generator.py
15.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import numpy as np
import random
import warnings
from tensorflow import keras
from ..utils.anchors import (
anchor_targets_bbox,
anchors_for_shape,
guess_shapes
)
from ..utils.config import parse_anchor_parameters, parse_pyramid_levels
from ..utils.image import (
TransformParameters,
adjust_transform_for_image,
apply_transform,
preprocess_image,
resize_image,
)
from ..utils.transform import transform_aabb
class Generator(keras.utils.Sequence):
""" Abstract generator class.
"""
def __init__(
self,
transform_generator = None,
visual_effect_generator=None,
batch_size=1,
group_method='ratio', # one of 'none', 'random', 'ratio'
shuffle_groups=True,
image_min_side=800,
image_max_side=1333,
no_resize=False,
transform_parameters=None,
compute_anchor_targets=anchor_targets_bbox,
compute_shapes=guess_shapes,
preprocess_image=preprocess_image,
config=None
):
""" Initialize Generator object.
Args
transform_generator : A generator used to randomly transform images and annotations.
batch_size : The size of the batches to generate.
group_method : Determines how images are grouped together (defaults to 'ratio', one of ('none', 'random', 'ratio')).
shuffle_groups : If True, shuffles the groups each epoch.
image_min_side : After resizing the minimum side of an image is equal to image_min_side.
image_max_side : If after resizing the maximum side is larger than image_max_side, scales down further so that the max side is equal to image_max_side.
no_resize : If True, no image/annotation resizing is performed.
transform_parameters : The transform parameters used for data augmentation.
compute_anchor_targets : Function handler for computing the targets of anchors for an image and its annotations.
compute_shapes : Function handler for computing the shapes of the pyramid for a given input.
preprocess_image : Function handler for preprocessing an image (scaling / normalizing) for passing through a network.
"""
self.transform_generator = transform_generator
self.visual_effect_generator = visual_effect_generator
self.batch_size = int(batch_size)
self.group_method = group_method
self.shuffle_groups = shuffle_groups
self.image_min_side = image_min_side
self.image_max_side = image_max_side
self.no_resize = no_resize
self.transform_parameters = transform_parameters or TransformParameters()
self.compute_anchor_targets = compute_anchor_targets
self.compute_shapes = compute_shapes
self.preprocess_image = preprocess_image
self.config = config
# Define groups
self.group_images()
# Shuffle when initializing
if self.shuffle_groups:
self.on_epoch_end()
def on_epoch_end(self):
if self.shuffle_groups:
random.shuffle(self.groups)
def size(self):
""" Size of the dataset.
"""
raise NotImplementedError('size method not implemented')
def num_classes(self):
""" Number of classes in the dataset.
"""
raise NotImplementedError('num_classes method not implemented')
def has_label(self, label):
""" Returns True if label is a known label.
"""
raise NotImplementedError('has_label method not implemented')
def has_name(self, name):
""" Returns True if name is a known class.
"""
raise NotImplementedError('has_name method not implemented')
def name_to_label(self, name):
""" Map name to label.
"""
raise NotImplementedError('name_to_label method not implemented')
def label_to_name(self, label):
""" Map label to name.
"""
raise NotImplementedError('label_to_name method not implemented')
def image_aspect_ratio(self, image_index):
""" Compute the aspect ratio for an image with image_index.
"""
raise NotImplementedError('image_aspect_ratio method not implemented')
def image_path(self, image_index):
""" Get the path to an image.
"""
raise NotImplementedError('image_path method not implemented')
def load_image(self, image_index):
""" Load an image at the image_index.
"""
raise NotImplementedError('load_image method not implemented')
def load_annotations(self, image_index):
""" Load annotations for an image_index.
"""
raise NotImplementedError('load_annotations method not implemented')
def load_annotations_group(self, group):
""" Load annotations for all images in group.
"""
annotations_group = [self.load_annotations(image_index) for image_index in group]
for annotations in annotations_group:
assert(isinstance(annotations, dict)), '\'load_annotations\' should return a list of dictionaries, received: {}'.format(type(annotations))
assert('labels' in annotations), '\'load_annotations\' should return a list of dictionaries that contain \'labels\' and \'bboxes\'.'
assert('bboxes' in annotations), '\'load_annotations\' should return a list of dictionaries that contain \'labels\' and \'bboxes\'.'
return annotations_group
def filter_annotations(self, image_group, annotations_group, group):
""" Filter annotations by removing those that are outside of the image bounds or whose width/height < 0.
"""
# test all annotations
for index, (image, annotations) in enumerate(zip(image_group, annotations_group)):
# test x2 < x1 | y2 < y1 | x1 < 0 | y1 < 0 | x2 <= 0 | y2 <= 0 | x2 >= image.shape[1] | y2 >= image.shape[0]
invalid_indices = np.where(
(annotations['bboxes'][:, 2] <= annotations['bboxes'][:, 0]) |
(annotations['bboxes'][:, 3] <= annotations['bboxes'][:, 1]) |
(annotations['bboxes'][:, 0] < 0) |
(annotations['bboxes'][:, 1] < 0) |
(annotations['bboxes'][:, 2] > image.shape[1]) |
(annotations['bboxes'][:, 3] > image.shape[0])
)[0]
# delete invalid indices
if len(invalid_indices):
warnings.warn('Image {} with id {} (shape {}) contains the following invalid boxes: {}.'.format(
self.image_path(group[index]),
group[index],
image.shape,
annotations['bboxes'][invalid_indices, :]
))
for k in annotations_group[index].keys():
annotations_group[index][k] = np.delete(annotations[k], invalid_indices, axis=0)
return image_group, annotations_group
def load_image_group(self, group):
""" Load images for all images in a group.
