rtl.cpp 15.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
//===-RTLs/nec-aurora/src/rtl.cpp - Target RTLs Implementation - C++ -*-======//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
//
// RTL for NEC Aurora TSUBASA machines
//
//===----------------------------------------------------------------------===//

#include "omptargetplugin.h"

#include <algorithm>
#include <cassert>
#include <cerrno>
#include <cstring>
#include <list>
#include <stdlib.h>
#include <string>
#include <sys/stat.h>
#include <ve_offload.h>
#include <vector>
#include <veosinfo/veosinfo.h>

#ifndef TARGET_ELF_ID
#define TARGET_ELF_ID 0
#endif

#ifdef OMPTARGET_DEBUG
static int DebugLevel = 0;

#define GETNAME2(name) #name
#define GETNAME(name) GETNAME2(name)
#define DP(...)                                                                \
  do {                                                                         \
    if (DebugLevel > 0) {                                                      \
      DEBUGP("Target " GETNAME(TARGET_NAME) " RTL", __VA_ARGS__);              \
    }                                                                          \
  } while (false)
#else // OMPTARGET_DEBUG
#define DP(...)                                                                \
  {}
#endif // OMPTARGET_DEBUG

#include "../../common/elf_common.c"

struct DynLibTy {
  char *FileName;
  uint64_t VeoLibHandle;
};

/// Keep entries table per device.
struct FuncOrGblEntryTy {
  __tgt_target_table Table;
  std::vector<__tgt_offload_entry> Entries;
};

class RTLDeviceInfoTy {
  std::vector<std::list<FuncOrGblEntryTy>> FuncOrGblEntry;

public:
  std::vector<struct veo_proc_handle *> ProcHandles;
  std::vector<struct veo_thr_ctxt *> Contexts;
  std::vector<uint64_t> LibraryHandles;
  std::list<DynLibTy> DynLibs;
  // Maps OpenMP device Ids to Ve nodeids
  std::vector<int> NodeIds;

  void buildOffloadTableFromHost(int32_t device_id, uint64_t VeoLibHandle,
                                 __tgt_offload_entry *HostBegin,
                                 __tgt_offload_entry *HostEnd) {
    FuncOrGblEntry[device_id].emplace_back();
    std::vector<__tgt_offload_entry> &T =
        FuncOrGblEntry[device_id].back().Entries;
    T.clear();
    for (__tgt_offload_entry *i = HostBegin; i != HostEnd; ++i) {
      char *SymbolName = i->name;
      // we have not enough access to the target memory to conveniently parse
      // the offload table there so we need to lookup every symbol with the host
      // table
      DP("Looking up symbol: %s\n", SymbolName);
      uint64_t SymbolTargetAddr =
          veo_get_sym(ProcHandles[device_id], VeoLibHandle, SymbolName);
      __tgt_offload_entry Entry;

      if (!SymbolTargetAddr) {
        DP("Symbol %s not found in target image\n", SymbolName);
        Entry = {NULL, NULL, 0, 0, 0};
      } else {
        DP("Found symbol %s successfully in target image (addr: %p)\n",
           SymbolName, reinterpret_cast<void *>(SymbolTargetAddr));
        Entry = { reinterpret_cast<void *>(SymbolTargetAddr),
                  i->name,
                  i->size,
                  i->flags,
                  0 };
      }

      T.push_back(Entry);
    }

    FuncOrGblEntry[device_id].back().Table.EntriesBegin = &T.front();
    FuncOrGblEntry[device_id].back().Table.EntriesEnd = &T.back() + 1;
  }

  __tgt_target_table *getOffloadTable(int32_t device_id) {
    return &FuncOrGblEntry[device_id].back().Table;
  }

  RTLDeviceInfoTy() {
#ifdef OMPTARGET_DEBUG
    if (char *envStr = getenv("LIBOMPTARGET_DEBUG")) {
      DebugLevel = std::stoi(envStr);
    }
#endif // OMPTARGET_DEBUG

    struct ve_nodeinfo node_info;
    ve_node_info(&node_info);

    // Build a predictable mapping between VE node ids and OpenMP device ids.
    // This is necessary, because nodes can be missing or offline and (active)
    // node ids are thus not consecutive. The entries in ve_nodeinfo may also
    // not be in the order of their node ids.
    for (int i = 0; i < node_info.total_node_count; ++i) {
      if (node_info.status[i] == 0) {
        NodeIds.push_back(node_info.nodeid[i]);
      }
    }

