ConvertSPIRVToLLVM.cpp
34.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
//===- ConvertSPIRVToLLVM.cpp - SPIR-V dialect to LLVM dialect conversion -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to convert SPIR-V dialect to LLVM dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/SPIRVToLLVM/ConvertSPIRVToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "spirv-to-llvm-pattern"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
/// Returns true if the given type is a signed integer or vector type.
static bool isSignedIntegerOrVector(Type type) {
if (type.isSignedInteger())
return true;
if (auto vecType = type.dyn_cast<VectorType>())
return vecType.getElementType().isSignedInteger();
return false;
}
/// Returns true if the given type is an unsigned integer or vector type
static bool isUnsignedIntegerOrVector(Type type) {
if (type.isUnsignedInteger())
return true;
if (auto vecType = type.dyn_cast<VectorType>())
return vecType.getElementType().isUnsignedInteger();
return false;
}
/// Returns the bit width of integer, float or vector of float or integer values
static unsigned getBitWidth(Type type) {
assert((type.isIntOrFloat() || type.isa<VectorType>()) &&
"bitwidth is not supported for this type");
if (type.isIntOrFloat())
return type.getIntOrFloatBitWidth();
auto vecType = type.dyn_cast<VectorType>();
auto elementType = vecType.getElementType();
assert(elementType.isIntOrFloat() &&
"only integers and floats have a bitwidth");
return elementType.getIntOrFloatBitWidth();
}
/// Returns the bit width of LLVMType integer or vector.
static unsigned getLLVMTypeBitWidth(LLVM::LLVMType type) {
return type.isVectorTy() ? type.getVectorElementType()
.getUnderlyingType()
->getIntegerBitWidth()
: type.getUnderlyingType()->getIntegerBitWidth();
}
/// Creates `IntegerAttribute` with all bits set for given type
static IntegerAttr minusOneIntegerAttribute(Type type, Builder builder) {
if (auto vecType = type.dyn_cast<VectorType>()) {
auto integerType = vecType.getElementType().cast<IntegerType>();
return builder.getIntegerAttr(integerType, -1);
}
auto integerType = type.cast<IntegerType>();
return builder.getIntegerAttr(integerType, -1);
}
/// Creates `llvm.mlir.constant` with all bits set for the given type.
static Value createConstantAllBitsSet(Location loc, Type srcType, Type dstType,
PatternRewriter &rewriter) {
if (srcType.isa<VectorType>()) {
return rewriter.create<LLVM::ConstantOp>(
loc, dstType,
SplatElementsAttr::get(srcType.cast<ShapedType>(),
minusOneIntegerAttribute(srcType, rewriter)));
}
return rewriter.create<LLVM::ConstantOp>(
loc, dstType, minusOneIntegerAttribute(srcType, rewriter));
}
/// Utility function for bitfiled ops:
/// - `BitFieldInsert`
/// - `BitFieldSExtract`
/// - `BitFieldUExtract`
/// Truncates or extends the value. If the bitwidth of the value is the same as
/// `dstType` bitwidth, the value remains unchanged.
static Value optionallyTruncateOrExtend(Location loc, Value value, Type dstType,
PatternRewriter &rewriter) {
auto srcType = value.getType();
auto llvmType = dstType.cast<LLVM::LLVMType>();
unsigned targetBitWidth = getLLVMTypeBitWidth(llvmType);
unsigned valueBitWidth =
srcType.isa<LLVM::LLVMType>()
? getLLVMTypeBitWidth(srcType.cast<LLVM::LLVMType>())
: getBitWidth(srcType);
if (valueBitWidth < targetBitWidth)
return rewriter.create<LLVM::ZExtOp>(loc, llvmType, value);
// If the bit widths of `Count` and `Offset` are greater than the bit width
// of the target type, they are truncated. Truncation is safe since `Count`
// and `Offset` must be no more than 64 for op behaviour to be defined. Hence,
// both values can be expressed in 8 bits.
