retinanet.py 16.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from tensorflow import keras
from .. import initializers
from .. import layers
from ..utils.anchors import AnchorParameters
from . import assert_training_model


def default_classification_model(
    num_classes,
    num_anchors,
    pyramid_feature_size=256,
    prior_probability=0.01,
    classification_feature_size=256,
    name="classification_submodel",
):
    """Creates the default classification submodel.

    Args
        num_classes                 : Number of classes to predict a score for at each feature level.
        num_anchors                 : Number of anchors to predict classification scores for at each feature level.
        pyramid_feature_size        : The number of filters to expect from the feature pyramid levels.
        classification_feature_size : The number of filters to use in the layers in the classification submodel.
        name                        : The name of the submodel.

    Returns
        A keras.models.Model that predicts classes for each anchor.
    """
    options = {
        "kernel_size": 3,
        "strides": 1,
        "padding": "same",
    }

    # set input
    if keras.backend.image_data_format() == "channels_first":
        inputs = keras.layers.Input(shape=(pyramid_feature_size, None, None))
    else:
        inputs = keras.layers.Input(shape=(None, None, pyramid_feature_size))

    outputs = inputs

    # 4 layer
    for i in range(4):

        # 각 층의 output
        outputs = keras.layers.Conv2D(
            filters=classification_feature_size,
            activation="relu",
            name="pyramid_classification_{}".format(i),
            kernel_initializer=keras.initializers.RandomNormal(
                mean=0.0, stddev=0.01, seed=None
            ),  # 정규분포에 따라 텐서를 생성하는 초기값 설정
            bias_initializer="zeros",
            **options
        )(outputs)

    # 마지막 layer는 다른 필터로 다른 conv layer를 생성
    outputs = keras.layers.Conv2D(
        filters=num_classes * num_anchors,
        kernel_initializer=keras.initializers.RandomNormal(
            mean=0.0, stddev=0.01, seed=None
        ),
        bias_initializer=initializers.PriorProbability(probability=prior_probability),
        name="pyramid_classification",
        **options
    )(outputs)

    # reshape output and apply sigmoid
    if keras.backend.image_data_format() == "channels_first":
        outputs = keras.layers.Permute(
            (2, 3, 1), name="pyramid_classification_permute"
        )(outputs)

    # reshape : 2차원 > 1차원
    outputs = keras.layers.Reshape(
        (-1, num_classes), name="pyramid_classification_reshape"
    )(outputs)

    # output layer activation : sigmoid
    outputs = keras.layers.Activation("sigmoid", name="pyramid_classification_sigmoid")(
        outputs
    )

    return keras.models.Model(inputs=inputs, outputs=outputs, name=name)


def default_regression_model(
    num_values,
    num_anchors,
    pyramid_feature_size=256,
    regression_feature_size=256,
    name="regression_submodel",
):
    """Creates the default regression submodel.

    Args
        num_values              : Number of values to regress.
        num_anchors             : Number of anchors to regress for each feature level.
        pyramid_feature_size    : The number of filters to expect from the feature pyramid levels.
        regression_feature_size : The number of filters to use in the layers in the regression submodel.
        name                    : The name of the submodel.

    Returns
        A keras.models.Model that predicts regression values for each anchor.
    """
    # All new conv layers except the final one in the
    # RetinaNet (classification) subnets are initialized
    # with bias b = 0 and a Gaussian weight fill with stddev = 0.01.
    options = {
        "kernel_size": 3,
        "strides": 1,
        "padding": "same",
        "kernel_initializer": keras.initializers.RandomNormal(
            mean=0.0, stddev=0.01, seed=None
        ),
        "bias_initializer": "zeros",
    }

    if keras.backend.image_data_format() == "channels_first":
        inputs = keras.layers.Input(shape=(pyramid_feature_size, None, None))
    else:
        inputs = keras.layers.Input(shape=(None, None, pyramid_feature_size))
    outputs = inputs
    for i in range(4):
        outputs = keras.layers.Conv2D(
            filters=regression_feature_size,
            activation="relu",
            name="pyramid_regression_{}".format(i),
            **options
        )(outputs)

    outputs = keras.layers.Conv2D(
        num_anchors * num_values, name="pyramid_regression", **options
    )(outputs)
    if keras.backend.image_data_format() == "channels_first":
        outputs = keras.layers.Permute((2, 3, 1), name="pyramid_regression_permute")(
            outputs
        )
    outputs = keras.layers.Reshape((-1, num_values), name="pyramid_regression_reshape")(
        outputs
    )

    return keras.models.Model(inputs=inputs, outputs=outputs, name=name)


def __create_pyramid_features(backbone_layers, pyramid_levels, feature_size=256):
    """Creates the FPN layers on top of the backbone features.

    Args
        backbone_layers: a dictionary containing feature stages C3, C4, C5 from the backbone. Also contains C2 if provided.
        pyramid_levels: Pyramid levels in use.
        feature_size : The feature size to use for the resulting feature levels.

