BufferPlacement.cpp 31.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
//===- BufferPlacement.cpp - the impl for buffer placement ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements logic for computing correct alloc and dealloc positions.
// Furthermore, buffer placement also adds required new alloc and copy
// operations to ensure that all buffers are deallocated.The main class is the
// BufferPlacementPass class that implements the underlying algorithm. In order
// to put allocations and deallocations at safe positions, it is significantly
// important to put them into the correct blocks. However, the liveness analysis
// does not pay attention to aliases, which can occur due to branches (and their
// associated block arguments) in general. For this purpose, BufferPlacement
// firstly finds all possible aliases for a single value (using the
// BufferPlacementAliasAnalysis class). Consider the following example:
//
// ^bb0(%arg0):
//   cond_br %cond, ^bb1, ^bb2
// ^bb1:
//   br ^exit(%arg0)
// ^bb2:
//   %new_value = ...
//   br ^exit(%new_value)
// ^exit(%arg1):
//   return %arg1;
//
// Using liveness information on its own would cause us to place the allocs and
// deallocs in the wrong block. This is due to the fact that %new_value will not
// be liveOut of its block. Instead, we can place the alloc for %new_value
// in bb0 and its associated dealloc in exit. Alternatively, the alloc can stay
// (or even has to stay due to additional dependencies) at this location and we
// have to free the buffer in the same block, because it cannot be freed in the
// post dominator. However, this requires a new copy buffer for %arg1 that will
// contain the actual contents. Using the class BufferPlacementAliasAnalysis, we
// will find out that %new_value has a potential alias %arg1. In order to find
// the dealloc position we have to find all potential aliases, iterate over
// their uses and find the common post-dominator block (note that additional
// copies and buffers remove potential aliases and will influence the placement
// of the deallocs). In all cases, the computed block can be safely used to free
// the %new_value buffer (may be exit or bb2) as it will die and we can use
// liveness information to determine the exact operation after which we have to
// insert the dealloc. Finding the alloc position is similar and non-obvious.
// However, the algorithm supports moving allocs to other places and introducing
// copy buffers and placing deallocs in safe places to ensure that all buffers
// will be freed in the end.
//
// TODO:
// The current implementation does not support loops and the resulting code will
// be invalid with respect to program semantics. The only thing that is
// currently missing is a high-level loop analysis that allows us to move allocs
// and deallocs outside of the loop blocks. Furthermore, it doesn't also accept
// functions which return buffers already.
//
//===----------------------------------------------------------------------===//

#include "mlir/Transforms/BufferPlacement.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/IR/Operation.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SetOperations.h"

using namespace mlir;

/// Walks over all immediate return-like terminators in the given region.
template <typename FuncT>
static void walkReturnOperations(Region *region, const FuncT &func) {
  for (Block &block : *region)
    for (Operation &operation : block) {
      // Skip non-return-like terminators.
      if (operation.hasTrait<OpTrait::ReturnLike>())
        func(&operation);
    }
}

namespace {
//===----------------------------------------------------------------------===//
// BufferPlacementAliasAnalysis
//===----------------------------------------------------------------------===//

/// A straight-forward alias analysis which ensures that all aliases of all
/// values will be determined. This is a requirement for the BufferPlacement
/// class since you need to determine safe positions to place alloc and
/// deallocs.
class BufferPlacementAliasAnalysis {
public:
  using ValueSetT = SmallPtrSet<Value, 16>;
  using ValueMapT = llvm::DenseMap<Value, ValueSetT>;

public:
  /// Constructs a new alias analysis using the op provided.
  BufferPlacementAliasAnalysis(Operation *op) { build(op); }

  /// Find all immediate aliases this value could potentially have.
  ValueMapT::const_iterator find(Value value) const {
    return aliases.find(value);
  }

  /// Returns the end iterator that can be used in combination with find.
  ValueMapT::const_iterator end() const { return aliases.end(); }