if (valueBitWidth > targetBitWidth)
return rewriter.create<LLVM::TruncOp>(loc, llvmType, value);
return value;
}
/// Broadcasts the value to vector with `numElements` number of elements.
static Value broadcast(Location loc, Value toBroadcast, unsigned numElements,
LLVMTypeConverter &typeConverter,
ConversionPatternRewriter &rewriter) {
auto vectorType = VectorType::get(numElements, toBroadcast.getType());
auto llvmVectorType = typeConverter.convertType(vectorType);
auto llvmI32Type = typeConverter.convertType(rewriter.getIntegerType(32));
Value broadcasted = rewriter.create<LLVM::UndefOp>(loc, llvmVectorType);
for (unsigned i = 0; i < numElements; ++i) {
auto index = rewriter.create<LLVM::ConstantOp>(
loc, llvmI32Type, rewriter.getI32IntegerAttr(i));
broadcasted = rewriter.create<LLVM::InsertElementOp>(
loc, llvmVectorType, broadcasted, toBroadcast, index);
}
return broadcasted;
}
/// Broadcasts the value. If `srcType` is a scalar, the value remains unchanged.
static Value optionallyBroadcast(Location loc, Value value, Type srcType,
LLVMTypeConverter &typeConverter,
ConversionPatternRewriter &rewriter) {
if (auto vectorType = srcType.dyn_cast<VectorType>()) {
unsigned numElements = vectorType.getNumElements();
return broadcast(loc, value, numElements, typeConverter, rewriter);
}
return value;
}
/// Utility function for bitfiled ops: `BitFieldInsert`, `BitFieldSExtract` and
/// `BitFieldUExtract`.
/// Broadcast `Offset` and `Count` to match the type of `Base`. If `Base` is of
/// a vector type, construct a vector that has:
/// - same number of elements as `Base`
/// - each element has the type that is the same as the type of `Offset` or
/// `Count`
/// - each element has the same value as `Offset` or `Count`
/// Then cast `Offset` and `Count` if their bit width is different
/// from `Base` bit width.
static Value processCountOrOffset(Location loc, Value value, Type srcType,
Type dstType, LLVMTypeConverter &converter,
ConversionPatternRewriter &rewriter) {
Value broadcasted =
optionallyBroadcast(loc, value, srcType, converter, rewriter);
return optionallyTruncateOrExtend(loc, broadcasted, dstType, rewriter);
}
/// Converts SPIR-V struct with no offset to packed LLVM struct.
static Type convertStructTypePacked(spirv::StructType type,
LLVMTypeConverter &converter) {
auto elementsVector = llvm::to_vector<8>(
llvm::map_range(type.getElementTypes(), [&](Type elementType) {
return converter.convertType(elementType).cast<LLVM::LLVMType>();
}));
return LLVM::LLVMType::getStructTy(converter.getDialect(), elementsVector,
/*isPacked=*/true);
}
//===----------------------------------------------------------------------===//
// Type conversion
//===----------------------------------------------------------------------===//
/// Converts SPIR-V array type to LLVM array. There is no modelling of array
/// stride at the moment.
static Optional<Type> convertArrayType(spirv::ArrayType type,
TypeConverter &converter) {
if (type.getArrayStride() != 0)
return llvm::None;
auto elementType =
converter.convertType(type.getElementType()).cast<LLVM::LLVMType>();
unsigned numElements = type.getNumElements();
return LLVM::LLVMType::getArrayTy(elementType, numElements);
}
/// Converts SPIR-V pointer type to LLVM pointer. Pointer's storage class is not
/// modelled at the moment.
static Type convertPointerType(spirv::PointerType type,
TypeConverter &converter) {
auto pointeeType =
converter.convertType(type.getPointeeType()).cast<LLVM::LLVMType>();
return pointeeType.getPointerTo();
}
/// Converts SPIR-V runtime array to LLVM array. Since LLVM allows indexing over
/// the bounds, the runtime array is converted to a 0-sized LLVM array. There is
/// no modelling of array stride at the moment.
