coco.py
5.33 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from ..preprocessing.generator import Generator
from ..utils.image import read_image_bgr
import os
import numpy as np
from pycocotools.coco import COCO
class CocoGenerator(Generator):
""" Generate data from the COCO dataset.
See https://github.com/cocodataset/cocoapi/tree/master/PythonAPI for more information.
"""
def __init__(self, data_dir, set_name, **kwargs):
""" Initialize a COCO data generator.
Args
data_dir: Path to where the COCO dataset is stored.
set_name: Name of the set to parse.
"""
self.data_dir = data_dir
self.set_name = set_name
self.coco = COCO(os.path.join(data_dir, 'annotations', 'instances_' + set_name + '.json'))
self.image_ids = self.coco.getImgIds()
self.load_classes()
super(CocoGenerator, self).__init__(**kwargs)
def load_classes(self):
""" Loads the class to label mapping (and inverse) for COCO.
"""
# load class names (name -> label)
categories = self.coco.loadCats(self.coco.getCatIds())
categories.sort(key=lambda x: x['id'])
self.classes = {}
self.coco_labels = {}
self.coco_labels_inverse = {}
for c in categories:
self.coco_labels[len(self.classes)] = c['id']
self.coco_labels_inverse[c['id']] = len(self.classes)
self.classes[c['name']] = len(self.classes)
# also load the reverse (label -> name)
self.labels = {}
for key, value in self.classes.items():
self.labels[value] = key
def size(self):
""" Size of the COCO dataset.
"""
return len(self.image_ids)
def num_classes(self):
""" Number of classes in the dataset. For COCO this is 80.
"""
return len(self.classes)
def has_label(self, label):
""" Return True if label is a known label.
"""
return label in self.labels
def has_name(self, name):
""" Returns True if name is a known class.
"""
return name in self.classes
def name_to_label(self, name):
""" Map name to label.
"""
return self.classes[name]
def label_to_name(self, label):
""" Map label to name.
"""
return self.labels[label]
def coco_label_to_label(self, coco_label):
""" Map COCO label to the label as used in the network.
COCO has some gaps in the order of labels. The highest label is 90, but there are 80 classes.
"""
return self.coco_labels_inverse[coco_label]
def coco_label_to_name(self, coco_label):
""" Map COCO label to name.
"""
return self.label_to_name(self.coco_label_to_label(coco_label))
def label_to_coco_label(self, label):
""" Map label as used by the network to labels as used by COCO.
"""
return self.coco_labels[label]
def image_path(self, image_index):
""" Returns the image path for image_index.
"""
image_info = self.coco.loadImgs(self.image_ids[image_index])[0]
path = os.path.join(self.data_dir, 'images', self.set_name, image_info['file_name'])
return path
def image_aspect_ratio(self, image_index):
""" Compute the aspect ratio for an image with image_index.
"""
image = self.coco.loadImgs(self.image_ids[image_index])[0]
return float(image['width']) / float(image['height'])
def load_image(self, image_index):
""" Load an image at the image_index.
"""
path = self.image_path(image_index)
return read_image_bgr(path)
def load_annotations(self, image_index):
""" Load annotations for an image_index.
"""
# get ground truth annotations
annotations_ids = self.coco.getAnnIds(imgIds=self.image_ids[image_index], iscrowd=False)
annotations = {'labels': np.empty((0,)), 'bboxes': np.empty((0, 4))}
# some images appear to miss annotations (like image with id 257034)
if len(annotations_ids) == 0:
return annotations
# parse annotations
coco_annotations = self.coco.loadAnns(annotations_ids)
for idx, a in enumerate(coco_annotations):
# some annotations have basically no width / height, skip them
if a['bbox'][2] < 1 or a['bbox'][3] < 1:
continue
annotations['labels'] = np.concatenate([annotations['labels'], [self.coco_label_to_label(a['category_id'])]], axis=0)
annotations['bboxes'] = np.concatenate([annotations['bboxes'], [[
a['bbox'][0],
a['bbox'][1],
a['bbox'][0] + a['bbox'][2],
a['bbox'][1] + a['bbox'][3],
]]], axis=0)
return annotations