Merge branch 'master' of http://khuhub.khu.ac.kr/2021-1-capstone-design1/BSH_Project3 into master
Showing
18 changed files
with
161 additions
and
48 deletions
... | @@ -2,7 +2,7 @@ import os | ... | @@ -2,7 +2,7 @@ import os |
2 | import random | 2 | import random |
3 | import numpy as np | 3 | import numpy as np |
4 | import scipy.misc as misc | 4 | import scipy.misc as misc |
5 | -import skimage.measure as measure | 5 | +import skimage.metrics as metrics |
6 | from tensorboardX import SummaryWriter | 6 | from tensorboardX import SummaryWriter |
7 | import torch | 7 | import torch |
8 | import torch.nn as nn | 8 | import torch.nn as nn |
... | @@ -13,39 +13,39 @@ from dataset import TrainDataset, TestDataset | ... | @@ -13,39 +13,39 @@ from dataset import TrainDataset, TestDataset |
13 | class Solver(): | 13 | class Solver(): |
14 | def __init__(self, model, cfg): | 14 | def __init__(self, model, cfg): |
15 | if cfg.scale > 0: | 15 | if cfg.scale > 0: |
16 | - self.refiner = model(scale=cfg.scale, | 16 | + self.refiner = model(scale=cfg.scale, |
17 | group=cfg.group) | 17 | group=cfg.group) |
18 | else: | 18 | else: |
19 | - self.refiner = model(multi_scale=True, | 19 | + self.refiner = model(multi_scale=True, |
20 | group=cfg.group) | 20 | group=cfg.group) |
21 | - | 21 | + |
22 | - if cfg.loss_fn in ["MSE"]: | 22 | + if cfg.loss_fn in ["MSE"]: |
23 | self.loss_fn = nn.MSELoss() | 23 | self.loss_fn = nn.MSELoss() |
24 | - elif cfg.loss_fn in ["L1"]: | 24 | + elif cfg.loss_fn in ["L1"]: |
25 | self.loss_fn = nn.L1Loss() | 25 | self.loss_fn = nn.L1Loss() |
26 | elif cfg.loss_fn in ["SmoothL1"]: | 26 | elif cfg.loss_fn in ["SmoothL1"]: |
27 | self.loss_fn = nn.SmoothL1Loss() | 27 | self.loss_fn = nn.SmoothL1Loss() |
28 | 28 | ||
29 | self.optim = optim.Adam( | 29 | self.optim = optim.Adam( |
30 | - filter(lambda p: p.requires_grad, self.refiner.parameters()), | 30 | + filter(lambda p: p.requires_grad, self.refiner.parameters()), |
31 | cfg.lr) | 31 | cfg.lr) |
32 | - | 32 | + |
33 | - self.train_data = TrainDataset(cfg.train_data_path, | 33 | + self.train_data = TrainDataset(cfg.train_data_path, |
34 | - scale=cfg.scale, | 34 | + scale=cfg.scale, |
35 | size=cfg.patch_size) | 35 | size=cfg.patch_size) |
36 | self.train_loader = DataLoader(self.train_data, | 36 | self.train_loader = DataLoader(self.train_data, |
37 | batch_size=cfg.batch_size, | 37 | batch_size=cfg.batch_size, |
38 | num_workers=1, | 38 | num_workers=1, |
39 | shuffle=True, drop_last=True) | 39 | shuffle=True, drop_last=True) |
40 | - | 40 | + |
41 | - | 41 | + |
42 | self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 42 | self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
43 | self.refiner = self.refiner.to(self.device) | 43 | self.refiner = self.refiner.to(self.device) |
44 | self.loss_fn = self.loss_fn | 44 | self.loss_fn = self.loss_fn |
45 | 45 | ||
46 | self.cfg = cfg | 46 | self.cfg = cfg |
47 | self.step = 0 | 47 | self.step = 0 |
48 | - | 48 | + |
49 | self.writer = SummaryWriter(log_dir=os.path.join("runs", cfg.ckpt_name)) | 49 | self.writer = SummaryWriter(log_dir=os.path.join("runs", cfg.ckpt_name)) |
50 | if cfg.verbose: | 50 | if cfg.verbose: |
51 | num_params = 0 | 51 | num_params = 0 |
