detect.py
14.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
from __future__ import division
from roipool2 import *
from models import *
from utils.utils import *
from utils.datasets import *
from video_capture import BufferlessVideoCapture
import serial
import os
import sys
import time
import datetime
import argparse
import cv2
from PIL import Image
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.ticker import NullLocator
def changeRGB2BGR(img):
r = img[:, :, 0].copy()
g = img[:, :, 1].copy()
b = img[:, :, 2].copy()
# RGB > BGR
img[:, :, 0] = b
img[:, :, 1] = g
img[:, :, 2] = r
return img
def changeBGR2RGB(img):
b = img[:, :, 0].copy()
g = img[:, :, 1].copy()
r = img[:, :, 2].copy()
img[:, :, 0] = r
img[:, :, 1] = g
img[:, :, 2] = b
return img
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image_folder", type=str, default="data/cafe_distance/1.jpg", help="path to dataset")
parser.add_argument("--video_file", type=str, default="0", help="path to dataset")
parser.add_argument("--model_def", type=str, default="config/yolov3-tiny.cfg", help="path to model definition file")
# parser.add_argument("--weights_path", type=str, default="weights/yolov3-tiny.weights", help="path to weights file")
parser.add_argument("--weights_path", type=str, default="checkpoints_yolo/tiny1_2500.pth", help="path to weights file")
parser.add_argument("--class_path", type=str, default="data/cafe_distance/classes.names", help="path to class label file")
parser.add_argument("--conf_thres", type=float, default=0.8, help="object confidence threshold")
parser.add_argument("--nms_thres", type=float, default=0.4, help="iou thresshold for non-maximum suppression")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--n_cpu", type=int, default=0, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
parser.add_argument("--checkpoint_model", type=str, help="path to checkpoint model")
parser.add_argument("--target_object", type=int, default=0)
opt = parser.parse_args()
print(opt)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs("output", exist_ok=True)
sclient = serial.Serial(port='/dev/ttyAMA0', baudrate=115200, timeout=0.1)
if sclient.isOpen():
print('Serial is Open')
# Set up model
model = Darknet(opt.model_def, img_size=opt.img_size).to(device)
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print('Params: ', params)
if opt.weights_path.endswith(".weights"):
# Load darknet weights
model.load_darknet_weights(opt.weights_path)
else:
# Load checkpoint weights
model.load_state_dict(torch.load(opt.weights_path, map_location=device))
model.eval() # Set in evaluation mode
model_distance = ROIPool((3, 3)).to(device)
model_distance.load_state_dict(torch.load('checkpoints_distance/tiny1_340.pth', map_location=device))
model_distance.eval()
dataloader = DataLoader(
ImageFolder(opt.image_folder, img_size=opt.img_size),
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.n_cpu,
)
classes = load_classes(opt.class_path) # Extracts class labels from file
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
cap = BufferlessVideoCapture(0)
# cap = cv2.VideoCapture('data/cafe_distance/videos/output17.avi')
colors = np.random.randint(0, 255, size=(len(classes), 3), dtype="uint8")
a=[]
time_begin = time.time()
NUM = cap.get(cv2.CAP_PROP_FRAME_COUNT)
fourcc = cv2.VideoWriter_fourcc('D', 'I', 'V', 'X')
out = cv2.VideoWriter('output/distance3.avi', fourcc, 30, (640,480))
mode = 0
while cap.isOpened():
ret, img = cap.read()
if ret is False:
break
# img = cv2.resize(img, (1280, 960), interpolation=cv2.INTER_CUBIC)
RGBimg=changeBGR2RGB(img)
imgTensor = transforms.ToTensor()(RGBimg)
imgTensor, _ = pad_to_square(imgTensor, 0)