  /// Find all immediate and indirect aliases this value could potentially
  /// have. Note that the resulting set will also contain the value provided as
  /// it is an alias of itself.
  ValueSetT resolve(Value value) const {
    ValueSetT result;
    resolveRecursive(value, result);
    return result;
  }

  /// Removes the given values from all alias sets.
  void remove(const SmallPtrSetImpl<Value> &aliasValues) {
    for (auto &entry : aliases)
      llvm::set_subtract(entry.second, aliasValues);
  }

private:
  /// Recursively determines alias information for the given value. It stores
  /// all newly found potential aliases in the given result set.
  void resolveRecursive(Value value, ValueSetT &result) const {
    if (!result.insert(value).second)
      return;
    auto it = aliases.find(value);
    if (it == aliases.end())
      return;
    for (Value alias : it->second)
      resolveRecursive(alias, result);
  }

  /// This function constructs a mapping from values to its immediate aliases.
  /// It iterates over all blocks, gets their predecessors, determines the
  /// values that will be passed to the corresponding block arguments and
  /// inserts them into the underlying map. Furthermore, it wires successor
  /// regions and branch-like return operations from nested regions.
  void build(Operation *op) {
    // Registers all aliases of the given values.
    auto registerAliases = [&](auto values, auto aliases) {
      for (auto entry : llvm::zip(values, aliases))
        this->aliases[std::get<0>(entry)].insert(std::get<1>(entry));
    };

    // Add additional aliases created by view changes to the alias list.
    op->walk([&](ViewLikeOpInterface viewInterface) {
      aliases[viewInterface.getViewSource()].insert(
          viewInterface.getOperation()->getResult(0));
    });

    // Query all branch interfaces to link block argument aliases.
    op->walk([&](BranchOpInterface branchInterface) {
      Block *parentBlock = branchInterface.getOperation()->getBlock();
      for (auto it = parentBlock->succ_begin(), e = parentBlock->succ_end();
           it != e; ++it) {
        // Query the branch op interface to get the successor operands.
        auto successorOperands =
            branchInterface.getSuccessorOperands(it.getIndex());
        if (!successorOperands.hasValue())
          continue;
        // Build the actual mapping of values to their immediate aliases.
        registerAliases(successorOperands.getValue(), (*it)->getArguments());
      }
    });

    // Query the RegionBranchOpInterface to find potential successor regions.
    op->walk([&](RegionBranchOpInterface regionInterface) {
      // Create an empty attribute for each operand to comply with the
      // `getSuccessorRegions` interface definition that requires a single
      // attribute per operand.
      SmallVector<Attribute, 2> operandAttributes(
          regionInterface.getOperation()->getNumOperands());

      // Extract all entry regions and wire all initial entry successor inputs.
      SmallVector<RegionSuccessor, 2> entrySuccessors;
      regionInterface.getSuccessorRegions(/*index=*/llvm::None,
                                          operandAttributes, entrySuccessors);
      for (RegionSuccessor &entrySuccessor : entrySuccessors) {
        // Wire the entry region's successor arguments with the initial
        // successor inputs.
        assert(entrySuccessor.getSuccessor() &&
               "Invalid entry region without an attached successor region");
        registerAliases(regionInterface.getSuccessorEntryOperands(
                            entrySuccessor.getSuccessor()->getRegionNumber()),
                        entrySuccessor.getSuccessorInputs());
      }

      // Wire flow between regions and from region exits.
      for (Region &region : regionInterface.getOperation()->getRegions()) {
        // Iterate over all successor region entries that are reachable from the
        // current region.
        SmallVector<RegionSuccessor, 2> successorRegions;
        regionInterface.getSuccessorRegions(
            region.getRegionNumber(), operandAttributes, successorRegions);
        for (RegionSuccessor &successorRegion : successorRegions) {
          // Iterate over all immediate terminator operations and wire the
          // successor inputs with the operands of each terminator.
          walkReturnOperations(&region, [&](Operation *terminator) {
            registerAliases(terminator->getOperands(),
                            successorRegion.getSuccessorInputs());
          });
        }
      }
    });
  }