"""
return [self.load_image(image_index) for image_index in group]
def random_visual_effect_group_entry(self, image, annotations):
""" Randomly transforms image and annotation.
"""
visual_effect = next(self.visual_effect_generator)
# apply visual effect
image = visual_effect(image)
return image, annotations
def random_visual_effect_group(self, image_group, annotations_group):
""" Randomly apply visual effect on each image.
"""
assert(len(image_group) == len(annotations_group))
if self.visual_effect_generator is None:
# do nothing
return image_group, annotations_group
for index in range(len(image_group)):
# apply effect on a single group entry
image_group[index], annotations_group[index] = self.random_visual_effect_group_entry(
image_group[index], annotations_group[index]
)
return image_group, annotations_group
def random_transform_group_entry(self, image, annotations, transform=None):
""" Randomly transforms image and annotation.
"""
# randomly transform both image and annotations
if transform is not None or self.transform_generator:
if transform is None:
transform = adjust_transform_for_image(next(self.transform_generator), image, self.transform_parameters.relative_translation)
# apply transformation to image
image = apply_transform(transform, image, self.transform_parameters)
# Transform the bounding boxes in the annotations.
annotations['bboxes'] = annotations['bboxes'].copy()
for index in range(annotations['bboxes'].shape[0]):
annotations['bboxes'][index, :] = transform_aabb(transform, annotations['bboxes'][index, :])
return image, annotations
def random_transform_group(self, image_group, annotations_group):
""" Randomly transforms each image and its annotations.
"""
assert(len(image_group) == len(annotations_group))
for index in range(len(image_group)):
# transform a single group entry
image_group[index], annotations_group[index] = self.random_transform_group_entry(image_group[index], annotations_group[index])
return image_group, annotations_group
def resize_image(self, image):
""" Resize an image using image_min_side and image_max_side.
"""
if self.no_resize:
return image, 1
else:
return resize_image(image, min_side=self.image_min_side, max_side=self.image_max_side)
def preprocess_group_entry(self, image, annotations):
""" Preprocess image and its annotations.
"""
# resize image
image, image_scale = self.resize_image(image)
# preprocess the image
image = self.preprocess_image(image)
# apply resizing to annotations too
annotations['bboxes'] *= image_scale
# convert to the wanted keras floatx
image = keras.backend.cast_to_floatx(image)
return image, annotations
def preprocess_group(self, image_group, annotations_group):
""" Preprocess each image and its annotations in its group.
"""
assert(len(image_group) == len(annotations_group))
for index in range(len(image_group)):
# preprocess a single group entry
image_group[index], annotations_group[index] = self.preprocess_group_entry(image_group[index], annotations_group[index])
return image_group, annotations_group
def group_images(self):
""" Order the images according to self.order and makes groups of self.batch_size.
"""
# determine the order of the images
order = list(range(self.size()))
if self.group_method == 'random':
random.shuffle(order)
elif self.group_method == 'ratio':
order.sort(key=lambda x: self.image_aspect_ratio(x))
# divide into groups, one group = one batch
self.groups = [[order[x % len(order)] for x in range(i, i + self.batch_size)] for i in range(0, len(order), self.batch_size)]
def compute_inputs(self, image_group):
""" Compute inputs for the network using an image_group.
"""
# get the max image shape
max_shape = tuple(max(image.shape[x] for image in image_group) for x in range(3))
# construct an image batch object
image_batch = np.zeros((self.batch_size,) + max_shape, dtype=keras.backend.floatx())
# copy all images to the upper left part of the image batch object
for image_index, image in enumerate(image_group):
image_batch[image_index, :image.shape[0], :image.shape[1], :image.shape[2]] = image
if keras.backend.image_data_format() == 'channels_first':
image_batch = image_batch.transpose((0, 3, 1, 2))
return image_batch
def generate_anchors(self, image_shape):
anchor_params = None
pyramid_levels = None
if self.config and 'anchor_parameters' in self.config:
anchor_params = parse_anchor_parameters(self.config)
if self.config and 'pyramid_levels' in self.config:
pyramid_levels = parse_pyramid_levels(self.config)
return anchors_for_shape(image_shape, anchor_params=anchor_params, pyramid_levels=pyramid_levels, shapes_callback=self.compute_shapes)
def compute_targets(self, image_group, annotations_group):
""" Compute target outputs for the network using images and their annotations.
"""
# get the max image shape
max_shape = tuple(max(image.shape[x] for image in image_group) for x in range(3))
anchors = self.generate_anchors(max_shape)
batches = self.compute_anchor_targets(
anchors,
image_group,
annotations_group,
self.num_classes()
)
return list(batches)
def compute_input_output(self, group):
""" Compute inputs and target outputs for the network.
"""
# load images and annotations
image_group = self.load_image_group(group)
annotations_group = self.load_annotations_group(group)
# check validity of annotations
image_group, annotations_group = self.filter_annotations(image_group, annotations_group, group)
# randomly apply visual effect
image_group, annotations_group = self.random_visual_effect_group(image_group, annotations_group)
# randomly transform data
image_group, annotations_group = self.random_transform_group(image_group, annotations_group)
# perform preprocessing steps
image_group, annotations_group = self.preprocess_group(image_group, annotations_group)
# compute network inputs
inputs = self.compute_inputs(image_group)
# compute network targets
targets = self.compute_targets(image_group, annotations_group)
return inputs, targets
def __len__(self):
"""
Number of batches for generator.
"""
return len(self.groups)
def __getitem__(self, index):
"""
Keras sequence method for generating batches.
"""
group = self.groups[index]
inputs, targets = self.compute_input_output(group)
return inputs, targets