static Optional<Type> convertRuntimeArrayType(spirv::RuntimeArrayType type,
TypeConverter &converter) {
if (type.getArrayStride() != 0)
return llvm::None;
auto elementType =
converter.convertType(type.getElementType()).cast<LLVM::LLVMType>();
return LLVM::LLVMType::getArrayTy(elementType, 0);
}
/// Converts SPIR-V struct to LLVM struct. There is no support of structs with
/// member decorations or with offset.
static Optional<Type> convertStructType(spirv::StructType type,
LLVMTypeConverter &converter) {
SmallVector<spirv::StructType::MemberDecorationInfo, 4> memberDecorations;
type.getMemberDecorations(memberDecorations);
if (type.hasOffset() || !memberDecorations.empty())
return llvm::None;
return convertStructTypePacked(type, converter);
}
//===----------------------------------------------------------------------===//
// Operation conversion
//===----------------------------------------------------------------------===//
namespace {
class BitFieldInsertPattern
: public SPIRVToLLVMConversion<spirv::BitFieldInsertOp> {
public:
using SPIRVToLLVMConversion<spirv::BitFieldInsertOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::BitFieldInsertOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = op.getType();
auto dstType = typeConverter.convertType(srcType);
if (!dstType)
return failure();
Location loc = op.getLoc();
// Process `Offset` and `Count`: broadcast and extend/truncate if needed.
Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType,
typeConverter, rewriter);
Value count = processCountOrOffset(loc, op.count(), srcType, dstType,
typeConverter, rewriter);
// Create a mask with bits set outside [Offset, Offset + Count - 1].
Value minusOne = createConstantAllBitsSet(loc, srcType, dstType, rewriter);
Value maskShiftedByCount =
rewriter.create<LLVM::ShlOp>(loc, dstType, minusOne, count);
Value negated = rewriter.create<LLVM::XOrOp>(loc, dstType,
maskShiftedByCount, minusOne);
Value maskShiftedByCountAndOffset =
rewriter.create<LLVM::ShlOp>(loc, dstType, negated, offset);
Value mask = rewriter.create<LLVM::XOrOp>(
loc, dstType, maskShiftedByCountAndOffset, minusOne);
// Extract unchanged bits from the `Base` that are outside of
// [Offset, Offset + Count - 1]. Then `or` with shifted `Insert`.
Value baseAndMask =
rewriter.create<LLVM::AndOp>(loc, dstType, op.base(), mask);
Value insertShiftedByOffset =
rewriter.create<LLVM::ShlOp>(loc, dstType, op.insert(), offset);
rewriter.replaceOpWithNewOp<LLVM::OrOp>(op, dstType, baseAndMask,
insertShiftedByOffset);
return success();
}
};
/// Converts SPIR-V ConstantOp with scalar or vector type.
class ConstantScalarAndVectorPattern
: public SPIRVToLLVMConversion<spirv::ConstantOp> {
public:
using SPIRVToLLVMConversion<spirv::ConstantOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::ConstantOp constOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = constOp.getType();
if (!srcType.isa<VectorType>() && !srcType.isIntOrFloat())
return failure();
auto dstType = typeConverter.convertType(srcType);
if (!dstType)
return failure();
// SPIR-V constant can be a signed/unsigned integer, which has to be
// casted to signless integer when converting to LLVM dialect. Removing the
// sign bit may have unexpected behaviour. However, it is better to handle
// it case-by-case, given that the purpose of the conversion is not to
// cover all possible corner cases.