imgTensor = resize(imgTensor, 416)
imgTensor = imgTensor.unsqueeze(0)
imgTensor = Variable(imgTensor.type(Tensor))
with torch.no_grad():
# prev_time = time.time()
featuremap, detections = model(imgTensor)
# print(featuremap)
# current_time = time.time()
# sec = current_time - prev_time
# fps = 1/sec
# frame_per_sec = "FPS: %0.1f" % fps
# print(frame_per_sec)
detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres)
# print(f'none test = {detections}')
a.clear()
if detections is not None and detections[0] is not None:
# print(detections)
featuremap = Variable(featuremap.to(device))
detects = Variable(detections[0], requires_grad=False)
# print(f'detects = {detects}')
# print(f'featuremap = {featuremap.shape}')
outputs = model_distance(featuremap, detects)
print(f'distance = {outputs}')
a.extend(detections)
if len(a):
for detections in a:
if detections is not None:
# print(detections)
detections = rescale_boxes(detections, opt.img_size, RGBimg.shape[:2])
# print(detections)
unique_labels = detections[:, -1].cpu().unique()
n_cls_preds = len(unique_labels)
for i, (x1, y1, x2, y2, conf, cls_conf, cls_pred) in enumerate(detections):
if(classes[int(cls_pred)] == opt.target_object):
target_distance = float(outputs[i])
if(mode == 0):
if target_distance > 8:
sclient.write(serial.to_bytes([int('1', 16)]))
break
else:
mode = 1
break
elif(mode == 1):
box_w = x2 - x1
target_location = int(x1+box_w/2)
if target_location < 300:
sclient.write(serial.to_bytes([int('2', 16)]))
break
elif target_location > 340:
sclient.write(serial.to_bytes([int('3', 16)]))
break
else:
sclient.write(serial.to_bytes([int('4', 16)]))
break
#box_w = x2 - x1
# print(box_w)
#box_h = y2 - y1
# print(y2, y1)
# color = [int(c) for c in colors[int(cls_pred)]]
#print(cls_conf)
# img = cv2.rectangle(img, (x1, y1 + box_h), (x2, y1), color, 2)
# cv2.putText(img, classes[int(cls_pred)], (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# cv2.putText(img, str("%.2f" % float(outputs[i])), (x2, y2 - box_h), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
# color, 2)
# print(classes[int(cls_pred)], int(x1+box_w/2), int(480-(y1+box_h/2)))
#print()
#print()
#cv2.putText(img,"Hello World!",(400,50),cv2.FONT_HERSHEY_PLAIN,2.0,(0,0,255),2)
# cv2.imshow('frame', changeRGB2BGR(RGBimg))
# out.write(changeRGB2BGR(RGBimg))
#cv2.waitKey(0)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
time_end = time.time()
time_total = time_end - time_begin
print(NUM // time_total)
sclient.close()
cap.release()
out.release()
cv2.destroyAllWindows()
'''
capture = cv2.VideoCapture("data/cafe/9.mp4")
capture.set(cv2.CAP_PROP_FRAME_WIDTH, 416)
capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 416)
capture.set(cv2.CAP_PROP_FPS, 3)
colors = np.random.randint(0, 255, size=(len(classes), 3), dtype="uint8")
capture.set(5, 5)
print(capture.get(cv2.CAP_PROP_FRAME_WIDTH), capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
print("FPS: ", capture.get(5))
startTime = time.time()
a=[]
while capture.isOpened():
ret, frame = capture.read()
# print()
nowTime = time.time()
PILimg = np.array(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
# RGBimg = changeBGR2RGB(frame)
imgTensor = transforms.ToTensor()(PILimg)
imgTensor, _ = pad_to_square(imgTensor, 0)
imgTensor = resize(imgTensor, 416)
imgTensor = imgTensor.unsqueeze(0)
imgTensor = Variable(imgTensor.type(Tensor))
with torch.no_grad():
prev_time = time.time()
detections = model(imgTensor)
current_time = time.time()
sec = current_time - prev_time
fps = 1/sec
frame_per_sec = "FPS: %0.1f" % fps
# inference_time = datetime.timedelta(seconds=current_time - prev_time)
prev_time = current_time