  /// Maps values to all immediate aliases this value can have.
  ValueMapT aliases;
};

//===----------------------------------------------------------------------===//
// BufferPlacement
//===----------------------------------------------------------------------===//

// The main buffer placement analysis used to place allocs, copies and deallocs.
class BufferPlacement {
public:
  using ValueSetT = BufferPlacementAliasAnalysis::ValueSetT;

  /// An intermediate representation of a single allocation node.
  struct AllocEntry {
    /// A reference to the associated allocation node.
    Value allocValue;

    /// The associated placement block in which the allocation should be
    /// performed.
    Block *placementBlock;

    /// The associated dealloc operation (if any).
    Operation *deallocOperation;
  };

  using AllocEntryList = SmallVector<AllocEntry, 8>;

public:
  BufferPlacement(Operation *op)
      : operation(op), aliases(op), liveness(op), dominators(op),
        postDominators(op) {
    // Gather all allocation nodes
    initBlockMapping();
  }

  /// Performs the actual placement/creation of all alloc, copy and dealloc
  /// nodes.
  void place() {
    // Place all allocations.
    placeAllocs();
    // Add additional allocations and copies that are required.
    introduceCopies();
    // Find all associated dealloc nodes.
    findDeallocs();
    // Place deallocations for all allocation entries.
    placeDeallocs();
  }

private:
  /// Initializes the internal block mapping by discovering allocation nodes. It
  /// maps all allocation nodes to their initial block in which they can be
  /// safely allocated.
  void initBlockMapping() {
    operation->walk([&](MemoryEffectOpInterface opInterface) {
      // Try to find a single allocation result.
      SmallVector<MemoryEffects::EffectInstance, 2> effects;
      opInterface.getEffects(effects);

      SmallVector<MemoryEffects::EffectInstance, 2> allocateResultEffects;
      llvm::copy_if(effects, std::back_inserter(allocateResultEffects),
                    [=](MemoryEffects::EffectInstance &it) {
                      Value value = it.getValue();
                      return isa<MemoryEffects::Allocate>(it.getEffect()) &&
                             value && value.isa<OpResult>();
                    });
      // If there is one result only, we will be able to move the allocation and
      // (possibly existing) deallocation ops.
      if (allocateResultEffects.size() != 1)
        return;
      // Get allocation result.
      auto allocResult = allocateResultEffects[0].getValue().cast<OpResult>();
      // Find the initial allocation block and register this result.
      allocs.push_back(
          {allocResult, getInitialAllocBlock(allocResult), nullptr});
    });
  }

  /// Computes a valid allocation position in a dominator (if possible) for the
  /// given allocation result.
  Block *getInitialAllocBlock(OpResult result) {
    // Get all allocation operands as these operands are important for the
    // allocation operation.
    Operation *owner = result.getOwner();
    auto operands = owner->getOperands();
    Block *dominator;
    if (operands.size() < 1)
      dominator =
          findCommonDominator(result, aliases.resolve(result), dominators);
    else {
      // If this node has dependencies, check all dependent nodes with respect
      // to a common post dominator in which all values are available.
      ValueSetT dependencies(++operands.begin(), operands.end());
      dominator =
          findCommonDominator(*operands.begin(), dependencies, postDominators);
    }

    // Do not move allocs out of their parent regions to keep them local.
    if (dominator->getParent() != owner->getParentRegion())
      return &owner->getParentRegion()->front();
    return dominator;
  }

  /// Finds correct alloc positions according to the algorithm described at
  /// the top of the file for all alloc nodes that can be handled by this
  /// analysis.
  void placeAllocs() const {
    for (const AllocEntry &entry : allocs) {
      Value alloc = entry.allocValue;
      // Get the actual block to place the alloc and get liveness information
      // for the placement block.
      Block *placementBlock = entry.placementBlock;
      // We have to ensure that we place the alloc before its first use in this
      // block.
      const LivenessBlockInfo *livenessInfo =
          liveness.getLiveness(placementBlock);
      Operation *startOperation = livenessInfo->getStartOperation(alloc);
      // Check whether the start operation lies in the desired placement block.
      // If not, we will use the terminator as this is the last operation in
      // this block.
      if (startOperation->getBlock() != placementBlock)
        startOperation = placementBlock->getTerminator();

