Fusion.cpp 44 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Fusion pass.
//
//===----------------------------------------------------------------------===//

#include "PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/FoldUtils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "linalg-fusion"

using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;

using folded_std_constant_index = FoldedValueBuilder<ConstantIndexOp>;

using llvm::dbgs;

/// Implements a simple high-level fusion pass of linalg library operations.
///
/// In each block, linalg ops are processed in reverse textual order.
/// Given a linalg op `O`, fusion occurs by:
///   1. inspecting the linalg ops that write into the views read by `O`. This
///      uses the SSA value of the views and a simple subview/slice analysis to
///      determine producer-consumer dependences;
///   2. greedily fuse the linalg ops that produce subview
///   3. inspect the fused ops and determine whether they have other remaining
///      LinalgOp uses. If not, then erase the original producing linalg op.
///
/// More advanced use cases, analyses as well as profitability heuristics are
/// left for future work.

// Return a cloned version of `op` that operates on `loopRanges`, assumed to be
// a subset of the original loop ranges of `op`.
// This is achieved by applying the `loopToOperandRangesMaps` permutation maps
// to the `loopRanges` in order to obtain view ranges.
static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op,
                                    ArrayRef<SubViewOp::Range> loopRanges) {
  assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
  auto maps = op.indexing_maps();
  SmallVector<Value, 8> clonedViews;
  clonedViews.reserve(op.getNumInputsAndOutputs());
  // Iterate over the inputs and outputs in order.
  // Extract the subranges from the linearized ranges.
  SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
  for (auto en : llvm::enumerate(ios)) {
    unsigned idx = en.index();
    auto map = maps[idx].cast<AffineMapAttr>().getValue();
    LLVM_DEBUG(dbgs() << "map: " << map << "\n");
    Value view = en.value();
    SmallVector<SubViewOp::Range, 4> viewRanges(map.getNumResults());
    for (auto en2 : llvm::enumerate(map.getResults())) {
      unsigned d = en2.index();
      // loopToOperandRangesMaps are permutations-only.
      unsigned loopPos = en2.value().cast<AffineDimExpr>().getPosition();
      viewRanges[d] = loopRanges[loopPos];
      LLVM_DEBUG(dbgs() << "\ni,j: " << en.index() << ", " << en2.index()
                        << "\t"
                        << "loopPos: " << loopPos << "\t" << viewRanges[d]);
    }
    // Construct a new subview for the tile.
    unsigned rank = viewRanges.size();
    SmallVector<Value, 4> offsets, sizes, strides;
    offsets.reserve(rank);
    sizes.reserve(rank);
    strides.reserve(rank);
    for (auto r : viewRanges) {
      offsets.push_back(r.offset);
      sizes.push_back(r.size);
      strides.push_back(r.stride);
    }
    clonedViews.push_back(
        b.create<SubViewOp>(loc, view, offsets, sizes, strides));
  }
  auto operands = getAssumedNonViewOperands(op);
  clonedViews.append(operands.begin(), operands.end());

  Operation *clonedOp = op.clone(b, loc, clonedViews);
  // When the producer is an IndexedGenercOp, we have to transform its block
  // IV arguments according to the tiling of the consumer, i.e. offset them by
  // the values computed in `loopRanges`.
  if (auto indexedGenericOp = dyn_cast<IndexedGenericOp>(clonedOp)) {
    auto &block = indexedGenericOp.region().front();

    OpBuilder::InsertionGuard g(b);
    b.setInsertionPointToStart(&block);
    for (unsigned i = 0, e = indexedGenericOp.getNumLoops(); i < e; ++i) {
      Value oldIndex = block.getArgument(i);
      AddIOp newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
                                         loopRanges[i].offset);
      oldIndex.replaceAllUsesExcept(newIndex,
                                    SmallPtrSet<Operation *, 1>{newIndex});
    }
  }
  return clonedOp;
}

struct ViewDimension {
  Value view;
  unsigned dimension;
};

// Given an `op`, returns the first (`view`, `dimension`) pair that identifies
// the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
// guarantees at least one such dimension is found. If multiple candidates exist
// they must agree by construction (i.e. have the same size) and we just return
// the first one.
static ViewDimension getViewDefiningLoopRange(LinalgOp op, unsigned loopDepth) {
  assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
  auto maps = op.indexing_maps();
  // Iterate over the inputs and outputs in order.
  // Extract the subranges from the linearized ranges.
  SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
  for (auto en : llvm::enumerate(ios)) {
    unsigned idx = en.index();
    auto map = maps[idx].cast<AffineMapAttr>().getValue();
    LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange I/O idx: " << idx << "\n");
    LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange map: " << map << "\n");
    Value view = en.value();
    SmallVector<Value, 8> viewRanges(map.getNumResults(), nullptr);
    for (auto en2 : llvm::enumerate(map.getResults())) {
      if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) {
        LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange loopDepth: " << loopDepth
                          << "\n");
        LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange view: " << view << "\n");
        return ViewDimension{view, static_cast<unsigned>(en2.index())};
      }
    }
  }
  llvm_unreachable("Expect to be able to extract a view defining loop range");
}

static LinalgOp fuse(Value producedView, LinalgOp producer, LinalgOp consumer,
                     unsigned consumerIdx, unsigned producerIdx,
                     OperationFolder *folder) {
  assert(producer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  assert(consumer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");

  auto subView = dyn_cast_or_null<SubViewOp>(
      consumer.getBuffer(consumerIdx).getDefiningOp());
  auto slice = dyn_cast_or_null<SliceOp>(
      consumer.getBuffer(consumerIdx).getDefiningOp());
  assert(subView || slice);
  (void)subView;
  (void)slice;

