compute_coordinates.py
8.97 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#import pose_utils
import os
import numpy as np
from keras.models import load_model
import skimage.transform as st
import pandas as pd
from tqdm import tqdm
from skimage.io import imread
from skimage.transform import resize
from scipy.ndimage import gaussian_filter
#from cmd import args
#args = args()
#model = load_model(args.pose_estimator)
model = load_model("./pose_estimator.h5")
mapIdx = [[31,32], [39,40], [33,34], [35,36], [41,42], [43,44], [19,20], [21,22],
[23,24], [25,26], [27,28], [29,30], [47,48], [49,50], [53,54], [51,52],
[55,56], [37,38], [45,46]]
limbSeq = [[2,3], [2,6], [3,4], [4,5], [6,7], [7,8], [2,9], [9,10],
[10,11], [2,12], [12,13], [13,14], [2,1], [1,15], [15,17],
[1,16], [16,18], [3,17], [6,18]]
def compute_cordinates(heatmap_avg, paf_avg, th1=0.1, th2=0.05):
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:,:,part]
map = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(map.shape)
map_left[1:,:] = map[:-1,:]
map_right = np.zeros(map.shape)
map_right[:-1,:] = map[1:,:]
map_up = np.zeros(map.shape)
map_up[:,1:] = map[:,:-1]
map_down = np.zeros(map.shape)
map_down[:,:-1] = map[:,1:]
peaks_binary = np.logical_and.reduce((map>=map_left, map>=map_right, map>=map_up, map>=map_down, map > th1))
peaks = zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse
peaks_with_score = [x + (map_ori[x[1],x[0]],) for x in peaks]
id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
connection_all = []
special_k = []
mid_num = 10
for k in range(len(mapIdx)):
score_mid = paf_avg[:,:,[x-19 for x in mapIdx[k]]]
candA = all_peaks[limbSeq[k][0]-1]
candB = all_peaks[limbSeq[k][1]-1]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if(nA != 0 and nB != 0):
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = np.sqrt(vec[0]*vec[0] + vec[1]*vec[1])
vec = np.divide(vec, norm)
startend = zip(np.linspace(candA[i][0], candB[j][0], num=mid_num),
np.linspace(candA[i][1], candB[j][1], num=mid_num))
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0]
for I in range(len(startend))])
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1]
for I in range(len(startend))])
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts)/len(score_midpts) + min(0.5*oriImg.shape[0]/norm-1, 0)
criterion1 = len(np.nonzero(score_midpts > th2)[0]) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append([i, j, score_with_dist_prior, score_with_dist_prior+candA[i][2]+candB[j][2]])
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
connection = np.zeros((0,5))
for c in range(len(connection_candidate)):
i,j,s = connection_candidate[c][0:3]
if(i not in connection[:,3] and j not in connection[:,4]):
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
if(len(connection) >= min(nA, nB)):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist])
for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:,0]
partBs = connection_all[k][:,1]
indexA, indexB = np.array(limbSeq[k]) - 1
for i in range(len(connection_all[k])): #= 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): #1:size(subset,1):
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if(subset[j][indexB] != partBs[i]):
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
#print "found = 2"
print("found = 2")
membership = ((subset[j1]>=0).astype(int) + (subset[j2]>=0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: #merge
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i,:2].astype(int), 2]) + connection_all[k][i][2]
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = [];
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2]/subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
if len(subset) == 0:
return np.array([[-1, -1]] * 18).astype(int)
cordinates = []
result_image_index = np.argmax(subset[:, -2])
for part in subset[result_image_index, :18]:
if part == -1:
cordinates.append([-1, -1])
else:
Y = candidate[part.astype(int), 0]
X = candidate[part.astype(int), 1]
cordinates.append([X, Y])
return np.array(cordinates).astype(int)
# input_folder = './results/fashion_PATN/test_latest/images_crop/'
# output_path = './results/fashion_PATN/test_latest/pckh.csv'
input_folder = 'C:/Datasets/test/img'
output_path = 'C:/Datasets/test/pckh.csv'
img_list = os.listdir(input_folder)
threshold = 0.1
boxsize = 368
scale_search = [0.5, 1, 1.5, 2]
if os.path.exists(output_path):
processed_names = set(pd.read_csv(output_path, sep=':')['name'])
result_file = open(output_path, 'a')
else:
result_file = open(output_path, 'w')
processed_names = set()
print(result_file, 'name:keypoints_y:keypoints_x')
# for image_name in tqdm(os.listdir(input_folder)):
for image_name in tqdm(img_list):
if image_name in processed_names:
continue
oriImg = imread(os.path.join(input_folder, image_name))[:, :, ::-1] # B,G,R order
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
new_size = (np.array(oriImg.shape[:2]) * scale).astype(np.int32)
imageToTest = resize(oriImg, new_size, order=3, preserve_range=True)
imageToTest_padded = imageToTest[np.newaxis, :, :, :]/255 - 0.5
output1, output2 = model.predict(imageToTest_padded)
heatmap = st.resize(output2[0], oriImg.shape[:2], preserve_range=True, order=1)
paf = st.resize(output1[0], oriImg.shape[:2], preserve_range=True, order=1)
heatmap_avg += heatmap
paf_avg += paf
heatmap_avg /= len(multiplier)
pose_cords = compute_cordinates(heatmap_avg, paf_avg)
print >> result_file, "%s: %s: %s" % (image_name, str(list(pose_cords[:, 0])), str(list(pose_cords[:, 1])))
result_file.flush()