... | @@ -57,9 +57,9 @@ class Solver(): | ... | @@ -57,9 +57,9 @@ class Solver(): |
57 | 57 | ||
58 | def fit(self): | 58 | def fit(self): |
59 | cfg = self.cfg | 59 | cfg = self.cfg |
60 | - refiner = nn.DataParallel(self.refiner, | 60 | + refiner = nn.DataParallel(self.refiner, |
61 | device_ids=range(cfg.num_gpu)) | 61 | device_ids=range(cfg.num_gpu)) |
62 | - | 62 | + |
63 | learning_rate = cfg.lr | 63 | learning_rate = cfg.lr |
64 | while True: | 64 | while True: |
65 | for inputs in self.train_loader: | 65 | for inputs in self.train_loader: |
... | @@ -73,13 +73,13 @@ class Solver(): | ... | @@ -73,13 +73,13 @@ class Solver(): |
73 | # i know this is stupid but just temporary | 73 | # i know this is stupid but just temporary |
74 | scale = random.randint(2, 4) | 74 | scale = random.randint(2, 4) |
75 | hr, lr = inputs[scale-2][0], inputs[scale-2][1] | 75 | hr, lr = inputs[scale-2][0], inputs[scale-2][1] |
76 | - | 76 | + |
77 | hr = hr.to(self.device) | 77 | hr = hr.to(self.device) |
78 | lr = lr.to(self.device) | 78 | lr = lr.to(self.device) |
79 | - | 79 | + |
80 | sr = refiner(lr, scale) | 80 | sr = refiner(lr, scale) |
81 | loss = self.loss_fn(sr, hr) | 81 | loss = self.loss_fn(sr, hr) |
82 | - | 82 | + |
83 | self.optim.zero_grad() | 83 | self.optim.zero_grad() |
84 | loss.backward() | 84 | loss.backward() |
85 | nn.utils.clip_grad_norm(self.refiner.parameters(), cfg.clip) | 85 | nn.utils.clip_grad_norm(self.refiner.parameters(), cfg.clip) |
... | @@ -88,18 +88,19 @@ class Solver(): | ... | @@ -88,18 +88,19 @@ class Solver(): |
88 | learning_rate = self.decay_learning_rate() | 88 | learning_rate = self.decay_learning_rate() |
89 | for param_group in self.optim.param_groups: | 89 | for param_group in self.optim.param_groups: |
90 | param_group["lr"] = learning_rate | 90 | param_group["lr"] = learning_rate |
91 | - | 91 | + |
92 | self.step += 1 | 92 | self.step += 1 |
93 | if cfg.verbose and self.step % cfg.print_interval == 0: | 93 | if cfg.verbose and self.step % cfg.print_interval == 0: |
94 | if cfg.scale > 0: | 94 | if cfg.scale > 0: |
95 | - psnr = self.evaluate("dataset/Urban100", scale=cfg.scale, num_step=self.step) | 95 | + psnr, ssim = self.evaluate("dataset/Urban100", scale=cfg.scale, num_step=self.step) |
96 | - self.writer.add_scalar("Urban100", psnr, self.step) | 96 | + self.writer.add_scalar("PSNR", psnr, self.step) |
97 | - else: | 97 | + self.writer.add_scalar("SSIM", ssim, self.step) |
98 | + else: | ||
98 | psnr = [self.evaluate("dataset/Urban100", scale=i, num_step=self.step) for i in range(2, 5)] | 99 | psnr = [self.evaluate("dataset/Urban100", scale=i, num_step=self.step) for i in range(2, 5)] |
99 | self.writer.add_scalar("Urban100_2x", psnr[0], self.step) | 100 | self.writer.add_scalar("Urban100_2x", psnr[0], self.step) |
100 | self.writer.add_scalar("Urban100_3x", psnr[1], self.step) | 101 | self.writer.add_scalar("Urban100_3x", psnr[1], self.step) |
101 | self.writer.add_scalar("Urban100_4x", psnr[2], self.step) | 102 | self.writer.add_scalar("Urban100_4x", psnr[2], self.step) |
102 | - | 103 | + |
103 | self.save(cfg.ckpt_dir, cfg.ckpt_name) | 104 | self.save(cfg.ckpt_dir, cfg.ckpt_name) |
104 | 105 | ||
105 | if self.step > cfg.max_steps: break | 106 | if self.step > cfg.max_steps: break |