if (isSignedIntegerOrVector(srcType) ||
isUnsignedIntegerOrVector(srcType)) {
auto *context = rewriter.getContext();
auto signlessType = IntegerType::get(getBitWidth(srcType), context);
if (srcType.isa<VectorType>()) {
auto dstElementsAttr = constOp.value().cast<DenseIntElementsAttr>();
rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(
constOp, dstType,
dstElementsAttr.mapValues(
signlessType, [&](const APInt &value) { return value; }));
return success();
}
auto srcAttr = constOp.value().cast<IntegerAttr>();
auto dstAttr = rewriter.getIntegerAttr(signlessType, srcAttr.getValue());
rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(constOp, dstType, dstAttr);
return success();
}
rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(constOp, dstType, operands,
constOp.getAttrs());
return success();
}
};
class BitFieldSExtractPattern
: public SPIRVToLLVMConversion<spirv::BitFieldSExtractOp> {
public:
using SPIRVToLLVMConversion<spirv::BitFieldSExtractOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::BitFieldSExtractOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = op.getType();
auto dstType = typeConverter.convertType(srcType);
if (!dstType)
return failure();
Location loc = op.getLoc();
// Process `Offset` and `Count`: broadcast and extend/truncate if needed.
Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType,
typeConverter, rewriter);
Value count = processCountOrOffset(loc, op.count(), srcType, dstType,
typeConverter, rewriter);
// Create a constant that holds the size of the `Base`.
IntegerType integerType;
if (auto vecType = srcType.dyn_cast<VectorType>())
integerType = vecType.getElementType().cast<IntegerType>();
else
integerType = srcType.cast<IntegerType>();
auto baseSize = rewriter.getIntegerAttr(integerType, getBitWidth(srcType));
Value size =
srcType.isa<VectorType>()
? rewriter.create<LLVM::ConstantOp>(
loc, dstType,
SplatElementsAttr::get(srcType.cast<ShapedType>(), baseSize))
: rewriter.create<LLVM::ConstantOp>(loc, dstType, baseSize);
// Shift `Base` left by [sizeof(Base) - (Count + Offset)], so that the bit
// at Offset + Count - 1 is the most significant bit now.
Value countPlusOffset =
rewriter.create<LLVM::AddOp>(loc, dstType, count, offset);
Value amountToShiftLeft =
rewriter.create<LLVM::SubOp>(loc, dstType, size, countPlusOffset);
Value baseShiftedLeft = rewriter.create<LLVM::ShlOp>(
loc, dstType, op.base(), amountToShiftLeft);
// Shift the result right, filling the bits with the sign bit.
Value amountToShiftRight =
rewriter.create<LLVM::AddOp>(loc, dstType, offset, amountToShiftLeft);
rewriter.replaceOpWithNewOp<LLVM::AShrOp>(op, dstType, baseShiftedLeft,
amountToShiftRight);
return success();
}
};
class BitFieldUExtractPattern
: public SPIRVToLLVMConversion<spirv::BitFieldUExtractOp> {
public:
using SPIRVToLLVMConversion<spirv::BitFieldUExtractOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::BitFieldUExtractOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = op.getType();
auto dstType = typeConverter.convertType(srcType);
if (!dstType)
return failure();
Location loc = op.getLoc();
// Process `Offset` and `Count`: broadcast and extend/truncate if needed.
Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType,
typeConverter, rewriter);
Value count = processCountOrOffset(loc, op.count(), srcType, dstType,
typeConverter, rewriter);
// Create a mask with bits set at [0, Count - 1].
Value minusOne = createConstantAllBitsSet(loc, srcType, dstType, rewriter);
Value maskShiftedByCount =
rewriter.create<LLVM::ShlOp>(loc, dstType, minusOne, count);
Value mask = rewriter.create<LLVM::XOrOp>(loc, dstType, maskShiftedByCount,
minusOne);
// Shift `Base` by `Offset` and apply the mask on it.
