EKF2.cpp
74.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
/****************************************************************************
*
* Copyright (c) 2015-2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "EKF2.hpp"
#include <iostream>
#include <px4_platform_common/defines.h>
#include <dataman/dataman.h>
using namespace time_literals;
using math::constrain;
using matrix::Eulerf;
using matrix::Quatf;
using matrix::Vector3f;
int static hold=0;
pthread_mutex_t ekf2_module_mutex = PTHREAD_MUTEX_INITIALIZER;
static px4::atomic<EKF2 *> _objects[EKF2_MAX_INSTANCES] {};
#if !defined(CONSTRAINED_FLASH)
static px4::atomic<EKF2Selector *> _ekf2_selector {nullptr};
#endif // !CONSTRAINED_FLASH
EKF2::EKF2(bool multi_mode, const px4::wq_config_t &config, bool replay_mode):
ModuleParams(nullptr),
ScheduledWorkItem(MODULE_NAME, config),
_replay_mode(replay_mode && !multi_mode),
_multi_mode(multi_mode),
_instance(multi_mode ? -1 : 0),
_attitude_pub(multi_mode ? ORB_ID(estimator_attitude) : ORB_ID(vehicle_attitude)),
_local_position_pub(multi_mode ? ORB_ID(estimator_local_position) : ORB_ID(vehicle_local_position)),
_global_position_pub(multi_mode ? ORB_ID(estimator_global_position) : ORB_ID(vehicle_global_position)),
_odometry_pub(multi_mode ? ORB_ID(estimator_odometry) : ORB_ID(vehicle_odometry)),
_wind_pub(multi_mode ? ORB_ID(estimator_wind) : ORB_ID(wind)),
_params(_ekf.getParamHandle()),
_param_ekf2_min_obs_dt(_params->sensor_interval_min_ms),
_param_ekf2_mag_delay(_params->mag_delay_ms),
_param_ekf2_baro_delay(_params->baro_delay_ms),
_param_ekf2_gps_delay(_params->gps_delay_ms),
_param_ekf2_of_delay(_params->flow_delay_ms),
_param_ekf2_rng_delay(_params->range_delay_ms),
_param_ekf2_asp_delay(_params->airspeed_delay_ms),
_param_ekf2_ev_delay(_params->ev_delay_ms),
_param_ekf2_avel_delay(_params->auxvel_delay_ms),
_param_ekf2_gyr_noise(_params->gyro_noise),
_param_ekf2_acc_noise(_params->accel_noise),
_param_ekf2_gyr_b_noise(_params->gyro_bias_p_noise),
_param_ekf2_acc_b_noise(_params->accel_bias_p_noise),
_param_ekf2_mag_e_noise(_params->mage_p_noise),
_param_ekf2_mag_b_noise(_params->magb_p_noise),
_param_ekf2_wind_noise(_params->wind_vel_p_noise),
_param_ekf2_terr_noise(_params->terrain_p_noise),
_param_ekf2_terr_grad(_params->terrain_gradient),
_param_ekf2_gps_v_noise(_params->gps_vel_noise),
_param_ekf2_gps_p_noise(_params->gps_pos_noise),
_param_ekf2_noaid_noise(_params->pos_noaid_noise),
_param_ekf2_baro_noise(_params->baro_noise),
_param_ekf2_baro_gate(_params->baro_innov_gate),
_param_ekf2_gnd_eff_dz(_params->gnd_effect_deadzone),
_param_ekf2_gnd_max_hgt(_params->gnd_effect_max_hgt),
_param_ekf2_gps_p_gate(_params->gps_pos_innov_gate),
_param_ekf2_gps_v_gate(_params->gps_vel_innov_gate),
_param_ekf2_tas_gate(_params->tas_innov_gate),
_param_ekf2_head_noise(_params->mag_heading_noise),
_param_ekf2_mag_noise(_params->mag_noise),
_param_ekf2_eas_noise(_params->eas_noise),
_param_ekf2_beta_gate(_params->beta_innov_gate),
_param_ekf2_beta_noise(_params->beta_noise),
