utility.py
7.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import math
import time
import datetime
from multiprocessing import Process
from multiprocessing import Queue
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import imageio
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lrs
class timer():
def __init__(self):
self.acc = 0
self.tic()
def tic(self):
self.t0 = time.time()
def toc(self, restart=False):
diff = time.time() - self.t0
if restart: self.t0 = time.time()
return diff
def hold(self):
self.acc += self.toc()
def release(self):
ret = self.acc
self.acc = 0
return ret
def reset(self):
self.acc = 0
class checkpoint():
def __init__(self, args):
self.args = args
self.ok = True
self.log = torch.Tensor()
now = datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S')
if not args.load:
if not args.save:
args.save = now
self.dir = os.path.join('..', 'experiment', args.save)
else:
self.dir = os.path.join('..', 'experiment', args.load)
if os.path.exists(self.dir):
self.log = torch.load(self.get_path('psnr_log.pt'))
print('Continue from epoch {}...'.format(len(self.log)))
else:
args.load = ''
if args.reset:
os.system('rm -rf ' + self.dir)
args.load = ''
os.makedirs(self.dir, exist_ok=True)
os.makedirs(self.get_path('model'), exist_ok=True)
for d in args.data_test:
os.makedirs(self.get_path('results-{}'.format(d)), exist_ok=True)
open_type = 'a' if os.path.exists(self.get_path('log.txt'))else 'w'
self.log_file = open(self.get_path('log.txt'), open_type)
with open(self.get_path('config.txt'), open_type) as f:
f.write(now + '\n\n')
for arg in vars(args):
f.write('{}: {}\n'.format(arg, getattr(args, arg)))
f.write('\n')
self.n_processes = 8
def get_path(self, *subdir):
return os.path.join(self.dir, *subdir)
def save(self, trainer, epoch, is_best=False):
trainer.model.save(self.get_path('model'), epoch, is_best=is_best)
trainer.loss.save(self.dir)
trainer.loss.plot_loss(self.dir, epoch)
self.plot_psnr(epoch)
trainer.optimizer.save(self.dir)
torch.save(self.log, self.get_path('psnr_log.pt'))
def add_log(self, log):
self.log = torch.cat([self.log, log])
def write_log(self, log, refresh=False):
print(log)
self.log_file.write(log + '\n')
if refresh:
self.log_file.close()
self.log_file = open(self.get_path('log.txt'), 'a')
def done(self):
self.log_file.close()
def plot_psnr(self, epoch):
axis = np.linspace(1, epoch, epoch)
for idx_data, d in enumerate(self.args.data_test):
label = 'SR on {}'.format(d)
fig = plt.figure()
plt.title(label)
for idx_scale, scale in enumerate(self.args.scale):
plt.plot(
axis,
self.log[:, idx_data, idx_scale].numpy(),
label='Scale {}'.format(scale)
)
plt.legend()
plt.xlabel('Epochs')
plt.ylabel('PSNR')
plt.grid(True)
plt.savefig(self.get_path('test_{}.pdf'.format(d)))
plt.close(fig)
def begin_background(self):
self.queue = Queue()
def bg_target(queue):
while True:
if not queue.empty():
filename, tensor = queue.get()
if filename is None: break
imageio.imwrite(filename, tensor.numpy())
self.process = [
Process(target=bg_target, args=(self.queue,)) \
for _ in range(self.n_processes)
]
for p in self.process: p.start()
def end_background(self):
for _ in range(self.n_processes): self.queue.put((None, None))
while not self.queue.empty(): time.sleep(1)
for p in self.process: p.join()
def save_results(self, dataset, filename, save_list, scale):
if self.args.save_results:
filename = self.get_path(
'results-{}'.format(dataset.dataset.name),
'{}_x{}_'.format(filename, scale)
)
postfix = ('SR', 'LR', 'HR')
for v, p in zip(save_list, postfix):
normalized = v[0].mul(255 / self.args.rgb_range)
tensor_cpu = normalized.byte().permute(1, 2, 0).cpu()
self.queue.put(('{}{}.png'.format(filename, p), tensor_cpu))
def quantize(img, rgb_range):
pixel_range = 255 / rgb_range
return img.mul(pixel_range).clamp(0, 255).round().div(pixel_range)
def calc_psnr(sr, hr, scale, rgb_range, dataset=None):
if hr.nelement() == 1: return 0
diff = (sr - hr) / rgb_range
if dataset and dataset.dataset.benchmark:
shave = scale
if diff.size(1) > 1:
gray_coeffs = [65.738, 129.057, 25.064]
convert = diff.new_tensor(gray_coeffs).view(1, 3, 1, 1) / 256
diff = diff.mul(convert).sum(dim=1)
else:
shave = scale + 6
valid = diff[..., shave:-shave, shave:-shave]
mse = valid.pow(2).mean()
return -10 * math.log10(mse)
def make_optimizer(args, target):
'''
make optimizer and scheduler together
'''
# optimizer
trainable = filter(lambda x: x.requires_grad, target.parameters())
kwargs_optimizer = {'lr': args.lr, 'weight_decay': args.weight_decay}
if args.optimizer == 'SGD':
optimizer_class = optim.SGD
kwargs_optimizer['momentum'] = args.momentum
elif args.optimizer == 'ADAM':
optimizer_class = optim.Adam
kwargs_optimizer['betas'] = args.betas
kwargs_optimizer['eps'] = args.epsilon
elif args.optimizer == 'RMSprop':
optimizer_class = optim.RMSprop
kwargs_optimizer['eps'] = args.epsilon
# scheduler
milestones = list(map(lambda x: int(x), args.decay.split('-')))
kwargs_scheduler = {'milestones': milestones, 'gamma': args.gamma}
scheduler_class = lrs.MultiStepLR
class CustomOptimizer(optimizer_class):
def __init__(self, *args, **kwargs):
super(CustomOptimizer, self).__init__(*args, **kwargs)
def _register_scheduler(self, scheduler_class, **kwargs):
self.scheduler = scheduler_class(self, **kwargs)
def save(self, save_dir):
torch.save(self.state_dict(), self.get_dir(save_dir))
def load(self, load_dir, epoch=1):
self.load_state_dict(torch.load(self.get_dir(load_dir)))
if epoch > 1:
for _ in range(epoch): self.scheduler.step()
def get_dir(self, dir_path):
return os.path.join(dir_path, 'optimizer.pt')
def schedule(self):
self.scheduler.step()
def get_lr(self):
return self.scheduler.get_lr()[0]
def get_last_epoch(self):
return self.scheduler.last_epoch
optimizer = CustomOptimizer(trainable, **kwargs_optimizer)
optimizer._register_scheduler(scheduler_class, **kwargs_scheduler)
return optimizer