Value shiftedBase =
rewriter.create<LLVM::LShrOp>(loc, dstType, op.base(), offset);
rewriter.replaceOpWithNewOp<LLVM::AndOp>(op, dstType, shiftedBase, mask);
return success();
}
};
/// Converts SPIR-V operations that have straightforward LLVM equivalent
/// into LLVM dialect operations.
template <typename SPIRVOp, typename LLVMOp>
class DirectConversionPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp operation, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dstType = this->typeConverter.convertType(operation.getType());
if (!dstType)
return failure();
rewriter.template replaceOpWithNewOp<LLVMOp>(operation, dstType, operands,
operation.getAttrs());
return success();
}
};
/// Converts SPIR-V cast ops that do not have straightforward LLVM
/// equivalent in LLVM dialect.
template <typename SPIRVOp, typename LLVMExtOp, typename LLVMTruncOp>
class IndirectCastPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp operation, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Type fromType = operation.operand().getType();
Type toType = operation.getType();
auto dstType = this->typeConverter.convertType(toType);
if (!dstType)
return failure();
if (getBitWidth(fromType) < getBitWidth(toType)) {
rewriter.template replaceOpWithNewOp<LLVMExtOp>(operation, dstType,
operands);
return success();
}
if (getBitWidth(fromType) > getBitWidth(toType)) {
rewriter.template replaceOpWithNewOp<LLVMTruncOp>(operation, dstType,
operands);
return success();
}
return failure();
}
};
class FunctionCallPattern
: public SPIRVToLLVMConversion<spirv::FunctionCallOp> {
public:
using SPIRVToLLVMConversion<spirv::FunctionCallOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::FunctionCallOp callOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
if (callOp.getNumResults() == 0) {
rewriter.replaceOpWithNewOp<LLVM::CallOp>(callOp, llvm::None, operands,
callOp.getAttrs());
return success();
}
// Function returns a single result.
auto dstType = typeConverter.convertType(callOp.getType(0));
rewriter.replaceOpWithNewOp<LLVM::CallOp>(callOp, dstType, operands,
callOp.getAttrs());
return success();
}
};
/// Converts SPIR-V floating-point comparisons to llvm.fcmp "predicate"
template <typename SPIRVOp, LLVM::FCmpPredicate predicate>
class FComparePattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp operation, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dstType = this->typeConverter.convertType(operation.getType());
if (!dstType)
return failure();
rewriter.template replaceOpWithNewOp<LLVM::FCmpOp>(
operation, dstType,
rewriter.getI64IntegerAttr(static_cast<int64_t>(predicate)),
operation.operand1(), operation.operand2());
return success();
}
};
/// Converts SPIR-V integer comparisons to llvm.icmp "predicate"
template <typename SPIRVOp, LLVM::ICmpPredicate predicate>
class IComparePattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp operation, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dstType = this->typeConverter.convertType(operation.getType());
if (!dstType)
return failure();
rewriter.template replaceOpWithNewOp<LLVM::ICmpOp>(
operation, dstType,
rewriter.getI64IntegerAttr(static_cast<int64_t>(predicate)),
operation.operand1(), operation.operand2());
return success();
}
};
/// Converts `spv.Not` and `spv.LogicalNot` into LLVM dialect.
template <typename SPIRVOp>
class NotPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp notOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = notOp.getType();
auto dstType = this->typeConverter.convertType(srcType);
if (!dstType)
return failure();
Location loc = notOp.getLoc();
IntegerAttr minusOne = minusOneIntegerAttribute(srcType, rewriter);
auto mask = srcType.template isa<VectorType>()
? rewriter.create<LLVM::ConstantOp>(
loc, dstType,
SplatElementsAttr::get(
srcType.template cast<VectorType>(), minusOne))
: rewriter.create<LLVM::ConstantOp>(loc, dstType, minusOne);
rewriter.template replaceOpWithNewOp<LLVM::XOrOp>(notOp, dstType,
notOp.operand(), mask);
return success();
}
};
class ReturnPattern : public SPIRVToLLVMConversion<spirv::ReturnOp> {
public:
using SPIRVToLLVMConversion<spirv::ReturnOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::ReturnOp returnOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(returnOp, ArrayRef<Type>(),
ArrayRef<Value>());
return success();
}
};
class ReturnValuePattern : public SPIRVToLLVMConversion<spirv::ReturnValueOp> {
public:
using SPIRVToLLVMConversion<spirv::ReturnValueOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::ReturnValueOp returnValueOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(returnValueOp, ArrayRef<Type>(),
operands);
return success();
}
};
/// Converts SPIR-V shift ops to LLVM shift ops. Since LLVM dialect
/// puts a restriction on `Shift` and `Base` to have the same bit width,
/// `Shift` is zero or sign extended to match this specification. Cases when
/// `Shift` bit width > `Base` bit width are considered to be illegal.
