Fusion.cpp
44 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Fusion pass.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/FoldUtils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "linalg-fusion"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using folded_std_constant_index = FoldedValueBuilder<ConstantIndexOp>;
using llvm::dbgs;
/// Implements a simple high-level fusion pass of linalg library operations.
///
/// In each block, linalg ops are processed in reverse textual order.
/// Given a linalg op `O`, fusion occurs by:
/// 1. inspecting the linalg ops that write into the views read by `O`. This
/// uses the SSA value of the views and a simple subview/slice analysis to
/// determine producer-consumer dependences;
/// 2. greedily fuse the linalg ops that produce subview
/// 3. inspect the fused ops and determine whether they have other remaining
/// LinalgOp uses. If not, then erase the original producing linalg op.
///
/// More advanced use cases, analyses as well as profitability heuristics are
/// left for future work.
// Return a cloned version of `op` that operates on `loopRanges`, assumed to be
// a subset of the original loop ranges of `op`.
// This is achieved by applying the `loopToOperandRangesMaps` permutation maps
// to the `loopRanges` in order to obtain view ranges.
static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op,
ArrayRef<SubViewOp::Range> loopRanges) {
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
auto maps = op.indexing_maps();
SmallVector<Value, 8> clonedViews;
clonedViews.reserve(op.getNumInputsAndOutputs());
// Iterate over the inputs and outputs in order.
// Extract the subranges from the linearized ranges.
SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
for (auto en : llvm::enumerate(ios)) {
unsigned idx = en.index();
auto map = maps[idx].cast<AffineMapAttr>().getValue();
LLVM_DEBUG(dbgs() << "map: " << map << "\n");
Value view = en.value();
SmallVector<SubViewOp::Range, 4> viewRanges(map.getNumResults());
for (auto en2 : llvm::enumerate(map.getResults())) {
unsigned d = en2.index();
// loopToOperandRangesMaps are permutations-only.
unsigned loopPos = en2.value().cast<AffineDimExpr>().getPosition();
viewRanges[d] = loopRanges[loopPos];
LLVM_DEBUG(dbgs() << "\ni,j: " << en.index() << ", " << en2.index()
<< "\t"
<< "loopPos: " << loopPos << "\t" << viewRanges[d]);
}
// Construct a new subview for the tile.
unsigned rank = viewRanges.size();
SmallVector<Value, 4> offsets, sizes, strides;
offsets.reserve(rank);
sizes.reserve(rank);
strides.reserve(rank);
for (auto r : viewRanges) {
offsets.push_back(r.offset);
sizes.push_back(r.size);
strides.push_back(r.stride);
}
clonedViews.push_back(
b.create<SubViewOp>(loc, view, offsets, sizes, strides));
}
auto operands = getAssumedNonViewOperands(op);
clonedViews.append(operands.begin(), operands.end());
Operation *clonedOp = op.clone(b, loc, clonedViews);
// When the producer is an IndexedGenercOp, we have to transform its block
// IV arguments according to the tiling of the consumer, i.e. offset them by
// the values computed in `loopRanges`.
if (auto indexedGenericOp = dyn_cast<IndexedGenericOp>(clonedOp)) {
auto &block = indexedGenericOp.region().front();
OpBuilder::InsertionGuard g(b);
b.setInsertionPointToStart(&block);
for (unsigned i = 0, e = indexedGenericOp.getNumLoops(); i < e; ++i) {
Value oldIndex = block.getArgument(i);
AddIOp newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
loopRanges[i].offset);
oldIndex.replaceAllUsesExcept(newIndex,
SmallPtrSet<Operation *, 1>{newIndex});
}
}
return clonedOp;
}
struct ViewDimension {
Value view;
unsigned dimension;
};
// Given an `op`, returns the first (`view`, `dimension`) pair that identifies
// the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
// guarantees at least one such dimension is found. If multiple candidates exist
// they must agree by construction (i.e. have the same size) and we just return
// the first one.
static ViewDimension getViewDefiningLoopRange(LinalgOp op, unsigned loopDepth) {
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
auto maps = op.indexing_maps();
// Iterate over the inputs and outputs in order.
// Extract the subranges from the linearized ranges.
SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
for (auto en : llvm::enumerate(ios)) {
unsigned idx = en.index();
auto map = maps[idx].cast<AffineMapAttr>().getValue();
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange I/O idx: " << idx << "\n");
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange map: " << map << "\n");
Value view = en.value();
SmallVector<Value, 8> viewRanges(map.getNumResults(), nullptr);
for (auto en2 : llvm::enumerate(map.getResults())) {
if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) {
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange loopDepth: " << loopDepth
<< "\n");
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange view: " << view << "\n");
return ViewDimension{view, static_cast<unsigned>(en2.index())};
}
}
}
llvm_unreachable("Expect to be able to extract a view defining loop range");
}
static LinalgOp fuse(Value producedView, LinalgOp producer, LinalgOp consumer,
unsigned consumerIdx, unsigned producerIdx,
OperationFolder *folder) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
auto subView = dyn_cast_or_null<SubViewOp>(
consumer.getBuffer(consumerIdx).getDefiningOp());
auto slice = dyn_cast_or_null<SliceOp>(
consumer.getBuffer(consumerIdx).getDefiningOp());
assert(subView || slice);
(void)subView;
(void)slice;
// loopToOperandRangesMaps are permutations-only by construction:
// we can always identify a data dimension with a (at least one) loop
// dimension.