_param_ekf2_mag_decl(_params->mag_declination_deg),
_param_ekf2_hdg_gate(_params->heading_innov_gate),
_param_ekf2_mag_gate(_params->mag_innov_gate),
_param_ekf2_decl_type(_params->mag_declination_source),
_param_ekf2_mag_type(_params->mag_fusion_type),
_param_ekf2_mag_acclim(_params->mag_acc_gate),
_param_ekf2_mag_yawlim(_params->mag_yaw_rate_gate),
_param_ekf2_gps_check(_params->gps_check_mask),
_param_ekf2_req_eph(_params->req_hacc),
_param_ekf2_req_epv(_params->req_vacc),
_param_ekf2_req_sacc(_params->req_sacc),
_param_ekf2_req_nsats(_params->req_nsats),
_param_ekf2_req_pdop(_params->req_pdop),
_param_ekf2_req_hdrift(_params->req_hdrift),
_param_ekf2_req_vdrift(_params->req_vdrift),
_param_ekf2_aid_mask(_params->fusion_mode),
_param_ekf2_hgt_mode(_params->vdist_sensor_type),
_param_ekf2_terr_mask(_params->terrain_fusion_mode),
_param_ekf2_noaid_tout(_params->valid_timeout_max),
_param_ekf2_rng_noise(_params->range_noise),
_param_ekf2_rng_sfe(_params->range_noise_scaler),
_param_ekf2_rng_gate(_params->range_innov_gate),
_param_ekf2_min_rng(_params->rng_gnd_clearance),
_param_ekf2_rng_pitch(_params->rng_sens_pitch),
_param_ekf2_rng_aid(_params->range_aid),
_param_ekf2_rng_a_vmax(_params->max_vel_for_range_aid),
_param_ekf2_rng_a_hmax(_params->max_hagl_for_range_aid),
_param_ekf2_rng_a_igate(_params->range_aid_innov_gate),
_param_ekf2_rng_qlty_t(_params->range_valid_quality_s),
_param_ekf2_evv_gate(_params->ev_vel_innov_gate),
_param_ekf2_evp_gate(_params->ev_pos_innov_gate),
_param_ekf2_of_n_min(_params->flow_noise),
_param_ekf2_of_n_max(_params->flow_noise_qual_min),
_param_ekf2_of_qmin(_params->flow_qual_min),
_param_ekf2_of_gate(_params->flow_innov_gate),
_param_ekf2_imu_pos_x(_params->imu_pos_body(0)),
_param_ekf2_imu_pos_y(_params->imu_pos_body(1)),
_param_ekf2_imu_pos_z(_params->imu_pos_body(2)),
_param_ekf2_gps_pos_x(_params->gps_pos_body(0)),
_param_ekf2_gps_pos_y(_params->gps_pos_body(1)),
_param_ekf2_gps_pos_z(_params->gps_pos_body(2)),
_param_ekf2_rng_pos_x(_params->rng_pos_body(0)),
_param_ekf2_rng_pos_y(_params->rng_pos_body(1)),
_param_ekf2_rng_pos_z(_params->rng_pos_body(2)),
_param_ekf2_of_pos_x(_params->flow_pos_body(0)),
_param_ekf2_of_pos_y(_params->flow_pos_body(1)),
_param_ekf2_of_pos_z(_params->flow_pos_body(2)),
_param_ekf2_ev_pos_x(_params->ev_pos_body(0)),
_param_ekf2_ev_pos_y(_params->ev_pos_body(1)),
_param_ekf2_ev_pos_z(_params->ev_pos_body(2)),
_param_ekf2_tau_vel(_params->vel_Tau),
_param_ekf2_tau_pos(_params->pos_Tau),
_param_ekf2_gbias_init(_params->switch_on_gyro_bias),
_param_ekf2_abias_init(_params->switch_on_accel_bias),
_param_ekf2_angerr_init(_params->initial_tilt_err),
_param_ekf2_abl_lim(_params->acc_bias_lim),
_param_ekf2_abl_acclim(_params->acc_bias_learn_acc_lim),
_param_ekf2_abl_gyrlim(_params->acc_bias_learn_gyr_lim),
_param_ekf2_abl_tau(_params->acc_bias_learn_tc),
_param_ekf2_drag_noise(_params->drag_noise),
_param_ekf2_bcoef_x(_params->bcoef_x),
_param_ekf2_bcoef_y(_params->bcoef_y),
_param_ekf2_aspd_max(_params->max_correction_airspeed),