... | @@ -107,8 +108,9 @@ class Solver(): | ... | @@ -107,8 +108,9 @@ class Solver(): |
107 | def evaluate(self, test_data_dir, scale=2, num_step=0): | 108 | def evaluate(self, test_data_dir, scale=2, num_step=0): |
108 | cfg = self.cfg | 109 | cfg = self.cfg |
109 | mean_psnr = 0 | 110 | mean_psnr = 0 |
111 | + mean_ssim = 0 | ||
110 | self.refiner.eval() | 112 | self.refiner.eval() |
111 | - | 113 | + |
112 | test_data = TestDataset(test_data_dir, scale=scale) | 114 | test_data = TestDataset(test_data_dir, scale=scale) |
113 | test_loader = DataLoader(test_data, | 115 | test_loader = DataLoader(test_data, |
114 | batch_size=1, | 116 | batch_size=1, |
... | @@ -131,13 +133,13 @@ class Solver(): | ... | @@ -131,13 +133,13 @@ class Solver(): |
131 | lr_patch[2].copy_(lr[:, h-h_chop:h, 0:w_chop]) | 133 | lr_patch[2].copy_(lr[:, h-h_chop:h, 0:w_chop]) |
132 | lr_patch[3].copy_(lr[:, h-h_chop:h, w-w_chop:w]) | 134 | lr_patch[3].copy_(lr[:, h-h_chop:h, w-w_chop:w]) |
133 | lr_patch = lr_patch.to(self.device) | 135 | lr_patch = lr_patch.to(self.device) |
134 | - | 136 | + |
135 | # run refine process in here! | 137 | # run refine process in here! |
136 | sr = self.refiner(lr_patch, scale).data | 138 | sr = self.refiner(lr_patch, scale).data |
137 | - | 139 | + |
138 | h, h_half, h_chop = h*scale, h_half*scale, h_chop*scale | 140 | h, h_half, h_chop = h*scale, h_half*scale, h_chop*scale |
139 | w, w_half, w_chop = w*scale, w_half*scale, w_chop*scale | 141 | w, w_half, w_chop = w*scale, w_half*scale, w_chop*scale |
140 | - | 142 | + |
141 | # merge splited patch images | 143 | # merge splited patch images |
142 | result = torch.FloatTensor(3, h, w).to(self.device) | 144 | result = torch.FloatTensor(3, h, w).to(self.device) |
143 | result[:, 0:h_half, 0:w_half].copy_(sr[0, :, 0:h_half, 0:w_half]) | 145 | result[:, 0:h_half, 0:w_half].copy_(sr[0, :, 0:h_half, 0:w_half]) |
... | @@ -148,16 +150,17 @@ class Solver(): | ... | @@ -148,16 +150,17 @@ class Solver(): |
148 | 150 | ||
149 | hr = hr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() | 151 | hr = hr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() |
150 | sr = sr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() | 152 | sr = sr.cpu().mul(255).clamp(0, 255).byte().permute(1, 2, 0).numpy() |
151 | - | 153 | + |
152 | - # evaluate PSNR | 154 | + # evaluate PSNR and SSIM |
153 | # this evaluation is different to MATLAB version | 155 | # this evaluation is different to MATLAB version |
154 | - # we evaluate PSNR in RGB channel not Y in YCbCR | 156 | + # we evaluate PSNR in RGB channel not Y in YCbCR |
155 | bnd = scale | 157 | bnd = scale |
156 | - im1 = hr[bnd:-bnd, bnd:-bnd] | 158 | + im1 = im2double(hr[bnd:-bnd, bnd:-bnd]) |
157 | - im2 = sr[bnd:-bnd, bnd:-bnd] | 159 | + im2 = im2double(sr[bnd:-bnd, bnd:-bnd]) |
158 | mean_psnr += psnr(im1, im2) / len(test_data) | 160 | mean_psnr += psnr(im1, im2) / len(test_data) |
161 | + mean_ssim += ssim(im1, im2) / len(test_data) | ||
159 | 162 | ||
160 | - return mean_psnr | 163 | + return mean_psnr, mean_ssim |
161 | 164 | ||
162 | def load(self, path): | 165 | def load(self, path): |
163 | self.refiner.load_state_dict(torch.load(path)) | 166 | self.refiner.load_state_dict(torch.load(path)) |