  // loopToOperandRangesMaps are permutations-only by construction:
  //   we can always identify a data dimension with a (at least one) loop
  //   dimension.
  AffineMap producerMap =
      producer.indexing_maps()[producer.getNumInputs() + producerIdx]
          .cast<AffineMapAttr>()
          .getValue();
  LLVM_DEBUG(dbgs() << "Producer Idx: " << producerIdx
                    << ", producer map: " << producerMap << "\n");

  unsigned nPar = producer.getNumParallelLoops();
  unsigned nRed = producer.getNumReductionLoops();
  unsigned nWin = producer.getNumWindowLoops();
  SmallVector<SubViewOp::Range, 8> loopRanges(nPar + nRed + nWin);

  OpBuilder b(consumer.getOperation());
  auto loc = consumer.getLoc();
  // Iterate over dimensions identified by the producer map for `producerIdx`.
  // This defines a subset of the loop ranges that we need to complete later.
  for (auto en : llvm::enumerate(producerMap.getResults())) {
    unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
    loopRanges[posInProducerLoop] =
        subView.getOrCreateRanges(b, loc)[en.index()];
  }

  // Iterate over all dimensions. For the dimensions not identified by the
  // producer map for `producerIdx`, we need to explicitly compute the view that
  // defines the loop ranges using the `producer`.
  for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) {
    if (loopRanges[i].offset)
      LLVM_DEBUG(llvm::dbgs()
                 << "existing LoopRange: " << loopRanges[i] << "\n");
    else {
      auto viewDim = getViewDefiningLoopRange(producer, i);
      loopRanges[i] = SubViewOp::Range{folded_std_constant_index(folder, 0),
                                       std_dim(viewDim.view, viewDim.dimension),
                                       folded_std_constant_index(folder, 1)};
      LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n");
    }
  }

  return cloneWithLoopRanges(b, loc, producer, loopRanges);
}

// Encode structural fusion safety preconditions.
// Some of these will be lifted in the future with better analysis.
static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
                                          LinalgOp consumer) {
  assert(producer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  assert(consumer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  if (producer.getNumOutputs() != 1) {
    LLVM_DEBUG(dbgs() << "\nNot structurally fusable (multi-output)");
    return false;
  }
  // Only fuse when the producer block dominates.
  DominanceInfo dom(producer.getOperation());
  if (!dom.dominates(producer.getOperation()->getBlock(),
                     consumer.getOperation()->getBlock())) {
    LLVM_DEBUG(
        dbgs()
        << "\nNot structurally fusable (producer block does not dominate)");
    return false;
  }
  return true;
}

bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
                                             LinalgOp consumer,
                                             Value consumedView,
                                             LinalgOp producer) {
  assert(producer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  assert(consumer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  // Make some simple structural checks that alleviate the need for more
  // complex analyses.
  if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
    LLVM_DEBUG(dbgs() << "\n***Not static last write due to structure:\t"
                      << *producer.getOperation());
    return false;
  }
  // Check for any interleaved write to consumedView.
  if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
    LLVM_DEBUG(dbgs() << "\n***Not fusable due to interleaved write:\t"
                      << *producer.getOperation());
    return false;
  }
  return true;
}

bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
                                 LinalgOp consumer, Value consumedView,
                                 LinalgOp producer) {
  assert(producer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  assert(consumer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
    return false;
  // Check for any fusion-preventing dependence to any view read/written that
  // would violate dependences.
  if (!graph.findCoveringDependences(producer, consumer).empty()) {
    LLVM_DEBUG(dbgs() << "\n***Not fusable due to an interleaved dependence:\t"
                      << *producer.getOperation());
    return false;
  }
  if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
    // TODO: add a level of indirection to linalg.generic.
    if (convOp.padding())
      return false;
  }
  if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
    // TODO: add a level of indirection to linalg.generic.
    if (convOp.padding())
      return false;
  }
  return true;
}

static bool isSameSubView(Value a, Value b) {
  if (a == b)
    return true;
  auto sva = a.getDefiningOp<SubViewOp>();
  auto svb = b.getDefiningOp<SubViewOp>();
  if (!sva || !svb)
    return false;
  if (!isSameSubView(sva.getViewSource(), svb.getViewSource()))
    return false;
  if (sva.getType() != svb.getType())
    return false;
  if (sva.getRank() != svb.getRank())
    return false;
  if (sva.getNumOperands() != svb.getNumOperands())
    return false;
  if (sva.static_offsets() != svb.static_offsets())
    return false;
  if (sva.static_sizes() != svb.static_sizes())
    return false;
  if (sva.static_strides() != svb.static_strides())
    return false;
  /// Skip the "viewSource" operand.
  for (unsigned idx = 1, e = sva.getNumOperands(); idx != e; ++idx)
    if (sva.getOperand(idx) != svb.getOperand(idx))
      return false;
  return true;
}

static Optional<FusionInfo>
fuseProducerOfDep(OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
                  const LinalgDependenceGraph &graph, OperationFolder *folder,
                  LinalgDependenceGraph::DependenceType depType) {
  assert(consumer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  LLVM_DEBUG(dbgs() << "\nStart examining consumer: "
                    << *consumer.getOperation());
  for (auto dependence : graph.getDependencesInto(consumer, depType)) {
    LLVM_DEBUG(dbgs() << "\n***Consider producer:\t"
                      << *dependence.dependentOpView.op << "\n");
    auto producer = cast<LinalgOp>(dependence.dependentOpView.op);