_param_ekf2_pcoef_xp(_params->static_pressure_coef_xp),
_param_ekf2_pcoef_xn(_params->static_pressure_coef_xn),
_param_ekf2_pcoef_yp(_params->static_pressure_coef_yp),
_param_ekf2_pcoef_yn(_params->static_pressure_coef_yn),
_param_ekf2_pcoef_z(_params->static_pressure_coef_z),
_param_ekf2_move_test(_params->is_moving_scaler),
_param_ekf2_mag_check(_params->check_mag_strength),
_param_ekf2_synthetic_mag_z(_params->synthesize_mag_z),
_param_ekf2_gsf_tas_default(_params->EKFGSF_tas_default)
{
}
EKF2::~EKF2()
{
perf_free(_ecl_ekf_update_perf);
perf_free(_ecl_ekf_update_full_perf);
perf_free(_imu_missed_perf);
perf_free(_mag_missed_perf);
}
bool EKF2::multi_init(int imu, int mag)
{
// advertise immediately to ensure consistent uORB instance numbering
_attitude_pub.advertise();
_local_position_pub.advertise();
_global_position_pub.advertise();
_odometry_pub.advertise();
_wind_pub.advertise();
_ekf2_timestamps_pub.advertise();
_ekf_gps_drift_pub.advertise();
_estimator_innovation_test_ratios_pub.advertise();
_estimator_innovation_variances_pub.advertise();
_estimator_innovations_pub.advertise();
_estimator_optical_flow_vel_pub.advertise();
_estimator_sensor_bias_pub.advertise();
_estimator_states_pub.advertise();
_estimator_status_pub.advertise();
_estimator_status_flags_pub.advertise();
_estimator_visual_odometry_aligned_pub.advertised();
_yaw_est_pub.advertise();
bool changed_instance = _vehicle_imu_sub.ChangeInstance(imu) && _magnetometer_sub.ChangeInstance(mag);
const int status_instance = _estimator_states_pub.get_instance();
if ((status_instance >= 0) && changed_instance
&& (_attitude_pub.get_instance() == status_instance)
&& (_local_position_pub.get_instance() == status_instance)
&& (_global_position_pub.get_instance() == status_instance)) {
_instance = status_instance;
ScheduleNow();
return true;
}
PX4_ERR("publication instance problem: %d att: %d lpos: %d gpos: %d", status_instance,
_attitude_pub.get_instance(), _local_position_pub.get_instance(), _global_position_pub.get_instance());
return false;
}
int EKF2::print_status()
{
PX4_INFO_RAW("ekf2:%d attitude: %d, local position: %d, global position: %d\n", _instance, _ekf.attitude_valid(),
_ekf.local_position_is_valid(), _ekf.global_position_is_valid());
perf_print_counter(_ecl_ekf_update_perf);
perf_print_counter(_ecl_ekf_update_full_perf);
perf_print_counter(_imu_missed_perf);
if (_device_id_mag != 0) {
perf_print_counter(_mag_missed_perf);
}
return 0;
}
void EKF2::Run()
{
if (should_exit()) {
_sensor_combined_sub.unregisterCallback();
_vehicle_imu_sub.unregisterCallback();
return;
}
// check for parameter updates
if (_parameter_update_sub.updated() || !_callback_registered) {
// clear update
parameter_update_s pupdate;
_parameter_update_sub.copy(&pupdate);
// update parameters from storage
updateParams();
_ekf.set_min_required_gps_health_time(_param_ekf2_req_gps_h.get() * 1_s);
// The airspeed scale factor correcton is only available via parameter as used by the airspeed module
param_t param_aspd_scale = param_find("ASPD_SCALE");
if (param_aspd_scale != PARAM_INVALID) {