AffineMap producerMap =
producer.indexing_maps()[producer.getNumInputs() + producerIdx]
.cast<AffineMapAttr>()
.getValue();
LLVM_DEBUG(dbgs() << "Producer Idx: " << producerIdx
<< ", producer map: " << producerMap << "\n");
unsigned nPar = producer.getNumParallelLoops();
unsigned nRed = producer.getNumReductionLoops();
unsigned nWin = producer.getNumWindowLoops();
SmallVector<SubViewOp::Range, 8> loopRanges(nPar + nRed + nWin);
OpBuilder b(consumer.getOperation());
auto loc = consumer.getLoc();
// Iterate over dimensions identified by the producer map for `producerIdx`.
// This defines a subset of the loop ranges that we need to complete later.
for (auto en : llvm::enumerate(producerMap.getResults())) {
unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
loopRanges[posInProducerLoop] =
subView.getOrCreateRanges(b, loc)[en.index()];
}
// Iterate over all dimensions. For the dimensions not identified by the
// producer map for `producerIdx`, we need to explicitly compute the view that
// defines the loop ranges using the `producer`.
for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) {
if (loopRanges[i].offset)
LLVM_DEBUG(llvm::dbgs()
<< "existing LoopRange: " << loopRanges[i] << "\n");
else {
auto viewDim = getViewDefiningLoopRange(producer, i);
loopRanges[i] = SubViewOp::Range{folded_std_constant_index(folder, 0),
std_dim(viewDim.view, viewDim.dimension),
folded_std_constant_index(folder, 1)};
LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n");
}
}
return cloneWithLoopRanges(b, loc, producer, loopRanges);
}
// Encode structural fusion safety preconditions.
// Some of these will be lifted in the future with better analysis.
static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
LinalgOp consumer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (producer.getNumOutputs() != 1) {
LLVM_DEBUG(dbgs() << "\nNot structurally fusable (multi-output)");
return false;
}
// Only fuse when the producer block dominates.
DominanceInfo dom(producer.getOperation());
if (!dom.dominates(producer.getOperation()->getBlock(),
consumer.getOperation()->getBlock())) {
LLVM_DEBUG(
dbgs()
<< "\nNot structurally fusable (producer block does not dominate)");
return false;
}
return true;
}
bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
LinalgOp consumer,
Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
// Make some simple structural checks that alleviate the need for more
// complex analyses.
if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
LLVM_DEBUG(dbgs() << "\n***Not static last write due to structure:\t"
<< *producer.getOperation());
return false;
}
// Check for any interleaved write to consumedView.
if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
LLVM_DEBUG(dbgs() << "\n***Not fusable due to interleaved write:\t"
<< *producer.getOperation());
return false;
}
return true;
}
bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
LinalgOp consumer, Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
return false;
// Check for any fusion-preventing dependence to any view read/written that
// would violate dependences.
if (!graph.findCoveringDependences(producer, consumer).empty()) {
LLVM_DEBUG(dbgs() << "\n***Not fusable due to an interleaved dependence:\t"
<< *producer.getOperation());
return false;
}
if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
// TODO: add a level of indirection to linalg.generic.
if (convOp.padding())
return false;
}
if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
// TODO: add a level of indirection to linalg.generic.
if (convOp.padding())
return false;
}
return true;
}
static bool isSameSubView(Value a, Value b) {
if (a == b)
return true;
auto sva = a.getDefiningOp<SubViewOp>();
auto svb = b.getDefiningOp<SubViewOp>();
if (!sva || !svb)
return false;
if (!isSameSubView(sva.getViewSource(), svb.getViewSource()))
return false;
if (sva.getType() != svb.getType())
return false;
if (sva.getRank() != svb.getRank())
return false;
if (sva.getNumOperands() != svb.getNumOperands())
return false;
if (sva.static_offsets() != svb.static_offsets())
return false;
if (sva.static_sizes() != svb.static_sizes())
return false;
if (sva.static_strides() != svb.static_strides())
return false;
/// Skip the "viewSource" operand.
for (unsigned idx = 1, e = sva.getNumOperands(); idx != e; ++idx)
if (sva.getOperand(idx) != svb.getOperand(idx))
return false;
return true;
}
static Optional<FusionInfo>
fuseProducerOfDep(OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
const LinalgDependenceGraph &graph, OperationFolder *folder,
LinalgDependenceGraph::DependenceType depType) {
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
LLVM_DEBUG(dbgs() << "\nStart examining consumer: "
<< *consumer.getOperation());
for (auto dependence : graph.getDependencesInto(consumer, depType)) {
LLVM_DEBUG(dbgs() << "\n***Consider producer:\t"
<< *dependence.dependentOpView.op << "\n");
auto producer = cast<LinalgOp>(dependence.dependentOpView.op);
// Check that the dependence is indeed on the input `consumerIdx` view.
auto consumedView = dependence.indexingView;
if (!isSameSubView(consumer.getBuffer(consumerIdx), consumedView))
continue;
// Consumer consumes this view, `isStructurallyFusableProducer` also checks
// whether it is a strict subview of the producer view.
auto producedView = dependence.dependentOpView.view;
auto producerIdx = producer.getIndexOfOutputBuffer(producedView).getValue();
// `consumerIdx` and `producerIdx` exist by construction.