... | @@ -177,14 +180,15 @@ class Solver(): | ... | @@ -177,14 +180,15 @@ class Solver(): |
177 | lr = self.cfg.lr * (0.5 ** (self.step // self.cfg.decay)) | 180 | lr = self.cfg.lr * (0.5 ** (self.step // self.cfg.decay)) |
178 | return lr | 181 | return lr |
179 | 182 | ||
183 | +def im2double(im): | ||
184 | + min_val, max_val = 0, 255 | ||
185 | + out = (im.astype(np.float64)-min_val) / (max_val-min_val) | ||
186 | + return out | ||
180 | 187 | ||
181 | def psnr(im1, im2): | 188 | def psnr(im1, im2): |
182 | - def im2double(im): | 189 | + psnr = metrics.peak_signal_noise_ratio(im1, im2, data_range=1) |
183 | - min_val, max_val = 0, 255 | ||
184 | - out = (im.astype(np.float64)-min_val) / (max_val-min_val) | ||
185 | - return out | ||
186 | - | ||
187 | - im1 = im2double(im1) | ||
188 | - im2 = im2double(im2) | ||
189 | - psnr = measure.compare_psnr(im1, im2, data_range=1) | ||
190 | return psnr | 190 | return psnr |
191 | + | ||
192 | +def ssim(im1, im2): | ||
193 | + ssim = metrics.structural_similarity(im1, im2, data_range=1, multichannel=True) | ||
194 | + return ssim | ... | ... |
... | @@ -76,11 +76,13 @@ def sample(net, device, dataset, cfg): | ... | @@ -76,11 +76,13 @@ def sample(net, device, dataset, cfg): |
76 | 76 | ||
77 | def main(cfg): | 77 | def main(cfg): |
78 | module = importlib.import_module("model.{}".format(cfg.model)) | 78 | module = importlib.import_module("model.{}".format(cfg.model)) |
79 | - net = module.Net(multi_scale=True, | 79 | + net = module.Net(multi_scale=False, |
80 | + scale=cfg.scale, | ||
80 | group=cfg.group) | 81 | group=cfg.group) |
81 | print(json.dumps(vars(cfg), indent=4, sort_keys=True)) | 82 | print(json.dumps(vars(cfg), indent=4, sort_keys=True)) |
82 | 83 | ||
83 | state_dict = torch.load(cfg.ckpt_path) | 84 | state_dict = torch.load(cfg.ckpt_path) |
85 | + # print(state_dict.keys()) | ||
84 | new_state_dict = OrderedDict() | 86 | new_state_dict = OrderedDict() |
85 | for k, v in state_dict.items(): | 87 | for k, v in state_dict.items(): |
86 | name = k | 88 | name = k |
... | @@ -88,12 +90,14 @@ def main(cfg): | ... | @@ -88,12 +90,14 @@ def main(cfg): |
88 | new_state_dict[name] = v | 90 | new_state_dict[name] = v |
89 | 91 | ||
90 | net.load_state_dict(new_state_dict) | 92 | net.load_state_dict(new_state_dict) |
93 | + net.eval() | ||
91 | 94 | ||
92 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 95 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
93 | net = net.to(device) | 96 | net = net.to(device) |
94 | 97 | ||
95 | dataset = TestDataset(cfg.test_data_dir, cfg.scale) | 98 | dataset = TestDataset(cfg.test_data_dir, cfg.scale) |
96 | - sample(net, device, dataset, cfg) | 99 | + with torch.no_grad(): |
100 | + sample(net, device, dataset, cfg) | ||
97 | 101 | ||
98 | 102 | ||
99 | if __name__ == "__main__": | 103 | if __name__ == "__main__": | ... | ... |
docs/주간보고서 3월 15일_2015104160_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 3월 21일_2015104160_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 4월 11일_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 4월 18일_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 5월 17일_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 5월 24일_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 5월 31일_김재연.hwp