    // Check that the dependence is indeed on the input `consumerIdx` view.
    auto consumedView = dependence.indexingView;
    if (!isSameSubView(consumer.getBuffer(consumerIdx), consumedView))
      continue;

    // Consumer consumes this view, `isStructurallyFusableProducer` also checks
    // whether it is a strict subview of the producer view.
    auto producedView = dependence.dependentOpView.view;
    auto producerIdx = producer.getIndexOfOutputBuffer(producedView).getValue();
    // `consumerIdx` and `producerIdx` exist by construction.
    LLVM_DEBUG(dbgs() << "\n"
                      << LinalgDependenceGraph::getDependenceTypeStr(depType)
                      << "producer: " << *producer.getOperation() << " view: "
                      << producedView << " output index: " << producerIdx);

    // Must be a subview or a slice to guarantee there are loops we can fuse
    // into.
    auto subView = consumedView.getDefiningOp<SubViewOp>();
    auto slice = consumedView.getDefiningOp<SliceOp>();
    if (!subView && !slice) {
      LLVM_DEBUG(dbgs() << "\nNot fusable (not a subview or slice)");
      continue;
    }

    // Simple fusability checks.
    if (!isFusableInto(graph, consumer, consumedView, producer))
      continue;

    // Fuse `producer` just before `consumer`.
    OpBuilder::InsertionGuard g(b);
    b.setInsertionPoint(consumer.getOperation());
    ScopedContext scope(b, consumer.getLoc());
    LLVM_DEBUG(dbgs() << "Fuse into consumer: " << *consumer << "\n");
    auto fusedProducer = fuse(producedView, producer, consumer, consumerIdx,
                              producerIdx, folder);

    return FusionInfo{producer, fusedProducer};
  }
  return llvm::None;
}

// Only consider RAW and WAW atm.
Optional<FusionInfo> mlir::linalg::fuseProducerOf(
    OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
    const LinalgDependenceGraph &graph, OperationFolder *folder) {
  SmallVector<LinalgDependenceGraph::DependenceType, 4> deps = {
      LinalgDependenceGraph::DependenceType::RAW,
      LinalgDependenceGraph::DependenceType::WAW,
  };
  for (auto dep : deps) {
    if (auto res =
            fuseProducerOfDep(b, consumer, consumerIdx, graph, folder, dep))
      return res;
  }
  return llvm::None;
}

static void fuseLinalgOpsGreedily(FuncOp f) {
  LLVM_DEBUG(f.print(dbgs() << "\nBefore linalg-fusion: \n"));

  OpBuilder b(f);
  OperationFolder folder(f.getContext());
  DenseSet<Operation *> eraseSet;

  // Save original Linalg ops, we only want to make a pass over those.
  SmallVector<Operation *, 8> linalgOps;
  f.walk([&](LinalgOp op) {
    if (op.hasBufferSemantics())
      linalgOps.push_back(op);
  });

  // TODO: LinalgDependenceGraph should be able to update itself.
  // The current naive and expensive reconstruction of the graph should be
  // removed.
  for (auto *op : llvm::reverse(linalgOps)) {
    for (unsigned id = 0, e = LinalgOp(op).getNumInputsAndOutputBuffers();
         id < e; ++id) {
      linalg::Aliases aliases;
      linalg::LinalgDependenceGraph graph(aliases, linalgOps);
      if (auto info = fuseProducerOf(b, op, id, graph, &folder)) {
        auto *originalOp = info->originalProducer.getOperation();
        eraseSet.insert(originalOp);
        auto *originalOpInLinalgOpsVector =
            std::find(linalgOps.begin(), linalgOps.end(), originalOp);
        *originalOpInLinalgOpsVector = info->fusedProducer.getOperation();
      }
    }
  }
  // The `fuseProducerOf` function performs structural checks and in particular
  // that no covering read or write exist between the consumer and the producer.
  // As a consequence, the only fusions that may occur preserve subsequent
  // dependences and are guaranteed by construction to produce the whole view.
  // We may thus erase the producer once it is fused.
  for (auto *e : eraseSet)
    e->erase();
  LLVM_DEBUG(f.print(dbgs() << "\nAfter linalg-fusion: \n"));
}

//====---------------------------------------------------------------------===//
// Fusion on Tensor operation.
//====---------------------------------------------------------------------===//

namespace {

/// Implementation of fusion of generic ops and indexed_generic ops.
struct FuseGenericOpsOnTensors {
  static bool isFusible(LinalgOp producer, LinalgOp consumer,
                        unsigned consumerIdx) {
    // Verify that
    // - the producer has all "parallel" iterator type.
    if (producer.getNumParallelLoops() != producer.getNumLoops())
      return false;

    // Get the consumer index map. The number of results of the consumer index
    // map must match the number of loops of the producer.
    AffineMap consumerIndexMap = consumer.getIndexingMap(consumerIdx);
    if (consumerIndexMap.getNumResults() != producer.getNumLoops())
      return false;