    Returns
        output_layers : A dict of feature levels. P3, P4, P5, P6 are always included. P2, P6, P7 included if in use.
    """

    output_layers = {}

    # upsample C5 to get P5 from the FPN paper
    P5 = keras.layers.Conv2D(
        feature_size, kernel_size=1, strides=1, padding="same", name="C5_reduced"
    )(backbone_layers["C5"])
    P5_upsampled = layers.UpsampleLike(name="P5_upsampled")([P5, backbone_layers["C4"]])
    P5 = keras.layers.Conv2D(
        feature_size, kernel_size=3, strides=1, padding="same", name="P5"
    )(P5)
    output_layers["P5"] = P5

    # add P5 elementwise to C4
    P4 = keras.layers.Conv2D(
        feature_size, kernel_size=1, strides=1, padding="same", name="C4_reduced"
    )(backbone_layers["C4"])
    P4 = keras.layers.Add(name="P4_merged")([P5_upsampled, P4])
    P4_upsampled = layers.UpsampleLike(name="P4_upsampled")([P4, backbone_layers["C3"]])
    P4 = keras.layers.Conv2D(
        feature_size, kernel_size=3, strides=1, padding="same", name="P4"
    )(P4)
    output_layers["P4"] = P4

    # add P4 elementwise to C3
    P3 = keras.layers.Conv2D(
        feature_size, kernel_size=1, strides=1, padding="same", name="C3_reduced"
    )(backbone_layers["C3"])
    P3 = keras.layers.Add(name="P3_merged")([P4_upsampled, P3])
    if "C2" in backbone_layers and 2 in pyramid_levels:
        P3_upsampled = layers.UpsampleLike(name="P3_upsampled")(
            [P3, backbone_layers["C2"]]
        )
    P3 = keras.layers.Conv2D(
        feature_size, kernel_size=3, strides=1, padding="same", name="P3"
    )(P3)
    output_layers["P3"] = P3

    if "C2" in backbone_layers and 2 in pyramid_levels:
        P2 = keras.layers.Conv2D(
            feature_size, kernel_size=1, strides=1, padding="same", name="C2_reduced"
        )(backbone_layers["C2"])
        P2 = keras.layers.Add(name="P2_merged")([P3_upsampled, P2])
        P2 = keras.layers.Conv2D(
            feature_size, kernel_size=3, strides=1, padding="same", name="P2"
        )(P2)
        output_layers["P2"] = P2

    # "P6 is obtained via a 3x3 stride-2 conv on C5"
    if 6 in pyramid_levels:
        P6 = keras.layers.Conv2D(
            feature_size, kernel_size=3, strides=2, padding="same", name="P6"
        )(backbone_layers["C5"])
        output_layers["P6"] = P6

    # "P7 is computed by applying ReLU followed by a 3x3 stride-2 conv on P6"
    if 7 in pyramid_levels:
        if 6 not in pyramid_levels:
            raise ValueError("P6 is required to use P7")
        P7 = keras.layers.Activation("relu", name="C6_relu")(P6)
        P7 = keras.layers.Conv2D(
            feature_size, kernel_size=3, strides=2, padding="same", name="P7"
        )(P7)
        output_layers["P7"] = P7

    return output_layers


def default_submodels(num_classes, num_anchors):
    """Create a list of default submodels used for object detection.

    The default submodels contains a regression submodel and a classification submodel.

    Args
        num_classes : Number of classes to use.
        num_anchors : Number of base anchors.

    Returns
        A list of tuple, where the first element is the name of the submodel and the second element is the submodel itself.
    """
    return [
        ("regression", default_regression_model(4, num_anchors)),
        ("classification", default_classification_model(num_classes, num_anchors)),
    ]


def __build_model_pyramid(name, model, features):
    """Applies a single submodel to each FPN level.

    Args
        name     : Name of the submodel.
        model    : The submodel to evaluate.
        features : The FPN features.

    Returns
        A tensor containing the response from the submodel on the FPN features.
    """
    return keras.layers.Concatenate(axis=1, name=name)([model(f) for f in features])


def __build_pyramid(models, features):
    """Applies all submodels to each FPN level.

    Args
        models   : List of submodels to run on each pyramid level (by default only regression, classifcation).
        features : The FPN features.

    Returns
        A list of tensors, one for each submodel.
    """
    return [__build_model_pyramid(n, m, features) for n, m in models]


def __build_anchors(anchor_parameters, features):
    """Builds anchors for the shape of the features from FPN.

    Args
        anchor_parameters : Parameteres that determine how anchors are generated.
        features          : The FPN features.

    Returns
        A tensor containing the anchors for the FPN features.

        The shape is:
        ```
        (batch_size, num_anchors, 4)
        ```
    """
    anchors = [
        layers.Anchors(
            size=anchor_parameters.sizes[i],
            stride=anchor_parameters.strides[i],
            ratios=anchor_parameters.ratios,
            scales=anchor_parameters.scales,
            name="anchors_{}".format(i),
        )(f)
        for i, f in enumerate(features)
    ]

    return keras.layers.Concatenate(axis=1, name="anchors")(anchors)


def retinanet(
    inputs,
    backbone_layers,
    num_classes,
    num_anchors=None,
    create_pyramid_features=__create_pyramid_features,
    pyramid_levels=None,
    submodels=None,
    name="retinanet",
):
    """Construct a RetinaNet model on top of a backbone.

