discriminator.py
1.56 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from model import common
import torch.nn as nn
class Discriminator(nn.Module):
'''
output is not normalized
'''
def __init__(self, args):
super(Discriminator, self).__init__()
in_channels = args.n_colors
out_channels = 64
depth = 7
def _block(_in_channels, _out_channels, stride=1):
return nn.Sequential(
nn.Conv2d(
_in_channels,
_out_channels,
3,
padding=1,
stride=stride,
bias=False
),
nn.BatchNorm2d(_out_channels),
nn.LeakyReLU(negative_slope=0.2, inplace=True)
)
m_features = [_block(in_channels, out_channels)]
for i in range(depth):
in_channels = out_channels
if i % 2 == 1:
stride = 1
out_channels *= 2
else:
stride = 2
m_features.append(_block(in_channels, out_channels, stride=stride))
patch_size = args.patch_size // (2**((depth + 1) // 2))
m_classifier = [
nn.Linear(out_channels * patch_size**2, 1024),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Linear(1024, 1)
]
self.features = nn.Sequential(*m_features)
self.classifier = nn.Sequential(*m_classifier)
def forward(self, x):
features = self.features(x)
output = self.classifier(features.view(features.size(0), -1))
return output