    // Finally the index_map for the result must be invertible. For now just
    // verify it is a permutation.
    AffineMap producerResultIndexMap = producer.getOutputIndexingMap(0);
    return producerResultIndexMap.isPermutation();
  }

  static Operation *fuse(LinalgOp producer, LinalgOp consumer,
                         unsigned consumerIdx, PatternRewriter &rewriter,
                         OperationFolder *folder = nullptr) {
    if (!isFusible(producer, consumer, consumerIdx))
      return nullptr;

    unsigned numFusedOperands = producer.getOperation()->getNumOperands() +
                                consumer.getOperation()->getNumOperands() - 1;

    // Compute the fused operands list,
    SmallVector<Value, 2> fusedOperands;
    fusedOperands.reserve(numFusedOperands);
    auto consumerOperands = consumer.getOperation()->getOperands();
    auto producerOperands = producer.getOperation()->getOperands();
    fusedOperands.assign(consumerOperands.begin(),
                         std::next(consumerOperands.begin(), consumerIdx));
    fusedOperands.append(producerOperands.begin(), producerOperands.end());
    fusedOperands.append(std::next(consumerOperands.begin(), consumerIdx + 1),
                         consumerOperands.end());

    // Compute indexing_maps for the fused operation. The indexing_maps for the
    // operands of the consumers that arent fused are the same. The
    // indexing_maps for the producers need to be computed based on the
    // indexing_map of the operand at consumerIdx in the consumer.
    SmallVector<Attribute, 4> fusedIndexMaps;
    auto consumerIndexMaps = consumer.indexing_maps();
    fusedIndexMaps.reserve(fusedOperands.size() +
                           consumer.getOperation()->getNumResults());
    fusedIndexMaps.assign(consumerIndexMaps.begin(),
                          std::next(consumerIndexMaps.begin(), consumerIdx));
    // Compute indexing maps for the producer args in the fused operation.
    computeProducerOperandIndex(
        producer, consumer.getInputIndexingMap(consumerIdx), fusedIndexMaps);

    // Append the indexing maps for the remaining consumer operands.
    fusedIndexMaps.append(std::next(consumerIndexMaps.begin(), consumerIdx + 1),
                          consumerIndexMaps.end());

    // Generate the fused op.
    LinalgOp fusedOp;
    if (isa<GenericOp>(producer.getOperation()) &&
        isa<GenericOp>(consumer.getOperation())) {
      fusedOp =
          rewriter
              .create<GenericOp>(
                  rewriter.getUnknownLoc(),
                  consumer.getOperation()->getResultTypes(), fusedOperands,
                  rewriter.getI64IntegerAttr(fusedOperands.size()),
                  rewriter.getI64IntegerAttr(
                      consumer.getOperation()->getNumResults()),
                  rewriter.getArrayAttr(fusedIndexMaps),
                  consumer.iterator_types(),
                  /*doc=*/nullptr,
                  /*library_call=*/nullptr)
              .getOperation();
    } else {
      fusedOp =
          rewriter
              .create<IndexedGenericOp>(
                  rewriter.getUnknownLoc(),
                  consumer.getOperation()->getResultTypes(), fusedOperands,
                  rewriter.getI64IntegerAttr(fusedOperands.size()),
                  rewriter.getI64IntegerAttr(
                      consumer.getOperation()->getNumResults()),
                  rewriter.getArrayAttr(fusedIndexMaps),
                  consumer.iterator_types(),
                  /*doc=*/nullptr,
                  /*library_call=*/nullptr)
              .getOperation();
    }

    // Construct an AffineMap from consumer loops to producer loops.
    // consumer loop -> tensor index
    AffineMap consumerResultIndexMap =
        consumer.getInputIndexingMap(consumerIdx);
    // producer loop -> tensor index
    AffineMap producerResultIndexMap = producer.getOutputIndexingMap(0);
    // tensor index -> producer loop
    AffineMap invProducerResultIndexMap =
        inversePermutation(producerResultIndexMap);
    assert(invProducerResultIndexMap &&
           "expected producer result indexig map to be invertible");
    // consumer loop -> producer loop
    AffineMap consumerToProducerLoopsMap =
        invProducerResultIndexMap.compose(consumerResultIndexMap);

    generateFusedRegion(rewriter, fusedOp, producer, consumer,
                        consumerToProducerLoopsMap, consumerIdx,
                        consumer.getNumLoops());
    return fusedOp;
  }

private:
  /// Append to `fusedOpIndexingMapAttrs` the indexing maps for the operands of
  /// the `producer` to use in the fused operation given the indexing map of the
  /// result of the producer in the consumer.
  static void computeProducerOperandIndex(
      LinalgOp producer, AffineMap fusedConsumerArgIndexMap,
      SmallVectorImpl<Attribute> &fusedOpIndexingMapAttrs) {
    // The indexing map in the consumer op (fusedConsumerArgIndexMap) is a map
    // from consumer loop -> consumer arg tensor index/producer result tensor
    // index. The fused loop is same as the consumer loop. For each producer arg
    // the indexing map to be computed is a map from consumer loop -> producer
    // arg tensor index.