    // Because the entries in ve_nodeinfo may not be in the order of their node
    // ids, we sort NodeIds to get a predictable mapping.
    std::sort(NodeIds.begin(), NodeIds.end());

    int NumDevices = NodeIds.size();
    DP("Found %i VE devices\n", NumDevices);
    ProcHandles.resize(NumDevices, NULL);
    Contexts.resize(NumDevices, NULL);
    FuncOrGblEntry.resize(NumDevices);
    LibraryHandles.resize(NumDevices);
  }

  ~RTLDeviceInfoTy() {
    for (auto &ctx : Contexts) {
      if (ctx != NULL) {
        if (veo_context_close(ctx) != 0) {
          DP("Failed to close VEO context.\n");
        }
      }
    }

    for (auto &hdl : ProcHandles) {
      if (hdl != NULL) {
        veo_proc_destroy(hdl);
      }
    }

    for (auto &lib : DynLibs) {
      if (lib.FileName) {
        remove(lib.FileName);
      }
    }
  }
};

static RTLDeviceInfoTy DeviceInfo;

static int target_run_function_wait(uint32_t DeviceID, uint64_t FuncAddr,
                                    struct veo_args *args, uint64_t *RetVal) {
  DP("Running function with entry point %p\n",
     reinterpret_cast<void *>(FuncAddr));
  uint64_t RequestHandle =
      veo_call_async(DeviceInfo.Contexts[DeviceID], FuncAddr, args);
  if (RequestHandle == VEO_REQUEST_ID_INVALID) {
    DP("Execution of entry point %p failed\n",
       reinterpret_cast<void *>(FuncAddr));
    return OFFLOAD_FAIL;
  }

  DP("Function at address %p called (VEO request ID: %" PRIu64 ")\n",
     reinterpret_cast<void *>(FuncAddr), RequestHandle);

  int ret = veo_call_wait_result(DeviceInfo.Contexts[DeviceID], RequestHandle,
                                 RetVal);
  if (ret != 0) {
    DP("Waiting for entry point %p failed (Error code %d)\n",
       reinterpret_cast<void *>(FuncAddr), ret);
    return OFFLOAD_FAIL;
  }
  return OFFLOAD_SUCCESS;
}


// Return the number of available devices of the type supported by the
// target RTL.
int32_t __tgt_rtl_number_of_devices(void) { return DeviceInfo.NodeIds.size(); }

// Return an integer different from zero if the provided device image can be
// supported by the runtime. The functionality is similar to comparing the
// result of __tgt__rtl__load__binary to NULL. However, this is meant to be a
// lightweight query to determine if the RTL is suitable for an image without
// having to load the library, which can be expensive.
int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *Image) {
#if TARGET_ELF_ID < 1
  return 0;
#else
  return elf_check_machine(Image, TARGET_ELF_ID);
#endif
}

// Initialize the specified device. In case of success return 0; otherwise
// return an error code.
int32_t __tgt_rtl_init_device(int32_t ID) {
  DP("Available VEO version: %i\n", veo_api_version());

  // At the moment we do not really initialize (i.e. create a process or
  // context on) the device here, but in "__tgt_rtl_load_binary".
  // The reason for this is, that, when we create a process for a statically
  // linked binary, the VEO api needs us to already supply the binary (but we
  // can load a dynamically linked binary later, after we create the process).
  // At this stage, we cannot check if we have a dynamically or statically
  // linked binary so we defer process creation until we know.
  return OFFLOAD_SUCCESS;
}

// Pass an executable image section described by image to the specified
// device and prepare an address table of target entities. In case of error,
// return NULL. Otherwise, return a pointer to the built address table.
// Individual entries in the table may also be NULL, when the corresponding
// offload region is not supported on the target device.
__tgt_target_table *__tgt_rtl_load_binary(int32_t ID,
                                          __tgt_device_image *Image) {
  DP("Dev %d: load binary from " DPxMOD " image\n", ID,
     DPxPTR(Image->ImageStart));

  assert(ID >= 0 && "bad dev id");

  size_t ImageSize = (size_t)Image->ImageEnd - (size_t)Image->ImageStart;
  size_t NumEntries = (size_t)(Image->EntriesEnd - Image->EntriesBegin);
  DP("Expecting to have %zd entries defined.\n", NumEntries);