param_get(param_aspd_scale, &_airspeed_scale_factor);
}
}
if (!_callback_registered) {
if (_multi_mode) {
_callback_registered = _vehicle_imu_sub.registerCallback();
} else {
_callback_registered = _sensor_combined_sub.registerCallback();
}
if (!_callback_registered) {
PX4_WARN("%d - failed to register callback, retrying", _instance);
ScheduleDelayed(1_s);
return;
}
}
if (_vehicle_command_sub.updated()) {
vehicle_command_s vehicle_command;
if (_vehicle_command_sub.update(&vehicle_command)) {
if (vehicle_command.command == vehicle_command_s::VEHICLE_CMD_SET_GPS_GLOBAL_ORIGIN) {
if (!_ekf.control_status_flags().in_air) {
uint64_t origin_time {};
double latitude = vehicle_command.param5;
double longitude = vehicle_command.param6;
float altitude = vehicle_command.param7;
_ekf.setEkfGlobalOrigin(latitude, longitude, altitude);
// Validate the ekf origin status.
_ekf.getEkfGlobalOrigin(origin_time, latitude, longitude, altitude);
PX4_INFO("New NED origin (LLA): %3.10f, %3.10f, %4.3f\n", latitude, longitude, static_cast<double>(altitude));
}
}
}
}
bool imu_updated = false;
imuSample imu_sample_new {};
hrt_abstime imu_dt = 0; // for tracking time slip later
if (_multi_mode) {
const unsigned last_generation = _vehicle_imu_sub.get_last_generation();
vehicle_imu_s imu;
imu_updated = _vehicle_imu_sub.update(&imu);
if (imu_updated && (_vehicle_imu_sub.get_last_generation() != last_generation + 1)) {
perf_count(_imu_missed_perf);
PX4_DEBUG("%d - vehicle_imu lost, generation %d -> %d", _instance, last_generation,
_vehicle_imu_sub.get_last_generation());
}
imu_sample_new.time_us = imu.timestamp_sample;
imu_sample_new.delta_ang_dt = imu.delta_angle_dt * 1.e-6f;
imu_sample_new.delta_ang = Vector3f{imu.delta_angle};
imu_sample_new.delta_vel_dt = imu.delta_velocity_dt * 1.e-6f;
imu_sample_new.delta_vel = Vector3f{imu.delta_velocity};
if (imu.delta_velocity_clipping > 0) {
imu_sample_new.delta_vel_clipping[0] = imu.delta_velocity_clipping & vehicle_imu_s::CLIPPING_X;
imu_sample_new.delta_vel_clipping[1] = imu.delta_velocity_clipping & vehicle_imu_s::CLIPPING_Y;
imu_sample_new.delta_vel_clipping[2] = imu.delta_velocity_clipping & vehicle_imu_s::CLIPPING_Z;
}
imu_dt = imu.delta_angle_dt;
if ((_device_id_accel == 0) || (_device_id_gyro == 0)) {
_device_id_accel = imu.accel_device_id;
_device_id_gyro = imu.gyro_device_id;
_imu_calibration_count = imu.calibration_count;
} else if ((imu.calibration_count > _imu_calibration_count)
|| (imu.accel_device_id != _device_id_accel)
|| (imu.gyro_device_id != _device_id_gyro)) {
PX4_INFO("%d - resetting IMU bias", _instance);
_device_id_accel = imu.accel_device_id;
_device_id_gyro = imu.gyro_device_id;
_ekf.resetImuBias();
_imu_calibration_count = imu.calibration_count;
}
} else {
sensor_combined_s sensor_combined;
imu_updated = _sensor_combined_sub.update(&sensor_combined);
imu_sample_new.time_us = sensor_combined.timestamp;
imu_sample_new.delta_ang_dt = sensor_combined.gyro_integral_dt * 1.e-6f;
imu_sample_new.delta_ang = Vector3f{sensor_combined.gyro_rad} * imu_sample_new.delta_ang_dt;