      // Move the alloc in front of the start operation.
      Operation *allocOperation = alloc.getDefiningOp();
      allocOperation->moveBefore(startOperation);
    }
  }

  /// Introduces required allocs and copy operations to avoid memory leaks.
  void introduceCopies() {
    // Initialize the set of values that require a dedicated memory free
    // operation since their operands cannot be safely deallocated in a post
    // dominator.
    SmallPtrSet<Value, 8> valuesToFree;
    llvm::SmallDenseSet<std::tuple<Value, Block *>> visitedValues;
    SmallVector<std::tuple<Value, Block *>, 8> toProcess;

    // Check dominance relation for proper dominance properties. If the given
    // value node does not dominate an alias, we will have to create a copy in
    // order to free all buffers that can potentially leak into a post
    // dominator.
    auto findUnsafeValues = [&](Value source, Block *definingBlock) {
      auto it = aliases.find(source);
      if (it == aliases.end())
        return;
      for (Value value : it->second) {
        if (valuesToFree.count(value) > 0)
          continue;
        // Check whether we have to free this particular block argument.
        if (!dominators.dominates(definingBlock, value.getParentBlock())) {
          toProcess.emplace_back(value, value.getParentBlock());
          valuesToFree.insert(value);
        } else if (visitedValues.insert(std::make_tuple(value, definingBlock))
                       .second)
          toProcess.emplace_back(value, definingBlock);
      }
    };

    // Detect possibly unsafe aliases starting from all allocations.
    for (auto &entry : allocs)
      findUnsafeValues(entry.allocValue, entry.placementBlock);

    // Try to find block arguments that require an explicit free operation
    // until we reach a fix point.
    while (!toProcess.empty()) {
      auto current = toProcess.pop_back_val();
      findUnsafeValues(std::get<0>(current), std::get<1>(current));
    }

    // Update buffer aliases to ensure that we free all buffers and block
    // arguments at the correct locations.
    aliases.remove(valuesToFree);

    // Add new allocs and additional copy operations.
    for (Value value : valuesToFree) {
      if (auto blockArg = value.dyn_cast<BlockArgument>())
        introduceBlockArgCopy(blockArg);
      else
        introduceValueCopyForRegionResult(value);

      // Register the value to require a final dealloc. Note that we do not have
      // to assign a block here since we do not want to move the allocation node
      // to another location.
      allocs.push_back({value, nullptr, nullptr});
    }
  }

  /// Introduces temporary allocs in all predecessors and copies the source
  /// values into the newly allocated buffers.
  void introduceBlockArgCopy(BlockArgument blockArg) {
    // Allocate a buffer for the current block argument in the block of
    // the associated value (which will be a predecessor block by
    // definition).
    Block *block = blockArg.getOwner();
    for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) {
      // Get the terminator and the value that will be passed to our
      // argument.
      Operation *terminator = (*it)->getTerminator();
      auto branchInterface = cast<BranchOpInterface>(terminator);
      // Query the associated source value.
      Value sourceValue =
          branchInterface.getSuccessorOperands(it.getSuccessorIndex())
              .getValue()[blockArg.getArgNumber()];
      // Create a new alloc and copy at the current location of the terminator.
      Value alloc = introduceBufferCopy(sourceValue, terminator);
      // Wire new alloc and successor operand.
      auto mutableOperands =
          branchInterface.getMutableSuccessorOperands(it.getSuccessorIndex());
      if (!mutableOperands.hasValue())
        terminator->emitError() << "terminators with immutable successor "
                                   "operands are not supported";
      else
        mutableOperands.getValue()
            .slice(blockArg.getArgNumber(), 1)
            .assign(alloc);
    }