LLVM_DEBUG(dbgs() << "\n"
<< LinalgDependenceGraph::getDependenceTypeStr(depType)
<< "producer: " << *producer.getOperation() << " view: "
<< producedView << " output index: " << producerIdx);
// Must be a subview or a slice to guarantee there are loops we can fuse
// into.
auto subView = consumedView.getDefiningOp<SubViewOp>();
auto slice = consumedView.getDefiningOp<SliceOp>();
if (!subView && !slice) {
LLVM_DEBUG(dbgs() << "\nNot fusable (not a subview or slice)");
continue;
}
// Simple fusability checks.
if (!isFusableInto(graph, consumer, consumedView, producer))
continue;
// Fuse `producer` just before `consumer`.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(consumer.getOperation());
ScopedContext scope(b, consumer.getLoc());
LLVM_DEBUG(dbgs() << "Fuse into consumer: " << *consumer << "\n");
auto fusedProducer = fuse(producedView, producer, consumer, consumerIdx,
producerIdx, folder);
return FusionInfo{producer, fusedProducer};
}
return llvm::None;
}
// Only consider RAW and WAW atm.
Optional<FusionInfo> mlir::linalg::fuseProducerOf(
OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
const LinalgDependenceGraph &graph, OperationFolder *folder) {
SmallVector<LinalgDependenceGraph::DependenceType, 4> deps = {
LinalgDependenceGraph::DependenceType::RAW,
LinalgDependenceGraph::DependenceType::WAW,
};
for (auto dep : deps) {
if (auto res =
fuseProducerOfDep(b, consumer, consumerIdx, graph, folder, dep))
return res;
}
return llvm::None;
}
static void fuseLinalgOpsGreedily(FuncOp f) {
LLVM_DEBUG(f.print(dbgs() << "\nBefore linalg-fusion: \n"));
OpBuilder b(f);
OperationFolder folder(f.getContext());
DenseSet<Operation *> eraseSet;
// Save original Linalg ops, we only want to make a pass over those.
SmallVector<Operation *, 8> linalgOps;
f.walk([&](LinalgOp op) {
if (op.hasBufferSemantics())
linalgOps.push_back(op);
});
// TODO: LinalgDependenceGraph should be able to update itself.
// The current naive and expensive reconstruction of the graph should be
// removed.
for (auto *op : llvm::reverse(linalgOps)) {
for (unsigned id = 0, e = LinalgOp(op).getNumInputsAndOutputBuffers();
id < e; ++id) {
linalg::Aliases aliases;
linalg::LinalgDependenceGraph graph(aliases, linalgOps);
if (auto info = fuseProducerOf(b, op, id, graph, &folder)) {
auto *originalOp = info->originalProducer.getOperation();
eraseSet.insert(originalOp);
auto *originalOpInLinalgOpsVector =
std::find(linalgOps.begin(), linalgOps.end(), originalOp);
*originalOpInLinalgOpsVector = info->fusedProducer.getOperation();
}
}
}
// The `fuseProducerOf` function performs structural checks and in particular
// that no covering read or write exist between the consumer and the producer.
// As a consequence, the only fusions that may occur preserve subsequent
// dependences and are guaranteed by construction to produce the whole view.
// We may thus erase the producer once it is fused.
for (auto *e : eraseSet)
e->erase();
LLVM_DEBUG(f.print(dbgs() << "\nAfter linalg-fusion: \n"));
}
//====---------------------------------------------------------------------===//
// Fusion on Tensor operation.
//====---------------------------------------------------------------------===//
namespace {
/// Implementation of fusion of generic ops and indexed_generic ops.
struct FuseGenericOpsOnTensors {
static bool isFusible(LinalgOp producer, LinalgOp consumer,
unsigned consumerIdx) {
// Verify that
// - the producer has all "parallel" iterator type.
if (producer.getNumParallelLoops() != producer.getNumLoops())
return false;
// Get the consumer index map. The number of results of the consumer index
// map must match the number of loops of the producer.
AffineMap consumerIndexMap = consumer.getIndexingMap(consumerIdx);
if (consumerIndexMap.getNumResults() != producer.getNumLoops())
return false;
// Finally the index_map for the result must be invertible. For now just
// verify it is a permutation.