imu_sample_new.delta_vel_dt = sensor_combined.accelerometer_integral_dt * 1.e-6f;
imu_sample_new.delta_vel = Vector3f{sensor_combined.accelerometer_m_s2} * imu_sample_new.delta_vel_dt;
if (sensor_combined.accelerometer_clipping > 0) {
imu_sample_new.delta_vel_clipping[0] = sensor_combined.accelerometer_clipping & sensor_combined_s::CLIPPING_X;
imu_sample_new.delta_vel_clipping[1] = sensor_combined.accelerometer_clipping & sensor_combined_s::CLIPPING_Y;
imu_sample_new.delta_vel_clipping[2] = sensor_combined.accelerometer_clipping & sensor_combined_s::CLIPPING_Z;
}
imu_dt = sensor_combined.gyro_integral_dt;
if (_sensor_selection_sub.updated() || (_device_id_accel == 0 || _device_id_gyro == 0)) {
sensor_selection_s sensor_selection;
if (_sensor_selection_sub.copy(&sensor_selection)) {
if (_device_id_accel != sensor_selection.accel_device_id) {
_ekf.resetAccelBias();
_device_id_accel = sensor_selection.accel_device_id;
}
if (_device_id_gyro != sensor_selection.gyro_device_id) {
_ekf.resetGyroBias();
_device_id_gyro = sensor_selection.gyro_device_id;
}
}
}
}
if (imu_updated) {
const hrt_abstime now = imu_sample_new.time_us;
// push imu data into estimator
_ekf.setIMUData(imu_sample_new);
PublishAttitude(now); // publish attitude immediately (uses quaternion from output predictor)
// integrate time to monitor time slippage
if (_start_time_us > 0) {
_integrated_time_us += imu_dt;
_last_time_slip_us = (imu_sample_new.time_us - _start_time_us) - _integrated_time_us;
} else {
_start_time_us = imu_sample_new.time_us;
_last_time_slip_us = 0;
}
// update all other topics if they have new data
if (_status_sub.updated()) {
vehicle_status_s vehicle_status;
if (_status_sub.copy(&vehicle_status)) {
const bool is_fixed_wing = (vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING);
// only fuse synthetic sideslip measurements if conditions are met
_ekf.set_fuse_beta_flag(is_fixed_wing && (_param_ekf2_fuse_beta.get() == 1));
// let the EKF know if the vehicle motion is that of a fixed wing (forward flight only relative to wind)
_ekf.set_is_fixed_wing(is_fixed_wing);
_preflt_checker.setVehicleCanObserveHeadingInFlight(vehicle_status.vehicle_type !=
vehicle_status_s::VEHICLE_TYPE_ROTARY_WING);
_armed = (vehicle_status.arming_state == vehicle_status_s::ARMING_STATE_ARMED);
// update standby (arming state) flag
const bool standby = (vehicle_status.arming_state == vehicle_status_s::ARMING_STATE_STANDBY);
if (_standby != standby) {
_standby = standby;
// reset preflight checks if transitioning in or out of standby arming state
_preflt_checker.reset();
}
}
}
if (_vehicle_land_detected_sub.updated()) {
vehicle_land_detected_s vehicle_land_detected;
if (_vehicle_land_detected_sub.copy(&vehicle_land_detected)) {
_ekf.set_in_air_status(!vehicle_land_detected.landed);
if (_armed && (_param_ekf2_gnd_eff_dz.get() > 0.f)) {
if (!_had_valid_terrain) {
// update ground effect flag based on land detector state if we've never had valid terrain data
_ekf.set_gnd_effect_flag(vehicle_land_detected.in_ground_effect);