    AffineMap producerResultIndexMap = producer.getOutputIndexingMap(0);
    // producerResultIndexMap is a map from producer loop -> tensor index.
    // Compute the inverse to get map from tensor index -> producer loop.
    // The inverse is a map from producer result tensor index -> producer loop.
    AffineMap invProducerResultIndexMap =
        inversePermutation(producerResultIndexMap);
    assert(invProducerResultIndexMap &&
           "expected producer result indexig map to be invertible");
    for (unsigned argNum : llvm::seq<unsigned>(0, producer.getNumInputs())) {
      // argMap is a map from producer loop -> producer arg tensor index.
      AffineMap argMap = producer.getInputIndexingMap(argNum);

      // Compose argMap with invProducerResultIndexMap to get a map from
      // producer result tensor index -> producer arg tensor index.
      AffineMap t1 = argMap.compose(invProducerResultIndexMap);

      // Compose t1 with fusedConsumerArgIndexMap gives an indexing map from
      // consumer loop/ fused loop -> producer arg tensor index.
      AffineMap indexingMap = t1.compose(fusedConsumerArgIndexMap);
      fusedOpIndexingMapAttrs.push_back(AffineMapAttr::get(indexingMap));
    }
  }

  /// Generate the region of the fused operation. The region of the fused op
  /// must be empty.
  static void generateFusedRegion(PatternRewriter &rewriter, Operation *fusedOp,
                                  LinalgOp producer, LinalgOp consumer,
                                  AffineMap consumerToProducerLoopsMap,
                                  unsigned consumerIdx, unsigned nloops) {
    // Build the region of the fused op.
    Block &producerBlock = producer.getOperation()->getRegion(0).front();
    Block &consumerBlock = consumer.getOperation()->getRegion(0).front();
    Block *fusedBlock = new Block();
    fusedOp->getRegion(0).push_back(fusedBlock);
    BlockAndValueMapping mapper;
    OpBuilder::InsertionGuard guard(rewriter);
    rewriter.setInsertionPointToStart(fusedBlock);

    // The block arguments are
    // [index_0, index_1, ... ,
    //   consumer_operand_0, ... , consumer_operand_(`consumerIdx`-1),
    //   producer_operand_0, ... , producer_operand_(n-1)],
    //   consumer_operand_(`consumerIdx`), .. consumer_operand_(m-1)]
    // , where n is the number of producer's operand and m is the number
    // consumer's operand.
    // If both `numProducerIndices` and `numConsumerIndices` are zero, this is a
    // generic op. In this case, there are no indices in block arguments.
    unsigned numProducerIndices =
        isa<IndexedGenericOp>(producer.getOperation()) ? nloops : 0;
    unsigned numConsumerIndices =
        isa<IndexedGenericOp>(consumer.getOperation()) ? nloops : 0;
    // Firstly, add all the indices to the block arguments.
    for (unsigned i = 0, e = std::max(numProducerIndices, numConsumerIndices);
         i < e; ++i)
      fusedBlock->addArgument(rewriter.getIndexType());
    // Map the arguments for the unmodified args from the consumer.
    for (auto consumerArg : llvm::enumerate(consumerBlock.getArguments())) {
      if (consumerArg.index() == consumerIdx + numConsumerIndices) {
        // Map the arguments for the args from the producer.
        for (auto producerArg : llvm::enumerate(producerBlock.getArguments())) {
          // If producer is an indexed_generic op, map the indices from consumer
          // loop to producer loop (because the fusedOp is built based on
          // consumer's perspective).
          if (producerArg.index() < numProducerIndices) {
            auto newIndex = rewriter.create<mlir::AffineApplyOp>(
                producer.getLoc(),
                consumerToProducerLoopsMap.getSubMap(producerArg.index()),
                fusedBlock->getArguments().take_front(nloops));
            mapper.map(producerArg.value(), newIndex);
          } else {
            mapper.map(producerArg.value(),
                       fusedBlock->addArgument(producerArg.value().getType()));
          }
        }
        continue;
      }

      // If consumer is an indexed_generic op, map the indices to the block
      // arguments directly. Otherwise, add the same type of arugment and map to
      // it.
      if (consumerArg.index() < numConsumerIndices) {
        mapper.map(consumerArg.value(),
                   fusedBlock->getArgument(consumerArg.index()));
      } else {
        mapper.map(consumerArg.value(),
                   fusedBlock->addArgument(consumerArg.value().getType()));
      }
    }

    // Add operations from producer (except the yield operation) to the fused
    // op.
    for (auto &op : producerBlock.getOperations()) {
      if (auto yieldOp = dyn_cast<YieldOp>(op)) {
        // Lookup the value the yield operation is mapped to.
        Value yieldVal = yieldOp.getOperand(0);
        if (Value clonedVal = mapper.lookupOrNull(yieldVal))
          mapper.map(
              consumerBlock.getArgument(consumerIdx + numConsumerIndices),
              clonedVal);
        continue;
      }
      rewriter.clone(op, mapper);
    }
    for (auto &op : consumerBlock.getOperations())
      rewriter.clone(op, mapper);
  }
};
} // namespace