template <typename SPIRVOp, typename LLVMOp>
class ShiftPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp operation, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dstType = this->typeConverter.convertType(operation.getType());
if (!dstType)
return failure();
Type op1Type = operation.operand1().getType();
Type op2Type = operation.operand2().getType();
if (op1Type == op2Type) {
rewriter.template replaceOpWithNewOp<LLVMOp>(operation, dstType,
operands);
return success();
}
Location loc = operation.getLoc();
Value extended;
if (isUnsignedIntegerOrVector(op2Type)) {
extended = rewriter.template create<LLVM::ZExtOp>(loc, dstType,
operation.operand2());
} else {
extended = rewriter.template create<LLVM::SExtOp>(loc, dstType,
operation.operand2());
}
Value result = rewriter.template create<LLVMOp>(
loc, dstType, operation.operand1(), extended);
rewriter.replaceOp(operation, result);
return success();
}
};
//===----------------------------------------------------------------------===//
// FuncOp conversion
//===----------------------------------------------------------------------===//
class FuncConversionPattern : public SPIRVToLLVMConversion<spirv::FuncOp> {
public:
using SPIRVToLLVMConversion<spirv::FuncOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::FuncOp funcOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// Convert function signature. At the moment LLVMType converter is enough
// for currently supported types.
auto funcType = funcOp.getType();
TypeConverter::SignatureConversion signatureConverter(
funcType.getNumInputs());
auto llvmType = typeConverter.convertFunctionSignature(
funcOp.getType(), /*isVariadic=*/false, signatureConverter);
if (!llvmType)
return failure();
// Create a new `LLVMFuncOp`
Location loc = funcOp.getLoc();
StringRef name = funcOp.getName();
auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(loc, name, llvmType);
// Convert SPIR-V Function Control to equivalent LLVM function attribute
MLIRContext *context = funcOp.getContext();
switch (funcOp.function_control()) {
#define DISPATCH(functionControl, llvmAttr) \
case functionControl: \
newFuncOp.setAttr("passthrough", ArrayAttr::get({llvmAttr}, context)); \
break;
DISPATCH(spirv::FunctionControl::Inline,
StringAttr::get("alwaysinline", context));
DISPATCH(spirv::FunctionControl::DontInline,
StringAttr::get("noinline", context));
DISPATCH(spirv::FunctionControl::Pure,
StringAttr::get("readonly", context));
DISPATCH(spirv::FunctionControl::Const,
StringAttr::get("readnone", context));
#undef DISPATCH
// Default: if `spirv::FunctionControl::None`, then no attributes are
// needed.