AffineMap producerResultIndexMap = producer.getOutputIndexingMap(0);
return producerResultIndexMap.isPermutation();
}
static Operation *fuse(LinalgOp producer, LinalgOp consumer,
unsigned consumerIdx, PatternRewriter &rewriter,
OperationFolder *folder = nullptr) {
if (!isFusible(producer, consumer, consumerIdx))
return nullptr;
unsigned numFusedOperands = producer.getOperation()->getNumOperands() +
consumer.getOperation()->getNumOperands() - 1;
// Compute the fused operands list,
SmallVector<Value, 2> fusedOperands;
fusedOperands.reserve(numFusedOperands);
auto consumerOperands = consumer.getOperation()->getOperands();
auto producerOperands = producer.getOperation()->getOperands();
fusedOperands.assign(consumerOperands.begin(),
std::next(consumerOperands.begin(), consumerIdx));
fusedOperands.append(producerOperands.begin(), producerOperands.end());
fusedOperands.append(std::next(consumerOperands.begin(), consumerIdx + 1),
consumerOperands.end());
// Compute indexing_maps for the fused operation. The indexing_maps for the
// operands of the consumers that arent fused are the same. The
// indexing_maps for the producers need to be computed based on the
// indexing_map of the operand at consumerIdx in the consumer.
SmallVector<Attribute, 4> fusedIndexMaps;
auto consumerIndexMaps = consumer.indexing_maps();
fusedIndexMaps.reserve(fusedOperands.size() +
consumer.getOperation()->getNumResults());
fusedIndexMaps.assign(consumerIndexMaps.begin(),
std::next(consumerIndexMaps.begin(), consumerIdx));
// Compute indexing maps for the producer args in the fused operation.
computeProducerOperandIndex(
producer, consumer.getInputIndexingMap(consumerIdx), fusedIndexMaps);
// Append the indexing maps for the remaining consumer operands.
fusedIndexMaps.append(std::next(consumerIndexMaps.begin(), consumerIdx + 1),
consumerIndexMaps.end());
// Generate the fused op.
LinalgOp fusedOp;
if (isa<GenericOp>(producer.getOperation()) &&
isa<GenericOp>(consumer.getOperation())) {
fusedOp =
rewriter
.create<GenericOp>(
rewriter.getUnknownLoc(),
consumer.getOperation()->getResultTypes(), fusedOperands,
rewriter.getI64IntegerAttr(fusedOperands.size()),
rewriter.getI64IntegerAttr(
consumer.getOperation()->getNumResults()),
rewriter.getArrayAttr(fusedIndexMaps),
consumer.iterator_types(),
/*doc=*/nullptr,
/*library_call=*/nullptr)
.getOperation();
} else {
fusedOp =
rewriter
.create<IndexedGenericOp>(
rewriter.getUnknownLoc(),
consumer.getOperation()->getResultTypes(), fusedOperands,
rewriter.getI64IntegerAttr(fusedOperands.size()),
rewriter.getI64IntegerAttr(
consumer.getOperation()->getNumResults()),
rewriter.getArrayAttr(fusedIndexMaps),
consumer.iterator_types(),
/*doc=*/nullptr,
/*library_call=*/nullptr)
.getOperation();
}
// Construct an AffineMap from consumer loops to producer loops.
// consumer loop -> tensor index
AffineMap consumerResultIndexMap =
consumer.getInputIndexingMap(consumerIdx);
// producer loop -> tensor index
AffineMap producerResultIndexMap = producer.getOutputIndexingMap(0);
// tensor index -> producer loop
AffineMap invProducerResultIndexMap =
inversePermutation(producerResultIndexMap);
assert(invProducerResultIndexMap &&
"expected producer result indexig map to be invertible");
// consumer loop -> producer loop
AffineMap consumerToProducerLoopsMap =
invProducerResultIndexMap.compose(consumerResultIndexMap);
generateFusedRegion(rewriter, fusedOp, producer, consumer,
consumerToProducerLoopsMap, consumerIdx,
consumer.getNumLoops());
return fusedOp;
}
private:
/// Append to `fusedOpIndexingMapAttrs` the indexing maps for the operands of
/// the `producer` to use in the fused operation given the indexing map of the
/// result of the producer in the consumer.
static void computeProducerOperandIndex(
LinalgOp producer, AffineMap fusedConsumerArgIndexMap,
SmallVectorImpl<Attribute> &fusedOpIndexingMapAttrs) {
// The indexing map in the consumer op (fusedConsumerArgIndexMap) is a map
// from consumer loop -> consumer arg tensor index/producer result tensor
// index. The fused loop is same as the consumer loop. For each producer arg
// the indexing map to be computed is a map from consumer loop -> producer
// arg tensor index.
AffineMap producerResultIndexMap = producer.getOutputIndexingMap(0);
// producerResultIndexMap is a map from producer loop -> tensor index.
// Compute the inverse to get map from tensor index -> producer loop.
// The inverse is a map from producer result tensor index -> producer loop.
