(4)));
}

TEST(ConstantsTest, DontFoldFunctionAlign4PtrAlignIndependent) {
  LLVMContext Context;
  Module TheModule("TestModule", Context);
  TheModule.setDataLayout("Fi8");
  ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, &TheModule, 2, Align(4)));
}

TEST(ConstantsTest, DontFoldFunctionPtrIfNoModule) {
  LLVMContext Context;
  // Even though the function is explicitly 4 byte aligned, in the absence of a
  // DataLayout we can't assume that the function pointer is aligned.
  ASSERT_FALSE(foldFuncPtrAndConstToNull(Context, nullptr, 2, Align(4)));
}

TEST(ConstantsTest, FoldGlobalVariablePtr) {
  LLVMContext Context;

  IntegerType *IntType(Type::getInt32Ty(Context));

  std::unique_ptr<GlobalVariable> Global(
      new GlobalVariable(IntType, true, GlobalValue::ExternalLinkage));

  Global->setAlignment(Align(4));

  ConstantInt *TheConstant(ConstantInt::get(IntType, 2));

  Constant *TheConstantExpr(
      ConstantExpr::getPtrToInt(Global.get(), IntType));

  ASSERT_TRUE(ConstantExpr::get( \
      Instruction::And, TheConstantExpr, TheConstant)->isNullValue());
}

// Check that undefined elements in vector constants are matched
// correctly for both integer and floating-point types. Just don't
// crash on vectors of pointers (could be handled?).

TEST(ConstantsTest, isElementWiseEqual) {
  LLVMContext Context;

  Type *Int32Ty = Type::getInt32Ty(Context);
  Constant *CU = UndefValue::get(Int32Ty);
  Constant *C1 = ConstantInt::get(Int32Ty, 1);
  Constant *C2 = ConstantInt::get(Int32Ty, 2);

  Constant *C1211 = ConstantVector::get({C1, C2, C1, C1});
  Constant *C12U1 = ConstantVector::get({C1, C2, CU, C1});
  Constant *C12U2 = ConstantVector::get({C1, C2, CU, C2});
  Constant *C12U21 = ConstantVector::get({C1, C2, CU, C2, C1});

  EXPECT_TRUE(C1211->isElementWiseEqual(C12U1));
  EXPECT_TRUE(C12U1->isElementWiseEqual(C1211));
  EXPECT_FALSE(C12U2->isElementWiseEqual(C12U1));
  EXPECT_FALSE(C12U1->isElementWiseEqual(C12U2));
  EXPECT_FALSE(C12U21->isElementWiseEqual(C12U2));

  Type *FltTy = Type::getFloatTy(Context);
  Constant *CFU = UndefValue::get(FltTy);
  Constant *CF1 = ConstantFP::get(FltTy, 1.0);
  Constant *CF2 = ConstantFP::get(FltTy, 2.0);

  Constant *CF1211 = ConstantVector::get({CF1, CF2, CF1, CF1});
  Constant *CF12U1 = ConstantVector::get({CF1, CF2, CFU, CF1});
  Constant *CF12U2 = ConstantVector::get({CF1, CF2, CFU, CF2});
  Constant *CFUU1U = ConstantVector::get({CFU, CFU, CF1, CFU});

  EXPECT_TRUE(CF1211->isElementWiseEqual(CF12U1));
  EXPECT_TRUE(CF12U1->isElementWiseEqual(CF1211));
  EXPECT_TRUE(CFUU1U->isElementWiseEqual(CF12U1));
  EXPECT_FALSE(CF12U2->isElementWiseEqual(CF12U1));
  EXPECT_FALSE(CF12U1->isElementWiseEqual(CF12U2));

  PointerType *PtrTy = Type::getInt8PtrTy(Context);
  Constant *CPU = UndefValue::get(PtrTy);
  Constant *CP0 = ConstantPointerNull::get(PtrTy);

  Constant *CP0000 = ConstantVector::get({CP0, CP0, CP0, CP0});
  Constant *CP00U0 = ConstantVector::get({CP0, CP0, CPU, CP0});
  Constant *CP00U = ConstantVector::get({CP0, CP0, CPU});

  EXPECT_FALSE(CP0000->isElementWiseEqual(CP00U0));
  EXPECT_FALSE(CP00U0->isElementWiseEqual(CP0000));
  EXPECT_FALSE(CP0000->isElementWiseEqual(CP00U));
  EXPECT_FALSE(CP00U->isElementWiseEqual(CP00U0));
}

TEST(ConstantsTest, GetSplatValueRoundTrip) {
  LLVMContext Context;

  Type *FloatTy = Type::getFloatTy(Context);
  Type *Int32Ty = Type::getInt32Ty(Context);
  Type *Int8Ty = Type::getInt8Ty(Context);

  for (unsigned Min : {1, 2, 8}) {
    ElementCount ScalableEC = {Min, true};
    ElementCount FixedEC = {Min, false};

    for (auto EC : {ScalableEC, FixedEC}) {
      for (auto *Ty : {FloatTy, Int32Ty, Int8Ty}) {
        Constant *Zero = Constant::getNullValue(Ty);
        Constant *One = Constant::getAllOnesValue(Ty);

        for (auto *C : {Zero, One}) {
          Constant *Splat = ConstantVector::getSplat(EC, C);
          ASSERT_NE(nullptr, Splat);

          Constant *SplatVal = Splat->getSplatValue();
          EXPECT_NE(nullptr, SplatVal);
          EXPECT_EQ(SplatVal, C);
        }
      }
    }
  }
}

}  // end anonymous namespace
}  // end namespace llvm