/// Linearize the expressions in `sourceMap` based on the `reassociationMaps`
/// provided, given the shape of the source tensor that corresponds to the
/// `sourceMap`. Note that this implicitly assumes that the tensors dimensions
/// are "row-major" ordered logically.
///
/// For example:
///
/// %0 = op ... : tensor<?x?x4x5xf32>
/// with output index_map `affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>`
///
/// and reshape:
/// %1 = linalg.tensor_reshape %0 [affine_map<(i, j, k, l) -> (i)>,
///                                affine_map<(i, j, k, l) -> (j, k, l)>] :
///        tensor<?x?x4x5xf32> into tensor<?x?xf32>
///
/// would be rewritten into:
/// %0 = op ... : tensor<?x?x4x5xf32>
/// with output index_map
///   `affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>`
static AffineMap linearizeCollapsedDims(AffineMap sourceMap,
                                        ArrayRef<int64_t> sourceShape,
                                        ArrayRef<AffineMap> reassociationMaps) {
  SmallVector<AffineExpr, 4> resultExprs;
  resultExprs.reserve(reassociationMaps.size());
  ArrayRef<AffineExpr> sourceExprs = sourceMap.getResults();
  MLIRContext *context = sourceMap.getContext();

  // Compute the result exprs based on the reassociation maps.
  for (AffineMap map : reassociationMaps) {
    ArrayRef<AffineExpr> collapsedDims = map.getResults();
    // Assume that they are in-order and contiguous (already checked in
    // verifier).
    assert(!collapsedDims.empty());
    unsigned startDim =
        collapsedDims.front().cast<AffineDimExpr>().getPosition();
    AffineExpr linearizedExpr = makeCanonicalStridedLayoutExpr(
        sourceShape.slice(startDim, collapsedDims.size()),
        sourceExprs.slice(startDim, collapsedDims.size()), context);
    resultExprs.push_back(linearizedExpr);
  }
  return AffineMap::get(sourceMap.getNumDims(), sourceMap.getNumSymbols(),
                        resultExprs, context);
}

/// Checks if the `reshapeOp` can be fused with it consumer (if `asProducer` is
/// true) or its producer (if `asProducer` is false) given the indexing map at
/// its use.
static bool isTensorReshapeOpFusible(TensorReshapeOp reshapeOp,
                                     AffineMap useIndexMap, bool asProducer) {
  RankedTensorType returnType = reshapeOp.getResultType();
  RankedTensorType operandType = reshapeOp.getSrcType();
  // Reshape is fusible with its consumer (i.e. reshape as a producer) when its
  // operand is of lesser rank than the result. Fusing when operand has higher
  // rank will require use of mods and divs in the indexing maps of the fused op
  // which would make it non-invertible. Similarly reshape is fused with its
  // producer (i.e. reshape as consumer) only if the return type has lesser
  // rank.
  if ((asProducer && returnType.getRank() < operandType.getRank()) ||
      (!asProducer && operandType.getRank() < returnType.getRank()))
    return false;
  return useIndexMap.isIdentity();
}

namespace {
/// Implementation of fusion on tensor ops when producer is a TensorReshapeOp.
template <typename LinalgOpTy> struct FuseTensorReshapeOpAsProducer {
  static bool isFusible(TensorReshapeOp producer, LinalgOpTy consumer,
                        unsigned consumerIdx) {
    return isTensorReshapeOpFusible(
        producer, consumer.getInputIndexingMap(consumerIdx), true);
  }

  static Operation *fuse(TensorReshapeOp producer, LinalgOpTy consumer,
                         unsigned consumerIdx, PatternRewriter &rewriter,
                         OperationFolder *folder = nullptr) {
    if (!isFusible(producer, consumer, consumerIdx))
      return nullptr;

    // Compute the fused operands list,
    SmallVector<Value, 2> fusedOperands(consumer.operand_begin(),
                                        consumer.operand_end());
    fusedOperands[consumerIdx] = producer.src();

    // Compute indexing_maps for the fused operation. The indexing_maps for the
    // operands of the consumers that arent fused are the same.
    SmallVector<AffineMap, 4> fusedIndexMaps =
        llvm::to_vector<4>(llvm::map_range(
            consumer.indexing_maps(), [](Attribute attr) -> AffineMap {
              return attr.cast<AffineMapAttr>().getValue();
            }));

    // Compute the indexing map to use for the operand of the producer.
    AffineMap modifiedMap = linearizeCollapsedDims(
        fusedIndexMaps[consumerIdx], producer.getResultType().getShape(),
        producer.getReassociationMaps());
    for (AffineExpr expr : modifiedMap.getResults()) {
      if (!expr.isPureAffine())
        return nullptr;
    }
    fusedIndexMaps[consumerIdx] = modifiedMap;

    // Further check that the resulting index maps can be fused and
    // inverted. Without this the resultant op is not legal.
    if (!inversePermutation(concatAffineMaps(fusedIndexMaps)))
      return nullptr;

    SmallVector<Attribute, 4> indexMapAttrs = llvm::to_vector<4>(
        llvm::map_range(fusedIndexMaps, [](AffineMap map) -> Attribute {
          return AffineMapAttr::get(map);
        }));
    auto fusedOp = rewriter.create<LinalgOpTy>(
        rewriter.getUnknownLoc(), consumer.getResultTypes(), fusedOperands,
        rewriter.getI64IntegerAttr(fusedOperands.size()),
        rewriter.getI64IntegerAttr(consumer.getNumResults()),
        rewriter.getArrayAttr(indexMapAttrs), consumer.iterator_types(),
        /*doc=*/nullptr,
        /*library_call=*/nullptr);
    auto &fusedRegion = fusedOp.region();
    rewriter.cloneRegionBefore(consumer.region(), fusedRegion,
                               fusedRegion.begin());
    return fusedOp;
  }
};