AffineMap invProducerResultIndexMap =
inversePermutation(producerResultIndexMap);
assert(invProducerResultIndexMap &&
"expected producer result indexig map to be invertible");
for (unsigned argNum : llvm::seq<unsigned>(0, producer.getNumInputs())) {
// argMap is a map from producer loop -> producer arg tensor index.
AffineMap argMap = producer.getInputIndexingMap(argNum);
// Compose argMap with invProducerResultIndexMap to get a map from
// producer result tensor index -> producer arg tensor index.
AffineMap t1 = argMap.compose(invProducerResultIndexMap);
// Compose t1 with fusedConsumerArgIndexMap gives an indexing map from
// consumer loop/ fused loop -> producer arg tensor index.
AffineMap indexingMap = t1.compose(fusedConsumerArgIndexMap);
fusedOpIndexingMapAttrs.push_back(AffineMapAttr::get(indexingMap));
}
}
/// Generate the region of the fused operation. The region of the fused op
/// must be empty.
static void generateFusedRegion(PatternRewriter &rewriter, Operation *fusedOp,
LinalgOp producer, LinalgOp consumer,
AffineMap consumerToProducerLoopsMap,
unsigned consumerIdx, unsigned nloops) {
// Build the region of the fused op.
Block &producerBlock = producer.getOperation()->getRegion(0).front();
Block &consumerBlock = consumer.getOperation()->getRegion(0).front();
Block *fusedBlock = new Block();
fusedOp->getRegion(0).push_back(fusedBlock);
BlockAndValueMapping mapper;
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(fusedBlock);
// The block arguments are
// [index_0, index_1, ... ,
// consumer_operand_0, ... , consumer_operand_(`consumerIdx`-1),
// producer_operand_0, ... , producer_operand_(n-1)],
// consumer_operand_(`consumerIdx`), .. consumer_operand_(m-1)]
// , where n is the number of producer's operand and m is the number
// consumer's operand.
// If both `numProducerIndices` and `numConsumerIndices` are zero, this is a
// generic op. In this case, there are no indices in block arguments.
unsigned numProducerIndices =
isa<IndexedGenericOp>(producer.getOperation()) ? nloops : 0;
unsigned numConsumerIndices =
isa<IndexedGenericOp>(consumer.getOperation()) ? nloops : 0;
// Firstly, add all the indices to the block arguments.
for (unsigned i = 0, e = std::max(numProducerIndices, numConsumerIndices);
i < e; ++i)
fusedBlock->addArgument(rewriter.getIndexType());
// Map the arguments for the unmodified args from the consumer.
for (auto consumerArg : llvm::enumerate(consumerBlock.getArguments())) {
if (consumerArg.index() == consumerIdx + numConsumerIndices) {
// Map the arguments for the args from the producer.
for (auto producerArg : llvm::enumerate(producerBlock.getArguments())) {
// If producer is an indexed_generic op, map the indices from consumer
// loop to producer loop (because the fusedOp is built based on
// consumer's perspective).
if (producerArg.index() < numProducerIndices) {
auto newIndex = rewriter.create<mlir::AffineApplyOp>(
producer.getLoc(),
consumerToProducerLoopsMap.getSubMap(producerArg.index()),
fusedBlock->getArguments().take_front(nloops));
mapper.map(producerArg.value(), newIndex);
} else {
mapper.map(producerArg.value(),
fusedBlock->addArgument(producerArg.value().getType()));
}
}
continue;
}
// If consumer is an indexed_generic op, map the indices to the block
// arguments directly. Otherwise, add the same type of arugment and map to
// it.
if (consumerArg.index() < numConsumerIndices) {
mapper.map(consumerArg.value(),
fusedBlock->getArgument(consumerArg.index()));
} else {
mapper.map(consumerArg.value(),
fusedBlock->addArgument(consumerArg.value().getType()));
}
}
// Add operations from producer (except the yield operation) to the fused
// op.
for (auto &op : producerBlock.getOperations()) {
if (auto yieldOp = dyn_cast<YieldOp>(op)) {
// Lookup the value the yield operation is mapped to.
Value yieldVal = yieldOp.getOperand(0);
if (Value clonedVal = mapper.lookupOrNull(yieldVal))
mapper.map(
consumerBlock.getArgument(consumerIdx + numConsumerIndices),
clonedVal);
continue;
}
rewriter.clone(op, mapper);
}
for (auto &op : consumerBlock.getOperations())
rewriter.clone(op, mapper);
}
};
} // namespace
/// Linearize the expressions in `sourceMap` based on the `reassociationMaps`
/// provided, given the shape of the source tensor that corresponds to the
/// `sourceMap`. Note that this implicitly assumes that the tensors dimensions
/// are "row-major" ordered logically.