  // load dynamic library and get the entry points. We use the dl library
  // to do the loading of the library, but we could do it directly to avoid the
  // dump to the temporary file.
  //
  // 1) Create tmp file with the library contents.
  // 2) Use dlopen to load the file and dlsym to retrieve the symbols.
  char tmp_name[] = "/tmp/tmpfile_XXXXXX";
  int tmp_fd = mkstemp(tmp_name);

  if (tmp_fd == -1) {
    return NULL;
  }

  FILE *ftmp = fdopen(tmp_fd, "wb");

  if (!ftmp) {
    DP("fdopen() for %s failed. Could not write target image\n", tmp_name);
    return NULL;
  }

  fwrite(Image->ImageStart, ImageSize, 1, ftmp);

  // at least for the static case we need to change the permissions
  chmod(tmp_name, 0700);

  DP("Wrote target image to %s. ImageSize=%zu\n", tmp_name, ImageSize);

  fclose(ftmp);

  // See comment in "__tgt_rtl_init_device"
  bool is_dyn = true;
  if (DeviceInfo.ProcHandles[ID] == NULL) {
    struct veo_proc_handle *proc_handle;
    is_dyn = elf_is_dynamic(Image);
    // If we have a dynamically linked image, we create the process handle, then
    // the thread, and then load the image.
    // If we have a statically linked image, we need to create the process
    // handle and load the image at the same time with veo_proc_create_static().
    if (is_dyn) {
      proc_handle = veo_proc_create(DeviceInfo.NodeIds[ID]);
      if (!proc_handle) {
        DP("veo_proc_create() failed for device %d\n", ID);
        return NULL;
      }
    } else {
      proc_handle = veo_proc_create_static(DeviceInfo.NodeIds[ID], tmp_name);
      if (!proc_handle) {
        DP("veo_proc_create_static() failed for device %d, image=%s\n", ID,
           tmp_name);
        return NULL;
      }
    }
    DeviceInfo.ProcHandles[ID] = proc_handle;
  }

  if (DeviceInfo.Contexts[ID] == NULL) {
    struct veo_thr_ctxt *ctx = veo_context_open(DeviceInfo.ProcHandles[ID]);

    if (!ctx) {
      DP("veo_context_open() failed: %s\n", std::strerror(errno));
      return NULL;
    }

    DeviceInfo.Contexts[ID] = ctx;
  }

  DP("Aurora device successfully initialized with loaded binary: "
     "proc_handle=%p, ctx=%p\n",
     DeviceInfo.ProcHandles[ID], DeviceInfo.Contexts[ID]);

  uint64_t LibHandle = 0UL;
  if (is_dyn) {
    LibHandle = veo_load_library(DeviceInfo.ProcHandles[ID], tmp_name);

    if (!LibHandle) {
      DP("veo_load_library() failed: LibHandle=%" PRIu64
         " Name=%s. Set env VEORUN_BIN for static linked target code.\n",
         LibHandle, tmp_name);
      return NULL;
    }

    DP("Successfully loaded library dynamically\n");
  } else {
    DP("Symbol table is expected to have been created by "
       "veo_create_proc_static()\n");
  }

  DynLibTy Lib = {tmp_name, LibHandle};
  DeviceInfo.DynLibs.push_back(Lib);
  DeviceInfo.LibraryHandles[ID] = LibHandle;

  DeviceInfo.buildOffloadTableFromHost(ID, LibHandle, Image->EntriesBegin,
                                       Image->EntriesEnd);

  return DeviceInfo.getOffloadTable(ID);
}

// Allocate data on the particular target device, of the specified size.
// HostPtr is a address of the host data the allocated target data
// will be associated with (HostPtr may be NULL if it is not known at
// allocation time, like for example it would be for target data that
// is allocated by omp_target_alloc() API). Return address of the
// allocated data on the target that will be used by libomptarget.so to
// initialize the target data mapping structures. These addresses are
// used to generate a table of target variables to pass to
// __tgt_rtl_run_region(). The __tgt_rtl_data_alloc() returns NULL in
// case an error occurred on the target device.
void *__tgt_rtl_data_alloc(int32_t ID, int64_t Size, void *HostPtr) {
  int ret;
  uint64_t addr;

  if (DeviceInfo.ProcHandles[ID] == NULL) {
    struct veo_proc_handle *proc_handle;
    proc_handle = veo_proc_create(DeviceInfo.NodeIds[ID]);
    if (!proc_handle) {
      DP("veo_proc_create() failed for device %d\n", ID);
      return NULL;
    }
    DeviceInfo.ProcHandles[ID] = proc_handle;
    DP("Aurora device successfully initialized: proc_handle=%p", proc_handle);
  }