/// Implementation of fusion on tensor ops when consumer is a TensorReshapeOp.
template <typename LinalgOpTy> struct FuseTensorReshapeOpAsConsumer {
  static bool isFusible(LinalgOpTy producer, TensorReshapeOp consumer,
                        unsigned consumerIdx) {
    return isTensorReshapeOpFusible(consumer, producer.getOutputIndexingMap(0),
                                    false);
  }

  static Operation *fuse(LinalgOpTy producer, TensorReshapeOp consumer,
                         unsigned consumerIdx, PatternRewriter &rewriter,
                         OperationFolder *folder = nullptr) {
    if (!isFusible(producer, consumer, consumerIdx))
      return nullptr;

    // The indexing_maps for the operands of the fused operation are same as
    // those for the operands of the producer.
    SmallVector<AffineMap, 4> fusedIndexMaps =
        llvm::to_vector<4>(llvm::map_range(
            producer.indexing_maps(), [](Attribute attr) -> AffineMap {
              return attr.cast<AffineMapAttr>().getValue();
            }));
    // Compute the indexing map to use for the operand of the producer.
    AffineMap modifiedMap = linearizeCollapsedDims(
        producer.getOutputIndexingMap(0), consumer.getSrcType().getShape(),
        consumer.getReassociationMaps());
    for (AffineExpr expr : modifiedMap.getResults()) {
      if (!expr.isPureAffine())
        return nullptr;
    }
    fusedIndexMaps.back() = modifiedMap;

    // Further check that the resulting index maps can be fused and
    // inverted. Without this the resultant op is not legal.
    if (!inversePermutation(concatAffineMaps(fusedIndexMaps)))
      return nullptr;

    SmallVector<Attribute, 4> indexMapAttrs = llvm::to_vector<4>(
        llvm::map_range(fusedIndexMaps, [](AffineMap map) -> Attribute {
          return AffineMapAttr::get(map);
        }));

    auto fusedOp = rewriter.create<LinalgOpTy>(
        rewriter.getUnknownLoc(), consumer.getResultType(),
        producer.getOperands(),
        rewriter.getI64IntegerAttr(producer.getNumOperands()),
        rewriter.getI64IntegerAttr(1), rewriter.getArrayAttr(indexMapAttrs),
        producer.iterator_types(),
        /*doc=*/nullptr,
        /*library_call=*/nullptr);
    auto &fusedRegion = fusedOp.region();
    rewriter.cloneRegionBefore(producer.region(), fusedRegion,
                               fusedRegion.begin());
    return fusedOp;
  }
};

/// Implementation of fusion on tensor ops when producer is a splat constant.
template <typename LinalgOpTy> struct FuseConstantOpAsProducer {
  static bool isFusible(ConstantOp producer, LinalgOpTy consumer,
                        unsigned consumerIdx) {
    return producer.getResult().getType().isa<RankedTensorType>() &&
           producer.value().template cast<DenseElementsAttr>().isSplat();
  }

  static Operation *fuse(ConstantOp producer, LinalgOpTy consumer,
                         unsigned consumerIdx, PatternRewriter &rewriter,
                         OperationFolder *folder = nullptr) {
    if (!isFusible(producer, consumer, consumerIdx))
      return nullptr;

    // The indexing_maps for the operands of the fused operation are same as
    // those for the operands of the consumer without the indexing map at
    // consumerIdx
    SmallVector<AffineMap, 4> fusedIndexMaps =
        llvm::to_vector<4>(llvm::map_range(
            consumer.indexing_maps(), [](Attribute attr) -> AffineMap {
              return attr.cast<AffineMapAttr>().getValue();
            }));
    fusedIndexMaps.erase(std::next(fusedIndexMaps.begin(), consumerIdx));

    // The operands list is same as the consumer with the argument for constant
    // index dropped.
    SmallVector<Value, 4> fusedOperands(consumer.operand_begin(),
                                        consumer.operand_end());
    fusedOperands.erase(std::next(fusedOperands.begin(), consumerIdx));

    // Create a constant scalar value from the splat constant.
    Value scalarConstant = rewriter.create<ConstantOp>(
        producer.getLoc(),
        producer.value().template cast<DenseElementsAttr>().getSplatValue());

    auto fusedOp = rewriter.create<LinalgOpTy>(
        rewriter.getUnknownLoc(), consumer.getResultTypes(), fusedOperands,
        rewriter.getI64IntegerAttr(consumer.getNumOperands() - 1),
        rewriter.getI64IntegerAttr(consumer.getNumResults()),
        rewriter.getAffineMapArrayAttr(fusedIndexMaps),
        consumer.iterator_types(),
        /*doc=*/nullptr,
        /*library_call=*/nullptr);

    // Map the block argument corresponding to the replaced argument with the
    // scalar constant.
    Region &consumerRegion = consumer.region();
    Block &entryBlock = *consumerRegion.begin();
    unsigned argIndex =
        entryBlock.getNumArguments() - consumer.getNumOperands() + consumerIdx;
    BlockAndValueMapping mapping;
    mapping.map(entryBlock.getArgument(argIndex), scalarConstant);
    Region &fusedRegion = fusedOp.region();
    rewriter.cloneRegionBefore(consumerRegion, fusedRegion, fusedRegion.begin(),
                               mapping);
    return fusedOp;
  }
};