    // Check whether the block argument has implicitly defined predecessors via
    // the RegionBranchOpInterface. This can be the case if the current block
    // argument belongs to the first block in a region and the parent operation
    // implements the RegionBranchOpInterface.
    Region *argRegion = block->getParent();
    RegionBranchOpInterface regionInterface;
    if (!argRegion || &argRegion->front() != block ||
        !(regionInterface =
              dyn_cast<RegionBranchOpInterface>(argRegion->getParentOp())))
      return;

    introduceCopiesForRegionSuccessors(
        regionInterface, argRegion->getParentOp()->getRegions(),
        [&](RegionSuccessor &successorRegion) {
          // Find a predecessor of our argRegion.
          return successorRegion.getSuccessor() == argRegion;
        },
        [&](RegionSuccessor &successorRegion) {
          // The operand index will be the argument number.
          return blockArg.getArgNumber();
        });
  }

  /// Introduces temporary allocs in front of all associated nested-region
  /// terminators and copies the source values into the newly allocated buffers.
  void introduceValueCopyForRegionResult(Value value) {
    // Get the actual result index in the scope of the parent terminator.
    Operation *operation = value.getDefiningOp();
    auto regionInterface = cast<RegionBranchOpInterface>(operation);
    introduceCopiesForRegionSuccessors(
        regionInterface, operation->getRegions(),
        [&](RegionSuccessor &successorRegion) {
          // Determine whether this region has a successor entry that leaves
          // this region by returning to its parent operation.
          return !successorRegion.getSuccessor();
        },
        [&](RegionSuccessor &successorRegion) {
          // Find the associated success input index.
          return llvm::find(successorRegion.getSuccessorInputs(), value)
              .getIndex();
        });
  }

  /// Introduces buffer copies for all terminators in the given regions. The
  /// regionPredicate is applied to every successor region in order to restrict
  /// the copies to specific regions. Thereby, the operandProvider is invoked
  /// for each matching region successor and determines the operand index that
  /// requires a buffer copy.
  template <typename TPredicate, typename TOperandProvider>
  void
  introduceCopiesForRegionSuccessors(RegionBranchOpInterface regionInterface,
                                     MutableArrayRef<Region> regions,
                                     const TPredicate &regionPredicate,
                                     const TOperandProvider &operandProvider) {
    // Create an empty attribute for each operand to comply with the
    // `getSuccessorRegions` interface definition that requires a single
    // attribute per operand.
    SmallVector<Attribute, 2> operandAttributes(
        regionInterface.getOperation()->getNumOperands());
    for (Region &region : regions) {
      // Query the regionInterface to get all successor regions of the current
      // one.
      SmallVector<RegionSuccessor, 2> successorRegions;
      regionInterface.getSuccessorRegions(region.getRegionNumber(),
                                          operandAttributes, successorRegions);
      // Try to find a matching region successor.
      RegionSuccessor *regionSuccessor =
          llvm::find_if(successorRegions, regionPredicate);
      if (regionSuccessor == successorRegions.end())
        continue;
      // Get the operand index in the context of the current successor input
      // bindings.
      auto operandIndex = operandProvider(*regionSuccessor);

      // Iterate over all immediate terminator operations to introduce
      // new buffer allocations. Thereby, the appropriate terminator operand
      // will be adjusted to point to the newly allocated buffer instead.
      walkReturnOperations(&region, [&](Operation *terminator) {
        // Extract the source value from the current terminator.
        Value sourceValue = terminator->getOperand(operandIndex);
        // Create a new alloc at the current location of the terminator.
        Value alloc = introduceBufferCopy(sourceValue, terminator);
        // Wire alloc and terminator operand.
        terminator->setOperand(operandIndex, alloc);
      });
    }
  }