///
/// For example:
///
/// %0 = op ... : tensor<?x?x4x5xf32>
/// with output index_map `affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>`
///
/// and reshape:
/// %1 = linalg.tensor_reshape %0 [affine_map<(i, j, k, l) -> (i)>,
/// affine_map<(i, j, k, l) -> (j, k, l)>] :
/// tensor<?x?x4x5xf32> into tensor<?x?xf32>
///
/// would be rewritten into:
/// %0 = op ... : tensor<?x?x4x5xf32>
/// with output index_map
/// `affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>`
static AffineMap linearizeCollapsedDims(AffineMap sourceMap,
ArrayRef<int64_t> sourceShape,
ArrayRef<AffineMap> reassociationMaps) {
SmallVector<AffineExpr, 4> resultExprs;
resultExprs.reserve(reassociationMaps.size());
ArrayRef<AffineExpr> sourceExprs = sourceMap.getResults();
MLIRContext *context = sourceMap.getContext();
// Compute the result exprs based on the reassociation maps.
for (AffineMap map : reassociationMaps) {
ArrayRef<AffineExpr> collapsedDims = map.getResults();
// Assume that they are in-order and contiguous (already checked in
// verifier).
assert(!collapsedDims.empty());
unsigned startDim =
collapsedDims.front().cast<AffineDimExpr>().getPosition();
AffineExpr linearizedExpr = makeCanonicalStridedLayoutExpr(
sourceShape.slice(startDim, collapsedDims.size()),
sourceExprs.slice(startDim, collapsedDims.size()), context);
resultExprs.push_back(linearizedExpr);
}
return AffineMap::get(sourceMap.getNumDims(), sourceMap.getNumSymbols(),
resultExprs, context);
}
/// Checks if the `reshapeOp` can be fused with it consumer (if `asProducer` is
/// true) or its producer (if `asProducer` is false) given the indexing map at
/// its use.
static bool isTensorReshapeOpFusible(TensorReshapeOp reshapeOp,
AffineMap useIndexMap, bool asProducer) {
RankedTensorType returnType = reshapeOp.getResultType();
RankedTensorType operandType = reshapeOp.getSrcType();
// Reshape is fusible with its consumer (i.e. reshape as a producer) when its
// operand is of lesser rank than the result. Fusing when operand has higher
// rank will require use of mods and divs in the indexing maps of the fused op
// which would make it non-invertible. Similarly reshape is fused with its
// producer (i.e. reshape as consumer) only if the return type has lesser
// rank.
if ((asProducer && returnType.getRank() < operandType.getRank()) ||
(!asProducer && operandType.getRank() < returnType.getRank()))
return false;
return useIndexMap.isIdentity();
}
namespace {
/// Implementation of fusion on tensor ops when producer is a TensorReshapeOp.
template <typename LinalgOpTy> struct FuseTensorReshapeOpAsProducer {
static bool isFusible(TensorReshapeOp producer, LinalgOpTy consumer,
unsigned consumerIdx) {
return isTensorReshapeOpFusible(
producer, consumer.getInputIndexingMap(consumerIdx), true);
}
static Operation *fuse(TensorReshapeOp producer, LinalgOpTy consumer,
unsigned consumerIdx, PatternRewriter &rewriter,
OperationFolder *folder = nullptr) {
if (!isFusible(producer, consumer, consumerIdx))
return nullptr;
// Compute the fused operands list,
SmallVector<Value, 2> fusedOperands(consumer.operand_begin(),
consumer.operand_end());
fusedOperands[consumerIdx] = producer.src();
// Compute indexing_maps for the fused operation. The indexing_maps for the
// operands of the consumers that arent fused are the same.
SmallVector<AffineMap, 4> fusedIndexMaps =
llvm::to_vector<4>(llvm::map_range(
consumer.indexing_maps(), [](Attribute attr) -> AffineMap {
return attr.cast<AffineMapAttr>().getValue();
}));
// Compute the indexing map to use for the operand of the producer.
AffineMap modifiedMap = linearizeCollapsedDims(
fusedIndexMaps[consumerIdx], producer.getResultType().getShape(),
producer.getReassociationMaps());
for (AffineExpr expr : modifiedMap.getResults()) {
if (!expr.isPureAffine())
return nullptr;
}
fusedIndexMaps[consumerIdx] = modifiedMap;
// Further check that the resulting index maps can be fused and
// inverted. Without this the resultant op is not legal.
if (!inversePermutation(concatAffineMaps(fusedIndexMaps)))
return nullptr;
SmallVector<Attribute, 4> indexMapAttrs = llvm::to_vector<4>(
llvm::map_range(fusedIndexMaps, [](AffineMap map) -> Attribute {
return AffineMapAttr::get(map);
}));
auto fusedOp = rewriter.create<LinalgOpTy>(
rewriter.getUnknownLoc(), consumer.getResultTypes(), fusedOperands,
rewriter.getI64IntegerAttr(fusedOperands.size()),
rewriter.getI64IntegerAttr(consumer.getNumResults()),
rewriter.getArrayAttr(indexMapAttrs), consumer.iterator_types(),
/*doc=*/nullptr,
/*library_call=*/nullptr);
auto &fusedRegion = fusedOp.region();
rewriter.cloneRegionBefore(consumer.region(), fusedRegion,
fusedRegion.begin());
return fusedOp;
}
};
/// Implementation of fusion on tensor ops when consumer is a TensorReshapeOp.
template <typename LinalgOpTy> struct FuseTensorReshapeOpAsConsumer {
static bool isFusible(LinalgOpTy producer, TensorReshapeOp consumer,
unsigned consumerIdx) {
return isTensorReshapeOpFusible(consumer, producer.getOutputIndexingMap(0),
false);
}
static Operation *fuse(LinalgOpTy producer, TensorReshapeOp consumer,
unsigned consumerIdx, PatternRewriter &rewriter,
OperationFolder *folder = nullptr) {
if (!isFusible(producer, consumer, consumerIdx))
return nullptr;
// The indexing_maps for the operands of the fused operation are same as
// those for the operands of the producer.