red = (0, 0, 255)
cv2.putText(frame, frame_per_sec, (25, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, red, 2)
detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres)
a.clear()
if detections is not None:
a.extend(detections)
b=len(a)
if len(a):
for detections in a:
if detections is not None:
detections = rescale_boxes(detections, opt.img_size, PILimg.shape[:2])
unique_labels = detections[:, -1].cpu().unique()
n_cls_preds = len(unique_labels)
for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
if classes[int(cls_pred)] == 'shrimp cracker':
box_w = x2 - x1
box_h = y2 - y1
color = [int(c) for c in colors[int(cls_pred)]]
# print(cls_conf)
frame = cv2.rectangle(frame, (x1, y1 + box_h), (x2, y1), color, 2)
cv2.putText(frame, classes[int(cls_pred)], (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
cv2.putText(frame, str("%.2f" % float(conf)), (x2, y2 - box_h), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
color, 2)
print(classes[int(cls_pred)], int(x1+box_w/2), int(224-(y1+box_h/2)))
print()
#cv2.putText(img,"Hello World!",(400,50),cv2.FONT_HERSHEY_PLAIN,2.0,(0,0,255),2)
#cv2.namedWindow('frame', cv2.WINDOW_NORMAL)
cv2.imshow('frame', frame)
#cv2.waitKey(0)
if cv2.waitKey(25) & 0xFF == ord('q'):
break
capture.release()
cv2.destroyAllWindows()
'''
'''
imgs = [] # Stores image paths
img_detections = [] # Stores detections for each image index
print('parameter count: ', count_parameters(model))
print("\nPerforming object detection:")
prev_time = time.time()
for batch_i, (img_paths, input_imgs) in enumerate(dataloader):
# Configure input
input_imgs = Variable(input_imgs.type(Tensor))
# Get detections
with torch.no_grad():
detections = model(input_imgs)
detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres)
# Log progress
current_time = time.time()
inference_time = datetime.timedelta(seconds=current_time - prev_time)
prev_time = current_time
print("\t+ Batch %d, Inference Time: %s" % (batch_i, inference_time))
# Save image and detections
imgs.extend(img_paths)
img_detections.extend(detections)
# Bounding-box colors
cmap = plt.get_cmap("tab20b")
colors = [cmap(i) for i in np.linspace(0, 1, 20)]
print("\nSaving images:")
# Iterate through images and save plot of detections
for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):
print("(%d) Image: '%s'" % (img_i, path))
# Create plot
img = np.array(Image.open(path))
plt.figure()
fig, ax = plt.subplots(1)
ax.imshow(img)
# Draw bounding boxes and labels of detections
if detections is not None:
# Rescale boxes to original image
detections = rescale_boxes(detections, opt.img_size, img.shape[:2])
unique_labels = detections[:, -1].cpu().unique()
n_cls_preds = len(unique_labels)
bbox_colors = random.sample(colors, n_cls_preds)
for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
print("\t+ Label: %s, Conf: %.5f" % (classes[int(cls_pred)], cls_conf.item()))
box_w = x2 - x1
box_h = y2 - y1
color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])]
# Create a Rectangle patch
bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=2, edgecolor=color, facecolor="none")
# Add the bbox to the plot
ax.add_patch(bbox)
# Add label
plt.text(
x1,
y1,
s=str(classes[int(cls_pred)])+' '+str(int(x1+box_w/2))+ ', '+str(int(y1+box_h/2)),
color="white",
verticalalignment="top",
bbox={"color": color, "pad": 0},
)
# Save generated image with detections
plt.axis("off")
plt.gca().xaxis.set_major_locator(NullLocator())
plt.gca().yaxis.set_major_locator(NullLocator())
filename = path.split("/")[-1].split("\\")[-1].split(".")[0]
plt.savefig(f"output/{filename}.png", bbox_inches="tight", pad_inches=0.0)
plt.close()
'''