demo.py
1.05 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import os
from data import common
import numpy as np
import imageio
import torch
import torch.utils.data as data
class Demo(data.Dataset):
def __init__(self, args, name='Demo', train=False, benchmark=False):
self.args = args
self.name = name
self.scale = args.scale
self.idx_scale = 0
self.train = False
self.benchmark = benchmark
self.filelist = []
for f in os.listdir(args.dir_demo):
if f.find('.png') >= 0 or f.find('.jp') >= 0:
self.filelist.append(os.path.join(args.dir_demo, f))
self.filelist.sort()
def __getitem__(self, idx):
filename = os.path.splitext(os.path.basename(self.filelist[idx]))[0]
lr = imageio.imread(self.filelist[idx])
lr, = common.set_channel(lr, n_channels=self.args.n_colors)
lr_t, = common.np2Tensor(lr, rgb_range=self.args.rgb_range)
return lr_t, -1, filename
def __len__(self):
return len(self.filelist)
def set_scale(self, idx_scale):
self.idx_scale = idx_scale