  ret = veo_alloc_mem(DeviceInfo.ProcHandles[ID], &addr, Size);
  DP("Allocate target memory: device=%d, target addr=%p, size=%" PRIu64 "\n",
     ID, reinterpret_cast<void *>(addr), Size);
  if (ret != 0) {
    DP("veo_alloc_mem(%d, %p, %" PRIu64 ") failed with error code %d\n",
       ID, reinterpret_cast<void *>(addr), Size, ret);
    return NULL;
  }

  return reinterpret_cast<void *>(addr);
}

// Pass the data content to the target device using the target address.
// In case of success, return zero. Otherwise, return an error code.
int32_t __tgt_rtl_data_submit(int32_t ID, void *TargetPtr, void *HostPtr,
                              int64_t Size) {
  int ret = veo_write_mem(DeviceInfo.ProcHandles[ID], (uint64_t)TargetPtr,
                          HostPtr, (size_t)Size);
  if (ret != 0) {
    DP("veo_write_mem() failed with error code %d\n", ret);
    return OFFLOAD_FAIL;
  }
  return OFFLOAD_SUCCESS;
}

// Retrieve the data content from the target device using its address.
// In case of success, return zero. Otherwise, return an error code.
int32_t __tgt_rtl_data_retrieve(int32_t ID, void *HostPtr, void *TargetPtr,
                                int64_t Size) {
  int ret = veo_read_mem(DeviceInfo.ProcHandles[ID], HostPtr,
                         (uint64_t)TargetPtr, Size);
  if (ret != 0) {
    DP("veo_read_mem() failed with error code %d\n", ret);
    return OFFLOAD_FAIL;
  }
  return OFFLOAD_SUCCESS;
}

// De-allocate the data referenced by target ptr on the device. In case of
// success, return zero. Otherwise, return an error code.
int32_t __tgt_rtl_data_delete(int32_t ID, void *TargetPtr) {
  int ret =  veo_free_mem(DeviceInfo.ProcHandles[ID], (uint64_t)TargetPtr);

  if (ret != 0) {
    DP("veo_free_mem() failed with error code %d\n", ret);
    return OFFLOAD_FAIL;
  }
  return OFFLOAD_SUCCESS;
}

// Similar to __tgt_rtl_run_target_region, but additionally specify the
// number of teams to be created and a number of threads in each team.
int32_t __tgt_rtl_run_target_team_region(int32_t ID, void *Entry, void **Args,
                                         ptrdiff_t *Offsets, int32_t NumArgs,
                                         int32_t NumTeams, int32_t ThreadLimit,
                                         uint64_t loop_tripcount) {
  int ret;

  // ignore team num and thread limit.
  std::vector<void *> ptrs(NumArgs);

  struct veo_args *TargetArgs;
  TargetArgs = veo_args_alloc();

  if (TargetArgs == NULL) {
    DP("Could not allocate VEO args\n");
    return OFFLOAD_FAIL;
  }

  for (int i = 0; i < NumArgs; ++i) {
    ret = veo_args_set_u64(TargetArgs, i, (intptr_t)Args[i]);

    if (ret != 0) {
      DP("veo_args_set_u64() has returned %d for argnum=%d and value %p\n",
         ret, i, Args[i]);
      return OFFLOAD_FAIL;
    }
  }

  uint64_t RetVal;
  if (target_run_function_wait(ID, reinterpret_cast<uint64_t>(Entry),
                               TargetArgs, &RetVal) != OFFLOAD_SUCCESS) {
    veo_args_free(TargetArgs);
    return OFFLOAD_FAIL;
  }
  veo_args_free(TargetArgs);
  return OFFLOAD_SUCCESS;
}

// Transfer control to the offloaded entry Entry on the target device.
// Args and Offsets are arrays of NumArgs size of target addresses and
// offsets. An offset should be added to the target address before passing it
// to the outlined function on device side. In case of success, return zero.
// Otherwise, return an error code.
int32_t __tgt_rtl_run_target_region(int32_t ID, void *Entry, void **Args,
                                    ptrdiff_t *Offsets, int32_t NumArgs) {
  return __tgt_rtl_run_target_team_region(ID, Entry, Args, Offsets, NumArgs, 1,
                                          1, 0);
}