    This model is the minimum model necessary for training (with the unfortunate exception of anchors as output).

    Args
        inputs                  : keras.layers.Input (or list of) for the input to the model.
        num_classes             : Number of classes to classify.
        num_anchors             : Number of base anchors.
        create_pyramid_features : Functor for creating pyramid features given the features C3, C4, C5, and possibly C2 from the backbone.
        pyramid_levels          : pyramid levels to use.
        submodels               : Submodels to run on each feature map (default is regression and classification submodels).
        name                    : Name of the model.

    Returns
        A keras.models.Model which takes an image as input and outputs generated anchors and the result from each submodel on every pyramid level.

        The order of the outputs is as defined in submodels:
        ```
        [
            regression, classification, other[0], other[1], ...
        ]
        ```
    """

    if num_anchors is None:
        num_anchors = AnchorParameters.default.num_anchors()

    if submodels is None:
        submodels = default_submodels(num_classes, num_anchors)

    if pyramid_levels is None:
        pyramid_levels = [3, 4, 5, 6, 7]

    if 2 in pyramid_levels and "C2" not in backbone_layers:
        raise ValueError("C2 not provided by backbone model. Cannot create P2 layers.")

    if 3 not in pyramid_levels or 4 not in pyramid_levels or 5 not in pyramid_levels:
        raise ValueError("pyramid levels 3, 4, and 5 required for functionality")

    # compute pyramid features as per https://arxiv.org/abs/1708.02002
    features = create_pyramid_features(backbone_layers, pyramid_levels)
    feature_list = [features["P{}".format(p)] for p in pyramid_levels]

    # for all pyramid levels, run available submodels
    pyramids = __build_pyramid(submodels, feature_list)

    return keras.models.Model(inputs=inputs, outputs=pyramids, name=name)


def retinanet_bbox(
    model=None,
    nms=True,
    class_specific_filter=True,
    name="retinanet-bbox",
    anchor_params=None,
    pyramid_levels=None,
    nms_threshold=0.5,
    score_threshold=0.05,
    max_detections=300,
    parallel_iterations=32,
    **kwargs
):
    """Construct a RetinaNet model on top of a backbone and adds convenience functions to output boxes directly.

    This model uses the minimum retinanet model and appends a few layers to compute boxes within the graph.
    These layers include applying the regression values to the anchors and performing NMS.

    Args
        model                 : RetinaNet model to append bbox layers to. If None, it will create a RetinaNet model using **kwargs.
        nms                   : Whether to use non-maximum suppression for the filtering step.
        class_specific_filter : Whether to use class specific filtering or filter for the best scoring class only.
        name                  : Name of the model.
        anchor_params         : Struct containing anchor parameters. If None, default values are used.
        pyramid_levels        : pyramid levels to use.
        nms_threshold         : Threshold for the IoU value to determine when a box should be suppressed.
        score_threshold       : Threshold used to prefilter the boxes with.
        max_detections        : Maximum number of detections to keep.
        parallel_iterations   : Number of batch items to process in parallel.
        **kwargs              : Additional kwargs to pass to the minimal retinanet model.

    Returns
        A keras.models.Model which takes an image as input and outputs the detections on the image.

        The order is defined as follows:
        ```
        [
            boxes, scores, labels, other[0], other[1], ...
        ]
        ```
    """

    # if no anchor parameters are passed, use default values
    if anchor_params is None:
        anchor_params = AnchorParameters.default

    # create RetinaNet model
    if model is None:
        model = retinanet(num_anchors=anchor_params.num_anchors(), **kwargs)
    else:
        assert_training_model(model)

    if pyramid_levels is None:
        pyramid_levels = [3, 4, 5, 6, 7]

    assert len(pyramid_levels) == len(
        anchor_params.sizes
    ), "number of pyramid levels {} should match number of anchor parameter sizes {}".format(
        len(pyramid_levels), len(anchor_params.sizes)
    )

    pyramid_layer_names = ["P{}".format(p) for p in pyramid_levels]
    # compute the anchors
    features = [model.get_layer(p_name).output for p_name in pyramid_layer_names]
    anchors = __build_anchors(anchor_params, features)

    # we expect the anchors, regression and classification values as first output
    regression = model.outputs[0]
    classification = model.outputs[1]

    # "other" can be any additional output from custom submodels, by default this will be []
    other = model.outputs[2:]

    # apply predicted regression to anchors
    boxes = layers.RegressBoxes(name="boxes")([anchors, regression])
    boxes = layers.ClipBoxes(name="clipped_boxes")([model.inputs[0], boxes])

    # filter detections (apply NMS / score threshold / select top-k)
    detections = layers.FilterDetections(
        nms=nms,
        class_specific_filter=class_specific_filter,
        name="filtered_detections",
        nms_threshold=nms_threshold,
        score_threshold=score_threshold,
        max_detections=max_detections,
        parallel_iterations=parallel_iterations,
    )([boxes, classification] + other)

    # construct the model
    return keras.models.Model(inputs=model.inputs, outputs=detections, name=name)