  /// Creates a new memory allocation for the given source value and copies
  /// its content into the newly allocated buffer. The terminator operation is
  /// used to insert the alloc and copy operations at the right places.
  Value introduceBufferCopy(Value sourceValue, Operation *terminator) {
    // Create a new alloc at the current location of the terminator.
    auto memRefType = sourceValue.getType().cast<MemRefType>();
    OpBuilder builder(terminator);

    // Extract information about dynamically shaped types by
    // extracting their dynamic dimensions.
    SmallVector<Value, 4> dynamicOperands;
    for (auto shapeElement : llvm::enumerate(memRefType.getShape())) {
      if (!ShapedType::isDynamic(shapeElement.value()))
        continue;
      dynamicOperands.push_back(builder.create<DimOp>(
          terminator->getLoc(), sourceValue, shapeElement.index()));
    }

    // TODO: provide a generic interface to create dialect-specific
    // Alloc and CopyOp nodes.
    auto alloc = builder.create<AllocOp>(terminator->getLoc(), memRefType,
                                         dynamicOperands);

    // Create a new copy operation that copies to contents of the old
    // allocation to the new one.
    builder.create<linalg::CopyOp>(terminator->getLoc(), sourceValue, alloc);

    return alloc;
  }

  /// Finds associated deallocs that can be linked to our allocation nodes (if
  /// any).
  void findDeallocs() {
    for (auto &entry : allocs) {
      auto userIt =
          llvm::find_if(entry.allocValue.getUsers(), [&](Operation *user) {
            auto effectInterface = dyn_cast<MemoryEffectOpInterface>(user);
            if (!effectInterface)
              return false;
            // Try to find a free effect that is applied to one of our values
            // that will be automatically freed by our pass.
            SmallVector<MemoryEffects::EffectInstance, 2> effects;
            effectInterface.getEffectsOnValue(entry.allocValue, effects);
            return llvm::any_of(
                effects, [&](MemoryEffects::EffectInstance &it) {
                  return isa<MemoryEffects::Free>(it.getEffect());
                });
          });
      // Assign the associated dealloc operation (if any).
      if (userIt != entry.allocValue.user_end())
        entry.deallocOperation = *userIt;
    }
  }

  /// Finds correct dealloc positions according to the algorithm described at
  /// the top of the file for all alloc nodes and block arguments that can be
  /// handled by this analysis.
  void placeDeallocs() const {
    // Move or insert deallocs using the previously computed information.
    // These deallocations will be linked to their associated allocation nodes
    // since they don't have any aliases that can (potentially) increase their
    // liveness.
    for (const AllocEntry &entry : allocs) {
      Value alloc = entry.allocValue;
      auto aliasesSet = aliases.resolve(alloc);
      assert(aliasesSet.size() > 0 && "must contain at least one alias");

      // Determine the actual block to place the dealloc and get liveness
      // information.
      Block *placementBlock =
          findCommonDominator(alloc, aliasesSet, postDominators);
      const LivenessBlockInfo *livenessInfo =
          liveness.getLiveness(placementBlock);

      // We have to ensure that the dealloc will be after the last use of all
      // aliases of the given value. We first assume that there are no uses in
      // the placementBlock and that we can safely place the dealloc at the
      // beginning.
      Operation *endOperation = &placementBlock->front();
      // Iterate over all aliases and ensure that the endOperation will point
      // to the last operation of all potential aliases in the placementBlock.
      for (Value alias : aliasesSet) {
        Operation *aliasEndOperation =
            livenessInfo->getEndOperation(alias, endOperation);
        // Check whether the aliasEndOperation lies in the desired block and
        // whether it is behind the current endOperation. If yes, this will be
        // the new endOperation.
        if (aliasEndOperation->getBlock() == placementBlock &&
            endOperation->isBeforeInBlock(aliasEndOperation))
          endOperation = aliasEndOperation;
      }
      // endOperation is the last operation behind which we can safely store
      // the dealloc taking all potential aliases into account.