default:
break;
}
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), typeConverter,
&signatureConverter))) {
return failure();
}
rewriter.eraseOp(funcOp);
return success();
}
};
//===----------------------------------------------------------------------===//
// ModuleOp conversion
//===----------------------------------------------------------------------===//
class ModuleConversionPattern : public SPIRVToLLVMConversion<spirv::ModuleOp> {
public:
using SPIRVToLLVMConversion<spirv::ModuleOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::ModuleOp spvModuleOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto newModuleOp = rewriter.create<ModuleOp>(spvModuleOp.getLoc());
rewriter.inlineRegionBefore(spvModuleOp.body(), newModuleOp.getBody());
// Remove the terminator block that was automatically added by builder
rewriter.eraseBlock(&newModuleOp.getBodyRegion().back());
rewriter.eraseOp(spvModuleOp);
return success();
}
};
class ModuleEndConversionPattern
: public SPIRVToLLVMConversion<spirv::ModuleEndOp> {
public:
using SPIRVToLLVMConversion<spirv::ModuleEndOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::ModuleEndOp moduleEndOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<ModuleTerminatorOp>(moduleEndOp);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Pattern population
//===----------------------------------------------------------------------===//
void mlir::populateSPIRVToLLVMTypeConversion(LLVMTypeConverter &typeConverter) {
typeConverter.addConversion([&](spirv::ArrayType type) {
return convertArrayType(type, typeConverter);
});
typeConverter.addConversion([&](spirv::PointerType type) {
return convertPointerType(type, typeConverter);
});
typeConverter.addConversion([&](spirv::RuntimeArrayType type) {
return convertRuntimeArrayType(type, typeConverter);
});
typeConverter.addConversion([&](spirv::StructType type) {
return convertStructType(type, typeConverter);
});
}
void mlir::populateSPIRVToLLVMConversionPatterns(
MLIRContext *context, LLVMTypeConverter &typeConverter,
OwningRewritePatternList &patterns) {
patterns.insert<
// Arithmetic ops
DirectConversionPattern<spirv::IAddOp, LLVM::AddOp>,
DirectConversionPattern<spirv::IMulOp, LLVM::MulOp>,
DirectConversionPattern<spirv::ISubOp, LLVM::SubOp>,
DirectConversionPattern<spirv::FAddOp, LLVM::FAddOp>,
DirectConversionPattern<spirv::FDivOp, LLVM::FDivOp>,
DirectConversionPattern<spirv::FMulOp, LLVM::FMulOp>,
DirectConversionPattern<spirv::FNegateOp, LLVM::FNegOp>,
DirectConversionPattern<spirv::FRemOp, LLVM::FRemOp>,
DirectConversionPattern<spirv::FSubOp, LLVM::FSubOp>,
DirectConversionPattern<spirv::SDivOp, LLVM::SDivOp>,
DirectConversionPattern<spirv::SRemOp, LLVM::SRemOp>,
DirectConversionPattern<spirv::UDivOp, LLVM::UDivOp>,
DirectConversionPattern<spirv::UModOp, LLVM::URemOp>,
// Bitwise ops
BitFieldInsertPattern, BitFieldUExtractPattern, BitFieldSExtractPattern,
DirectConversionPattern<spirv::BitCountOp, LLVM::CtPopOp>,
DirectConversionPattern<spirv::BitReverseOp, LLVM::BitReverseOp>,
DirectConversionPattern<spirv::BitwiseAndOp, LLVM::AndOp>,
DirectConversionPattern<spirv::BitwiseOrOp, LLVM::OrOp>,
DirectConversionPattern<spirv::BitwiseXorOp, LLVM::XOrOp>,
NotPattern<spirv::NotOp>,
// Cast ops