0 → 100644
No preview for this file type
docs/주간보고서 5월 3일_김재연.hwp
0 → 100644
No preview for this file type
... | @@ -2,10 +2,22 @@ | ... | @@ -2,10 +2,22 @@ |
2 | "cells": [ | 2 | "cells": [ |
3 | { | 3 | { |
4 | "cell_type": "code", | 4 | "cell_type": "code", |
5 | - "execution_count": 15, | 5 | + "execution_count": 1, |
6 | "id": "automotive-circus", | 6 | "id": "automotive-circus", |
7 | "metadata": {}, | 7 | "metadata": {}, |
8 | - "outputs": [], | 8 | + "outputs": [ |
9 | + { | ||
10 | + "output_type": "error", | ||
11 | + "ename": "ModuleNotFoundError", | ||
12 | + "evalue": "No module named 'cv2'", | ||
13 | + "traceback": [ | ||
14 | + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", | ||
15 | + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", | ||
16 | + "\u001b[1;32m<ipython-input-1-03d1a01a87c6>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mglob\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mglob\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;32mimport\u001b[0m \u001b[0mcv2\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mtqdm\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mgt_list\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msorted\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mglob\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"../bbb_sunflower_1080p/*.png\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | ||
17 | + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'cv2'" | ||
18 | + ] | ||
19 | + } | ||
20 | + ], | ||
9 | "source": [ | 21 | "source": [ |
10 | "from glob import glob\n", | 22 | "from glob import glob\n", |
11 | "import cv2\n", | 23 | "import cv2\n", |
... | @@ -69,4 +81,4 @@ | ... | @@ -69,4 +81,4 @@ |
69 | }, | 81 | }, |
70 | "nbformat": 4, | 82 | "nbformat": 4, |
71 | "nbformat_minor": 5 | 83 | "nbformat_minor": 5 |
72 | -} | 84 | +} |
... | \ No newline at end of file | ... | \ No newline at end of file | ... | ... |
... | @@ -5,7 +5,19 @@ | ... | @@ -5,7 +5,19 @@ |
5 | "execution_count": 1, | 5 | "execution_count": 1, |
6 | "id": "ahead-paste", | 6 | "id": "ahead-paste", |
7 | "metadata": {}, | 7 | "metadata": {}, |
8 | - "outputs": [], | 8 | + "outputs": [ |
9 | + { | ||
10 | + "output_type": "error", | ||
11 | + "ename": "ModuleNotFoundError", | ||
12 | + "evalue": "No module named 'cv2'", | ||
13 | + "traceback": [ | ||
14 | + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", | ||
15 | + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", | ||
16 | + "\u001b[1;32m<ipython-input-1-ff55b1ddb4f1>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mglob\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mglob\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;32mimport\u001b[0m \u001b[0mcv2\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mimages\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msorted\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mglob\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"../bbb_sunflower_540p/*.png\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", | ||
17 | + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'cv2'" | ||
18 | + ] | ||
19 | + } | ||