      // If there is an existing dealloc, move it to the right place.
      if (entry.deallocOperation) {
        entry.deallocOperation->moveAfter(endOperation);
      } else {
        // If the Dealloc position is at the terminator operation of the
        // block, then the value should escape from a deallocation.
        Operation *nextOp = endOperation->getNextNode();
        if (!nextOp)
          continue;
        // If there is no dealloc node, insert one in the right place.
        OpBuilder builder(nextOp);
        builder.create<DeallocOp>(alloc.getLoc(), alloc);
      }
    }
  }

  /// Finds a common dominator for the given value while taking the positions
  /// of the values in the value set into account. It supports dominator and
  /// post-dominator analyses via template arguments.
  template <typename DominatorT>
  Block *findCommonDominator(Value value, const ValueSetT &values,
                             const DominatorT &doms) const {
    // Start with the current block the value is defined in.
    Block *dom = value.getParentBlock();
    // Iterate over all aliases and their uses to find a safe placement block
    // according to the given dominator information.
    for (Value childValue : values)
      for (Operation *user : childValue.getUsers()) {
        // Move upwards in the dominator tree to find an appropriate
        // dominator block that takes the current use into account.
        dom = doms.findNearestCommonDominator(dom, user->getBlock());
      }
    return dom;
  }

  /// The operation this transformation was constructed from.
  Operation *operation;

  /// Alias information that can be updated during the insertion of copies.
  BufferPlacementAliasAnalysis aliases;

  /// Maps allocation nodes to their associated blocks.
  AllocEntryList allocs;

  /// The underlying liveness analysis to compute fine grained information
  /// about alloc and dealloc positions.
  Liveness liveness;

  /// The dominator analysis to place deallocs in the appropriate blocks.
  DominanceInfo dominators;

  /// The post dominator analysis to place deallocs in the appropriate blocks.
  PostDominanceInfo postDominators;
};

//===----------------------------------------------------------------------===//
// BufferPlacementPass
//===----------------------------------------------------------------------===//

/// The actual buffer placement pass that moves alloc and dealloc nodes into
/// the right positions. It uses the algorithm described at the top of the
/// file.
struct BufferPlacementPass
    : mlir::PassWrapper<BufferPlacementPass, FunctionPass> {

  void runOnFunction() override {
    // Place all required alloc, copy and dealloc nodes.
    BufferPlacement placement(getFunction());
    placement.place();
  }
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
// BufferAssignmentPlacer
//===----------------------------------------------------------------------===//

/// Creates a new assignment placer.
BufferAssignmentPlacer::BufferAssignmentPlacer(Operation *op) : operation(op) {}

/// Computes the actual position to place allocs for the given value.
OpBuilder::InsertPoint
BufferAssignmentPlacer::computeAllocPosition(OpResult result) {
  Operation *owner = result.getOwner();
  return OpBuilder::InsertPoint(owner->getBlock(), Block::iterator(owner));
}

//===----------------------------------------------------------------------===//
// BufferAssignmentTypeConverter
//===----------------------------------------------------------------------===//

/// Registers conversions into BufferAssignmentTypeConverter
BufferAssignmentTypeConverter::BufferAssignmentTypeConverter() {
  // Keep all types unchanged.
  addConversion([](Type type) { return type; });
  // Convert RankedTensorType to MemRefType.
  addConversion([](RankedTensorType type) {
    return (Type)MemRefType::get(type.getShape(), type.getElementType());
  });
  // Convert UnrankedTensorType to UnrankedMemRefType.
  addConversion([](UnrankedTensorType type) {
    return (Type)UnrankedMemRefType::get(type.getElementType(), 0);
  });
}

/// Checks if `type` has been converted from non-memref type to memref.
bool BufferAssignmentTypeConverter::isConvertedMemref(Type type, Type before) {
  return type.isa<BaseMemRefType>() && !before.isa<BaseMemRefType>();
}

//===----------------------------------------------------------------------===//
// BufferPlacementPass construction
//===----------------------------------------------------------------------===//

std::unique_ptr<Pass> mlir::createBufferPlacementPass() {
  return std::make_unique<BufferPlacementPass>();
}