DirectConversionPattern<spirv::BitcastOp, LLVM::BitcastOp>,
DirectConversionPattern<spirv::ConvertFToSOp, LLVM::FPToSIOp>,
DirectConversionPattern<spirv::ConvertFToUOp, LLVM::FPToUIOp>,
DirectConversionPattern<spirv::ConvertSToFOp, LLVM::SIToFPOp>,
DirectConversionPattern<spirv::ConvertUToFOp, LLVM::UIToFPOp>,
IndirectCastPattern<spirv::FConvertOp, LLVM::FPExtOp, LLVM::FPTruncOp>,
IndirectCastPattern<spirv::SConvertOp, LLVM::SExtOp, LLVM::TruncOp>,
IndirectCastPattern<spirv::UConvertOp, LLVM::ZExtOp, LLVM::TruncOp>,
// Comparison ops
IComparePattern<spirv::IEqualOp, LLVM::ICmpPredicate::eq>,
IComparePattern<spirv::INotEqualOp, LLVM::ICmpPredicate::ne>,
FComparePattern<spirv::FOrdEqualOp, LLVM::FCmpPredicate::oeq>,
FComparePattern<spirv::FOrdGreaterThanOp, LLVM::FCmpPredicate::ogt>,
FComparePattern<spirv::FOrdGreaterThanEqualOp, LLVM::FCmpPredicate::oge>,
FComparePattern<spirv::FOrdLessThanEqualOp, LLVM::FCmpPredicate::ole>,
FComparePattern<spirv::FOrdLessThanOp, LLVM::FCmpPredicate::olt>,
FComparePattern<spirv::FOrdNotEqualOp, LLVM::FCmpPredicate::one>,
FComparePattern<spirv::FUnordEqualOp, LLVM::FCmpPredicate::ueq>,
FComparePattern<spirv::FUnordGreaterThanOp, LLVM::FCmpPredicate::ugt>,
FComparePattern<spirv::FUnordGreaterThanEqualOp,
LLVM::FCmpPredicate::uge>,
FComparePattern<spirv::FUnordLessThanEqualOp, LLVM::FCmpPredicate::ule>,
FComparePattern<spirv::FUnordLessThanOp, LLVM::FCmpPredicate::ult>,
FComparePattern<spirv::FUnordNotEqualOp, LLVM::FCmpPredicate::une>,
IComparePattern<spirv::SGreaterThanOp, LLVM::ICmpPredicate::sgt>,
IComparePattern<spirv::SGreaterThanEqualOp, LLVM::ICmpPredicate::sge>,
IComparePattern<spirv::SLessThanEqualOp, LLVM::ICmpPredicate::sle>,
IComparePattern<spirv::SLessThanOp, LLVM::ICmpPredicate::slt>,
IComparePattern<spirv::UGreaterThanOp, LLVM::ICmpPredicate::ugt>,
IComparePattern<spirv::UGreaterThanEqualOp, LLVM::ICmpPredicate::uge>,
IComparePattern<spirv::ULessThanEqualOp, LLVM::ICmpPredicate::ule>,
IComparePattern<spirv::ULessThanOp, LLVM::ICmpPredicate::ult>,
// Constant op
ConstantScalarAndVectorPattern,
// Function Call op
FunctionCallPattern,
// Logical ops
DirectConversionPattern<spirv::LogicalAndOp, LLVM::AndOp>,
DirectConversionPattern<spirv::LogicalOrOp, LLVM::OrOp>,
IComparePattern<spirv::LogicalEqualOp, LLVM::ICmpPredicate::eq>,
IComparePattern<spirv::LogicalNotEqualOp, LLVM::ICmpPredicate::ne>,
NotPattern<spirv::LogicalNotOp>,
// Miscellaneous ops
DirectConversionPattern<spirv::SelectOp, LLVM::SelectOp>,
DirectConversionPattern<spirv::UndefOp, LLVM::UndefOp>,
// Shift ops
ShiftPattern<spirv::ShiftRightArithmeticOp, LLVM::AShrOp>,
ShiftPattern<spirv::ShiftRightLogicalOp, LLVM::LShrOp>,
ShiftPattern<spirv::ShiftLeftLogicalOp, LLVM::ShlOp>,
// Return ops
ReturnPattern, ReturnValuePattern>(context, typeConverter);
}
void mlir::populateSPIRVToLLVMFunctionConversionPatterns(
MLIRContext *context, LLVMTypeConverter &typeConverter,
OwningRewritePatternList &patterns) {
patterns.insert<FuncConversionPattern>(context, typeConverter);
}
void mlir::populateSPIRVToLLVMModuleConversionPatterns(
MLIRContext *context, LLVMTypeConverter &typeConverter,
OwningRewritePatternList &patterns) {
patterns.insert<ModuleConversionPattern, ModuleEndConversionPattern>(
context, typeConverter);
}