_misc.py
6.75 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import tensorflow
from tensorflow import keras
from .. import backend
from ..utils import anchors as utils_anchors
import numpy as np
class Anchors(keras.layers.Layer):
""" Keras layer for generating achors for a given shape.
"""
def __init__(self, size, stride, ratios=None, scales=None, *args, **kwargs):
""" Initializer for an Anchors layer.
Args
size: The base size of the anchors to generate.
stride: The stride of the anchors to generate.
ratios: The ratios of the anchors to generate (defaults to AnchorParameters.default.ratios).
scales: The scales of the anchors to generate (defaults to AnchorParameters.default.scales).
"""
self.size = size
self.stride = stride
self.ratios = ratios
self.scales = scales
if ratios is None:
self.ratios = utils_anchors.AnchorParameters.default.ratios
elif isinstance(ratios, list):
self.ratios = np.array(ratios)
if scales is None:
self.scales = utils_anchors.AnchorParameters.default.scales
elif isinstance(scales, list):
self.scales = np.array(scales)
self.num_anchors = len(self.ratios) * len(self.scales)
self.anchors = utils_anchors.generate_anchors(
base_size=self.size,
ratios=self.ratios,
scales=self.scales,
).astype(np.float32)
super(Anchors, self).__init__(*args, **kwargs)
def call(self, inputs, **kwargs):
features = inputs
features_shape = keras.backend.shape(features)
# generate proposals from bbox deltas and shifted anchors
if keras.backend.image_data_format() == 'channels_first':
anchors = backend.shift(features_shape[2:4], self.stride, self.anchors)
else:
anchors = backend.shift(features_shape[1:3], self.stride, self.anchors)
anchors = keras.backend.tile(keras.backend.expand_dims(anchors, axis=0), (features_shape[0], 1, 1))
return anchors
def compute_output_shape(self, input_shape):
if None not in input_shape[1:]:
if keras.backend.image_data_format() == 'channels_first':
total = np.prod(input_shape[2:4]) * self.num_anchors
else:
total = np.prod(input_shape[1:3]) * self.num_anchors
return (input_shape[0], total, 4)
else:
return (input_shape[0], None, 4)
def get_config(self):
config = super(Anchors, self).get_config()
config.update({
'size' : self.size,
'stride' : self.stride,
'ratios' : self.ratios.tolist(),
'scales' : self.scales.tolist(),
})
return config
class UpsampleLike(keras.layers.Layer):
""" Keras layer for upsampling a Tensor to be the same shape as another Tensor.
"""
def call(self, inputs, **kwargs):
source, target = inputs
target_shape = keras.backend.shape(target)
if keras.backend.image_data_format() == 'channels_first':
source = tensorflow.transpose(source, (0, 2, 3, 1))
output = backend.resize_images(source, (target_shape[2], target_shape[3]), method='nearest')
output = tensorflow.transpose(output, (0, 3, 1, 2))
return output
else:
return backend.resize_images(source, (target_shape[1], target_shape[2]), method='nearest')
def compute_output_shape(self, input_shape):
if keras.backend.image_data_format() == 'channels_first':
return (input_shape[0][0], input_shape[0][1]) + input_shape[1][2:4]
else:
return (input_shape[0][0],) + input_shape[1][1:3] + (input_shape[0][-1],)
class RegressBoxes(keras.layers.Layer):
""" Keras layer for applying regression values to boxes.
"""
def __init__(self, mean=None, std=None, *args, **kwargs):
""" Initializer for the RegressBoxes layer.
Args
mean: The mean value of the regression values which was used for normalization.
std: The standard value of the regression values which was used for normalization.
"""
if mean is None:
mean = np.array([0, 0, 0, 0])
if std is None:
std = np.array([0.2, 0.2, 0.2, 0.2])
if isinstance(mean, (list, tuple)):
mean = np.array(mean)
elif not isinstance(mean, np.ndarray):
raise ValueError('Expected mean to be a np.ndarray, list or tuple. Received: {}'.format(type(mean)))
if isinstance(std, (list, tuple)):
std = np.array(std)
elif not isinstance(std, np.ndarray):
raise ValueError('Expected std to be a np.ndarray, list or tuple. Received: {}'.format(type(std)))
self.mean = mean
self.std = std
super(RegressBoxes, self).__init__(*args, **kwargs)
def call(self, inputs, **kwargs):
anchors, regression = inputs
return backend.bbox_transform_inv(anchors, regression, mean=self.mean, std=self.std)
def compute_output_shape(self, input_shape):
return input_shape[0]
def get_config(self):
config = super(RegressBoxes, self).get_config()
config.update({
'mean': self.mean.tolist(),
'std' : self.std.tolist(),
})
return config
class ClipBoxes(keras.layers.Layer):
""" Keras layer to clip box values to lie inside a given shape.
"""
def call(self, inputs, **kwargs):
image, boxes = inputs
shape = keras.backend.cast(keras.backend.shape(image), keras.backend.floatx())
if keras.backend.image_data_format() == 'channels_first':
_, _, height, width = tensorflow.unstack(shape, axis=0)
else:
_, height, width, _ = tensorflow.unstack(shape, axis=0)
x1, y1, x2, y2 = tensorflow.unstack(boxes, axis=-1)
x1 = tensorflow.clip_by_value(x1, 0, width - 1)
y1 = tensorflow.clip_by_value(y1, 0, height - 1)
x2 = tensorflow.clip_by_value(x2, 0, width - 1)
y2 = tensorflow.clip_by_value(y2, 0, height - 1)
return keras.backend.stack([x1, y1, x2, y2], axis=2)
def compute_output_shape(self, input_shape):
return input_shape[1]