} // namespace

Operation *mlir::linalg::fuseTensorOps(PatternRewriter &rewriter,
                                       Operation *consumer,
                                       unsigned consumerIdx,
                                       OperationFolder *folder) {
  if (consumerIdx >= consumer->getNumOperands())
    return nullptr;
  Operation *producer = consumer->getOperand(consumerIdx).getDefiningOp();
  if (!producer || producer->getNumResults() != 1)
    return nullptr;

  // Fuse when consumer is GenericOp or IndexedGenericOp.
  if (isa<GenericOp, IndexedGenericOp>(consumer)) {
    auto linalgOpConsumer = cast<LinalgOp>(consumer);
    if (!linalgOpConsumer.hasTensorSemantics())
      return nullptr;
    if (isa<GenericOp, IndexedGenericOp>(producer)) {
      auto linalgOpProducer = cast<LinalgOp>(producer);
      if (linalgOpProducer.hasTensorSemantics())
        return FuseGenericOpsOnTensors::fuse(linalgOpProducer, linalgOpConsumer,
                                             consumerIdx, rewriter, folder);
    } else if (auto reshapeOpProducer = dyn_cast<TensorReshapeOp>(producer)) {
      if (auto genericOpConsumer = dyn_cast<GenericOp>(consumer)) {
        return FuseTensorReshapeOpAsProducer<GenericOp>::fuse(
            reshapeOpProducer, genericOpConsumer, consumerIdx, rewriter,
            folder);
      } else if (auto indexedGenericOpConsumer =
                     dyn_cast<IndexedGenericOp>(consumer)) {
        return FuseTensorReshapeOpAsProducer<IndexedGenericOp>::fuse(
            reshapeOpProducer, indexedGenericOpConsumer, consumerIdx, rewriter,
            folder);
      }
    } else if (auto constantOpProducer = dyn_cast<ConstantOp>(producer)) {
      if (auto genericOpConsumer = dyn_cast<GenericOp>(consumer)) {
        return FuseConstantOpAsProducer<GenericOp>::fuse(
            constantOpProducer, genericOpConsumer, consumerIdx, rewriter,
            folder);
      }
    }
    return nullptr;
  }

  // Fuse when consumer is a TensorReshapeOp.
  if (TensorReshapeOp reshapeOp = dyn_cast<TensorReshapeOp>(consumer)) {
    if (auto genericOpProducer = dyn_cast<GenericOp>(producer)) {
      if (genericOpProducer.hasTensorSemantics())
        return FuseTensorReshapeOpAsConsumer<GenericOp>::fuse(
            genericOpProducer, reshapeOp, consumerIdx, rewriter, folder);
    } else if (auto indexedGenericOpProducer =
                   dyn_cast<IndexedGenericOp>(producer)) {
      if (indexedGenericOpProducer.hasTensorSemantics())
        return FuseTensorReshapeOpAsConsumer<IndexedGenericOp>::fuse(
            indexedGenericOpProducer, reshapeOp, consumerIdx, rewriter, folder);
    }
    return nullptr;
  }

  return nullptr;
}

namespace {
/// Patterns to fuse a generic op, with the producer of its operands.
template <typename LinalgOpTy>
struct FuseTensorOps : public OpRewritePattern<LinalgOpTy> {
  using OpRewritePattern<LinalgOpTy>::OpRewritePattern;

  LogicalResult matchAndRewrite(LinalgOpTy op,
                                PatternRewriter &rewriter) const override {
    // Find the first operand that is defined by another generic op on tensors.
    for (auto operandNum :
         llvm::seq<unsigned>(0, op.getOperation()->getNumOperands())) {
      Operation *producer =
          op.getOperation()->getOperand(operandNum).getDefiningOp();
      if (Operation *fusedOp = fuseTensorOps(rewriter, op, operandNum)) {
        rewriter.replaceOp(op, fusedOp->getResults());
        if (producer && llvm::all_of(producer->getResults(),
                                     [](Value val) { return val.use_empty(); }))
          rewriter.eraseOp(producer);
        return success();
      }
    }
    return failure();
  }
};

/// Pass that fuses generic ops on tensors. Used only for testing.
struct FusionOfTensorOpsPass
    : public LinalgFusionOfTensorOpsBase<FusionOfTensorOpsPass> {
  void runOnOperation() override {
    OwningRewritePatternList patterns;
    Operation *op = getOperation();
    populateLinalgTensorOpsFusionPatterns(op->getContext(), patterns);
    applyPatternsAndFoldGreedily(op->getRegions(), patterns);
  };
};

struct LinalgFusionPass : public LinalgFusionBase<LinalgFusionPass> {
  void runOnFunction() override { fuseLinalgOpsGreedily(getFunction()); }
};
} // namespace

void mlir::populateLinalgTensorOpsFusionPatterns(
    MLIRContext *context, OwningRewritePatternList &patterns) {
  patterns.insert<FuseTensorOps<GenericOp>, FuseTensorOps<IndexedGenericOp>,
                  FuseTensorOps<TensorReshapeOp>>(context);
}

std::unique_ptr<OperationPass<FuncOp>> mlir::createLinalgFusionPass() {
  return std::make_unique<LinalgFusionPass>();
}

std::unique_ptr<Pass> mlir::createLinalgFusionOfTensorOpsPass() {
  return std::make_unique<FusionOfTensorOpsPass>();
}