SmallVector<AffineMap, 4> fusedIndexMaps =
llvm::to_vector<4>(llvm::map_range(
producer.indexing_maps(), [](Attribute attr) -> AffineMap {
return attr.cast<AffineMapAttr>().getValue();
}));
// Compute the indexing map to use for the operand of the producer.
AffineMap modifiedMap = linearizeCollapsedDims(
producer.getOutputIndexingMap(0), consumer.getSrcType().getShape(),
consumer.getReassociationMaps());
for (AffineExpr expr : modifiedMap.getResults()) {
if (!expr.isPureAffine())
return nullptr;
}
fusedIndexMaps.back() = modifiedMap;
// Further check that the resulting index maps can be fused and
// inverted. Without this the resultant op is not legal.
if (!inversePermutation(concatAffineMaps(fusedIndexMaps)))
return nullptr;
SmallVector<Attribute, 4> indexMapAttrs = llvm::to_vector<4>(
llvm::map_range(fusedIndexMaps, [](AffineMap map) -> Attribute {
return AffineMapAttr::get(map);
}));
auto fusedOp = rewriter.create<LinalgOpTy>(
rewriter.getUnknownLoc(), consumer.getResultType(),
producer.getOperands(),
rewriter.getI64IntegerAttr(producer.getNumOperands()),
rewriter.getI64IntegerAttr(1), rewriter.getArrayAttr(indexMapAttrs),
producer.iterator_types(),
/*doc=*/nullptr,
/*library_call=*/nullptr);
auto &fusedRegion = fusedOp.region();
rewriter.cloneRegionBefore(producer.region(), fusedRegion,
fusedRegion.begin());
return fusedOp;
}
};
/// Implementation of fusion on tensor ops when producer is a splat constant.
template <typename LinalgOpTy> struct FuseConstantOpAsProducer {
static bool isFusible(ConstantOp producer, LinalgOpTy consumer,
unsigned consumerIdx) {
return producer.getResult().getType().isa<RankedTensorType>() &&
producer.value().template cast<DenseElementsAttr>().isSplat();
}
static Operation *fuse(ConstantOp producer, LinalgOpTy consumer,
unsigned consumerIdx, PatternRewriter &rewriter,
OperationFolder *folder = nullptr) {
if (!isFusible(producer, consumer, consumerIdx))
return nullptr;
// The indexing_maps for the operands of the fused operation are same as
// those for the operands of the consumer without the indexing map at
// consumerIdx
SmallVector<AffineMap, 4> fusedIndexMaps =
llvm::to_vector<4>(llvm::map_range(
consumer.indexing_maps(), [](Attribute attr) -> AffineMap {
return attr.cast<AffineMapAttr>().getValue();
}));
fusedIndexMaps.erase(std::next(fusedIndexMaps.begin(), consumerIdx));
// The operands list is same as the consumer with the argument for constant
// index dropped.
SmallVector<Value, 4> fusedOperands(consumer.operand_begin(),
consumer.operand_end());
fusedOperands.erase(std::next(fusedOperands.begin(), consumerIdx));
// Create a constant scalar value from the splat constant.
Value scalarConstant = rewriter.create<ConstantOp>(
producer.getLoc(),
producer.value().template cast<DenseElementsAttr>().getSplatValue());
auto fusedOp = rewriter.create<LinalgOpTy>(
rewriter.getUnknownLoc(), consumer.getResultTypes(), fusedOperands,
rewriter.getI64IntegerAttr(consumer.getNumOperands() - 1),
rewriter.getI64IntegerAttr(consumer.getNumResults()),
rewriter.getAffineMapArrayAttr(fusedIndexMaps),
consumer.iterator_types(),
/*doc=*/nullptr,
/*library_call=*/nullptr);
// Map the block argument corresponding to the replaced argument with the
// scalar constant.
