Chuncheonian

(update) README.md

Showing 1 changed file with 78 additions and 17 deletions
......@@ -2,39 +2,62 @@
## Table of Contents
- [프로젝트 소개](#프로젝트-소개)
- [주요 기능](#주요-기능)
- [시스템 구조](#시스템-구조)
- [디렉토리 구조](#디렉토리-구조)
- [실행 방법](#실행-방법)
- [참조](#참조)
- [팀원](#팀원)
<br><br>
<br>
## 프로젝트 소개
<img src="/uploads/2f442cc7eea9bd0f4eada9af25a1661c/1.gif" width="300" height="150" />
<br>
<img src="/uploads/fe4fb3dafda1db03d437de45260a15af/2.gif" width="300" height="150" />
**YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능을 제공한다.**
<br>
**딥러닝을 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는**
**Adaptive Cruise Control 기능을 제공한다.**
<br><br>
## 주요 기능
1. 객체 인식
* 복도에서의 차량 카트 이미지를 촬영하여 커스텀 데이터셋을 제작
* YOLO-v5 모델 중 가장 초당 프레임 수 가 높은 YOLO-v5s에 커스텀 데이터셋을 학습
* 라즈베리파이에 부착된 웹캠을 통해 실시간으로 전방 차량 인식
2. 거리 측정
* 객체 인식 시 나타나는 Bounding box의 좌표값을 추출하여 대상과의 거리가 1m 일 때 Bounding box의 높이와 너비값을 측정
* 이후 인식된 객체의 Bounding box 높이와 너비값과 1m 일 때의 Bounding box 높이와 너비값의 비례식을 통해 거리를 측정
3. 거리 유지
* 측정된 거리를 기반으로 동작을 나누어 시리얼 통신을 통해 동작 신호를 cart를 조작하는 STM보드에 전달
* STM보드에서 전달받은 신호를 기반으로 PWM 제어를 통해 차간 거리가 유지되도록 속도 조절
<br>
## 시스템 구조
### 거리유지 시스템 구조
![image](/uploads/10564939ae66017569ad7e7e70d9c815/image.png)
<br>
### 겍체 인식 및 거리측정 시스템 구조
![image](/uploads/6e70810da0113cb50664938bc93f09ce/image.png)
<br>
### 거리측정 알고리즘
![image](/uploads/1ea9036613c135a7edfd81eb1afece70/image.png)<br>
- 카메라의 해상도에 따라 1m에서 기준이 되는 bound box의 width와 height의 크기가 달라진다
<br><br>
- 카메라의 해상도에 따라 1m에서 기준이 되는 Bounding box의 width와 height의 크기가 달라진다
<br>
## 디렉토리 구조
```shell
......@@ -64,14 +87,51 @@ HEN_Project2
└── detect.py
```
<br><br>
<br>
## 결과
### 실시간 객체 인식 및 거리측정
<img src="/uploads/fe4fb3dafda1db03d437de45260a15af/2.gif" width="300" height="150" />
* 학습된 가중치 모델을 바탕으로 단안 카메라를 이용하여 전방 차량 키트를 인식하였다.
* 인식된 차량 키트에 대한 Bounding box에서 왼쪽부터 클래스명, 예측 정확도, 단안 카메라 기준 예측 거리(cm) 를 나타낸다.
* 인식 결과, 이미지 크기 128*128 기준 평균적으로 `초당 약 3 프레임의 속도`로 동작하였으며, `최대 5m`까지 높은 정확도로 인식됨을 확인할 수 있었다.
* **거리 예측 오차율 측정 결과**
| 실제 거리 | 측정 최소 거리 | 측정 최대 거리 | 최대 오차율 |
| :---: | :---: | :---: | :---: |
| 0.5m | 0.47m | 0.53m | 6% |
| 1m | 0.96m | 1.02m | 3% |
| 2m | 1.98m | 2.02m | 1% |
| 3m | 2.85m | 2.94m | 5% |
| 5m | 4.65m | 5.05m | 7% |
### 거리유지
#### 동작 설정
1. 전방 차량과의 거리가 70cm보다 가까워진 경우 **차량 정지**
2. 전방 차량과의 거리가 70cm ~ 120cm인 경우 **큰 폭으로 속도 감소**
3. 전방 차량과의 거리가 120cm ~ 150cm 인 경우 **작은 폭으로 속도 감소**
4. 전방 차량이 없거나 거리가 150cm 보다 먼 경우 **원래 주행 속도로 복구**
#### 거리유지 기능 실험 결과
* 기준 주행 속도는 차량 키트가 스스로 움직일 수 있는 최저 속도로 설정하였다.
* 테스트 결과 거리가 1m에 가까워 지면 상당히 속도가 줄어들었고 70cm에 이르면 차량 키트가 완전히 정지하였으며, 전방에 가까운 차량이 없으면 원래의 주행 속도로 돌아오는 기능 또한 정상적으로 동작함을 확인 할 수 있었다
<br>
## 실행 방법
### YOLO 설치
라즈베리파이에서 `git clone https://github.com/ultralytics/yolov5`
안내에 따라 필요한 모듈 설치
라즈베리파이에서 `git clone https://github.com/ultralytics/yolov5` 후 안내에 따라 필요한 모듈 설치
<br>
......@@ -116,20 +176,21 @@ HEN_Project2
## 참조
- Ultralytics, YOLO v5(2020), Retrieved June, 10, 2020, from https://github.com/ultralytics/yolov5
- https://global.honda/newsroom/news/2020/4201111eng.html
- 이동석 외 4 저, 스테레오 카메라를 이용한 이동객체의 실시간 추적과 거리 측정시스템(2009)
- 이강원 외 1 저, 지형 공간정보체계 용어사전(2016)
- https://github.com/yeongin1230/Self-driving-project/tree/main/Cart
- https://github.com/yeongin1230/Robot-arm
- https://github.com/seoh02h/ICNS-Self-Driving-Test
- https://ropiens.tistory.com/44
<br><br>
- https://github.com/sungjuGit/Pytorch-and-Vision-for-Raspberry-Pi-4B
<br>
## 팀원
- 권동영 (2016110307)
- 신동해 (2018110651)
<br><br>
\ No newline at end of file
<br>
\ No newline at end of file
......