20 | + ], | ||
9 | "source": [ | 21 | "source": [ |
10 | "from glob import glob\n", | 22 | "from glob import glob\n", |
11 | "import cv2\n", | 23 | "import cv2\n", |
... | @@ -79,4 +91,4 @@ | ... | @@ -79,4 +91,4 @@ |
79 | }, | 91 | }, |
80 | "nbformat": 4, | 92 | "nbformat": 4, |
81 | "nbformat_minor": 5 | 93 | "nbformat_minor": 5 |
82 | -} | 94 | +} |
... | \ No newline at end of file | ... | \ No newline at end of file | ... | ... |
notebooks/resize_eval.ipynb
0 → 100644
1 | +{ | ||
2 | + "cells": [ | ||
3 | + { | ||
4 | + "cell_type": "code", | ||
5 | + "execution_count": 1, | ||
6 | + "id": "ahead-paste", | ||
7 | + "metadata": {}, | ||
8 | + "outputs": [], | ||
9 | + "source": [ | ||
10 | + "from glob import glob\n", | ||
11 | + "import cv2\n", | ||
12 | + "\n", | ||
13 | + "images = sorted(glob(\"./tennis_test_1080p/*.png\"))" | ||
14 | + ] | ||
15 | + }, | ||
16 | + { | ||
17 | + "cell_type": "code", | ||
18 | + "execution_count": 2, | ||
19 | + "id": "rapid-tension", | ||
20 | + "metadata": {}, | ||
21 | + "outputs": [], | ||
22 | + "source": [ | ||
23 | + "from pathlib import Path\n", | ||
24 | + "Path(\"./dataset/Urban100/x2\").mkdir(parents=True, exist_ok=True)" | ||
25 | + ] | ||
26 | + }, | ||
27 | + { | ||
28 | + "cell_type": "code", | ||
29 | + "execution_count": 3, | ||
30 | + "id": "visible-texas", | ||
31 | + "metadata": {}, | ||
32 | + "outputs": [ | ||
33 | + { | ||
34 | + "name": "stderr", | ||
35 | + "output_type": "stream", | ||
36 | + "text": [ | ||
37 | + "100%|██████████| 125/125 [00:18<00:00, 6.61it/s]\n" | ||
38 | + ] | ||
39 | + } | ||
40 | + ], | ||
41 | + "source": [ | ||
42 | + "from tqdm import tqdm\n", | ||
43 | + "for image in tqdm(images):\n", | ||
44 | + " hr = cv2.imread(image, cv2.IMREAD_COLOR)\n", | ||
45 | + " lr = cv2.resize(hr, dsize=(960, 540), interpolation=cv2.INTER_CUBIC)\n", | ||
46 | + "\n", | ||
47 | + " cv2.imwrite(\"./dataset/Urban100/x2/\" + Path(image).stem + \"_HR.png\", hr)\n", | ||
48 | + " cv2.imwrite(\"./dataset/Urban100/x2/\" + Path(image).stem + \"_LR.png\", lr)" | ||
49 | + ] | ||
50 | + }, | ||
51 | + { | ||
52 | + "cell_type": "code", | ||
53 | + "execution_count": null, | ||
54 | + "id": "fallen-religion", | ||
55 | + "metadata": {}, | ||
56 | + "outputs": [], | ||
57 | + "source": [] | ||
58 | + } | ||
59 | + ], | ||
60 | + "metadata": { | ||
61 | + "kernelspec": { | ||
62 | + "display_name": "Python 3", | ||
63 | + "language": "python", | ||
64 | + "name": "python3" | ||
65 | + }, | ||
66 | + "language_info": { | ||
67 | + "codemirror_mode": { | ||
68 | + "name": "ipython", | ||
69 | + "version": 3 | ||
70 | + }, | ||
71 | + "file_extension": ".py", | ||
72 | + "mimetype": "text/x-python", | ||
73 | + "name": "python", | ||
74 | + "nbconvert_exporter": "python", | ||
75 | + "pygments_lexer": "ipython3", | ||
76 | + "version": "3.7.7" | ||
77 | + } | ||
78 | + }, | ||
79 | + "nbformat": 4, | ||
80 | + "nbformat_minor": 5 | ||
81 | +} |
results/basketball/psnr.png
0 → 100644
221 KB
results/basketball/ssim.png
0 → 100644
251 KB
results/carn_002_basketball.xlsx
0 → 100644
No preview for this file type
results/tennis/psnr.png
0 → 100644
261 KB
results/tennis/ssim.png
0 → 100644
325 KB
-
Please register or login to post a comment