Region &consumerRegion = consumer.region();
Block &entryBlock = *consumerRegion.begin();
unsigned argIndex =
entryBlock.getNumArguments() - consumer.getNumOperands() + consumerIdx;
BlockAndValueMapping mapping;
mapping.map(entryBlock.getArgument(argIndex), scalarConstant);
Region &fusedRegion = fusedOp.region();
rewriter.cloneRegionBefore(consumerRegion, fusedRegion, fusedRegion.begin(),
mapping);
return fusedOp;
}
};
} // namespace
Operation *mlir::linalg::fuseTensorOps(PatternRewriter &rewriter,
Operation *consumer,
unsigned consumerIdx,
OperationFolder *folder) {
if (consumerIdx >= consumer->getNumOperands())
return nullptr;
Operation *producer = consumer->getOperand(consumerIdx).getDefiningOp();
if (!producer || producer->getNumResults() != 1)
return nullptr;
// Fuse when consumer is GenericOp or IndexedGenericOp.
if (isa<GenericOp, IndexedGenericOp>(consumer)) {
auto linalgOpConsumer = cast<LinalgOp>(consumer);
if (!linalgOpConsumer.hasTensorSemantics())
return nullptr;
if (isa<GenericOp, IndexedGenericOp>(producer)) {
auto linalgOpProducer = cast<LinalgOp>(producer);
if (linalgOpProducer.hasTensorSemantics())
return FuseGenericOpsOnTensors::fuse(linalgOpProducer, linalgOpConsumer,
consumerIdx, rewriter, folder);
} else if (auto reshapeOpProducer = dyn_cast<TensorReshapeOp>(producer)) {
if (auto genericOpConsumer = dyn_cast<GenericOp>(consumer)) {
return FuseTensorReshapeOpAsProducer<GenericOp>::fuse(
reshapeOpProducer, genericOpConsumer, consumerIdx, rewriter,
folder);
} else if (auto indexedGenericOpConsumer =
dyn_cast<IndexedGenericOp>(consumer)) {
return FuseTensorReshapeOpAsProducer<IndexedGenericOp>::fuse(
reshapeOpProducer, indexedGenericOpConsumer, consumerIdx, rewriter,
folder);
}
} else if (auto constantOpProducer = dyn_cast<ConstantOp>(producer)) {
if (auto genericOpConsumer = dyn_cast<GenericOp>(consumer)) {
return FuseConstantOpAsProducer<GenericOp>::fuse(
constantOpProducer, genericOpConsumer, consumerIdx, rewriter,
folder);
}
}
return nullptr;
}
// Fuse when consumer is a TensorReshapeOp.
if (TensorReshapeOp reshapeOp = dyn_cast<TensorReshapeOp>(consumer)) {
if (auto genericOpProducer = dyn_cast<GenericOp>(producer)) {
if (genericOpProducer.hasTensorSemantics())
return FuseTensorReshapeOpAsConsumer<GenericOp>::fuse(
genericOpProducer, reshapeOp, consumerIdx, rewriter, folder);
} else if (auto indexedGenericOpProducer =
dyn_cast<IndexedGenericOp>(producer)) {
if (indexedGenericOpProducer.hasTensorSemantics())
return FuseTensorReshapeOpAsConsumer<IndexedGenericOp>::fuse(
indexedGenericOpProducer, reshapeOp, consumerIdx, rewriter, folder);
}
return nullptr;
}
return nullptr;
}
namespace {
/// Patterns to fuse a generic op, with the producer of its operands.
template <typename LinalgOpTy>
struct FuseTensorOps : public OpRewritePattern<LinalgOpTy> {
using OpRewritePattern<LinalgOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(LinalgOpTy op,
PatternRewriter &rewriter) const override {
// Find the first operand that is defined by another generic op on tensors.
for (auto operandNum :
llvm::seq<unsigned>(0, op.getOperation()->getNumOperands())) {
Operation *producer =
op.getOperation()->getOperand(operandNum).getDefiningOp();
if (Operation *fusedOp = fuseTensorOps(rewriter, op, operandNum)) {
rewriter.replaceOp(op, fusedOp->getResults());
if (producer && llvm::all_of(producer->getResults(),
[](Value val) { return val.use_empty(); }))
rewriter.eraseOp(producer);
return success();
}
}
return failure();
}
};
/// Pass that fuses generic ops on tensors. Used only for testing.
struct FusionOfTensorOpsPass
: public LinalgFusionOfTensorOpsBase<FusionOfTensorOpsPass> {
void runOnOperation() override {
OwningRewritePatternList patterns;
Operation *op = getOperation();
populateLinalgTensorOpsFusionPatterns(op->getContext(), patterns);
applyPatternsAndFoldGreedily(op->getRegions(), patterns);
};
};
struct LinalgFusionPass : public LinalgFusionBase<LinalgFusionPass> {
void runOnFunction() override { fuseLinalgOpsGreedily(getFunction()); }
};
} // namespace
void mlir::populateLinalgTensorOpsFusionPatterns(
MLIRContext *context, OwningRewritePatternList &patterns) {
patterns.insert<FuseTensorOps<GenericOp>, FuseTensorOps<IndexedGenericOp>,
FuseTensorOps<TensorReshapeOp>>(context);
}
std::unique_ptr<OperationPass<FuncOp>> mlir::createLinalgFusionPass() {
return std::make_unique<LinalgFusionPass>();
}
std::unique_ptr<Pass> mlir::createLinalgFusionOfTensorOpsPass() {
return std::make_unique<FusionOfTensorOpsPass>();
}