}
} else {
_ekf.set_gnd_effect_flag(false);
}
}
}
// ekf2_timestamps (using 0.1 ms relative timestamps)
ekf2_timestamps_s ekf2_timestamps {
.timestamp = now,
.airspeed_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID,
.distance_sensor_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID,
.optical_flow_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID,
.vehicle_air_data_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID,
.vehicle_magnetometer_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID,
.visual_odometry_timestamp_rel = ekf2_timestamps_s::RELATIVE_TIMESTAMP_INVALID,
};
UpdateAirspeedSample(ekf2_timestamps);
UpdateAuxVelSample(ekf2_timestamps);
UpdateBaroSample(ekf2_timestamps);
UpdateGpsSample(ekf2_timestamps);
UpdateMagSample(ekf2_timestamps);
UpdateRangeSample(ekf2_timestamps);
vehicle_odometry_s ev_odom;
const bool new_ev_odom = UpdateExtVisionSample(ekf2_timestamps, ev_odom);
optical_flow_s optical_flow;
const bool new_optical_flow = UpdateFlowSample(ekf2_timestamps, optical_flow);
// run the EKF update and output
const hrt_abstime ekf_update_start = hrt_absolute_time();
if (_ekf.update()) {
perf_set_elapsed(_ecl_ekf_update_full_perf, hrt_elapsed_time(&ekf_update_start));
PublishLocalPosition(now);
PublishOdometry(now, imu_sample_new);
PublishGlobalPosition(now);
PublishSensorBias(now);
PublishWindEstimate(now);
// publish status/logging messages
PublishEkfDriftMetrics(now);
PublishEventFlags(now);
PublishStates(now);
PublishStatus(now);
PublishStatusFlags(now);
PublishInnovations(now, imu_sample_new);
PublishInnovationTestRatios(now);
PublishInnovationVariances(now);
PublishYawEstimatorStatus(now);
UpdateMagCalibration(now);
} else {
// ekf no update
perf_set_elapsed(_ecl_ekf_update_perf, hrt_elapsed_time(&ekf_update_start));
}
// publish external visual odometry after fixed frame alignment if new odometry is received
if (new_ev_odom) {
PublishOdometryAligned(now, ev_odom);
}
if (new_optical_flow) {
PublishOpticalFlowVel(now, optical_flow);
}
// publish ekf2_timestamps
_ekf2_timestamps_pub.publish(ekf2_timestamps);
}
}
void EKF2::PublishAttitude(const hrt_abstime ×tamp)
{
if (_ekf.attitude_valid()) {
// generate vehicle attitude quaternion data
vehicle_attitude_s att;
att.timestamp_sample = timestamp;
const Quatf q{_ekf.calculate_quaternion()};
q.copyTo(att.q);
_ekf.get_quat_reset(&att.delta_q_reset[0], &att.quat_reset_counter);
att.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_attitude_pub.publish(att);
} else if (_replay_mode) {
// in replay mode we have to tell the replay module not to wait for an update
// we do this by publishing an attitude with zero timestamp
vehicle_attitude_s att{};
_attitude_pub.publish(att);
}
}
void EKF2::PublishEkfDriftMetrics(const hrt_abstime ×tamp)
{
// publish GPS drift data only when updated to minimise overhead
float gps_drift[3];
bool blocked;
if (_ekf.get_gps_drift_metrics(gps_drift, &blocked)) {
ekf_gps_drift_s drift_data;
drift_data.hpos_drift_rate = gps_drift[0];
drift_data.vpos_drift_rate = gps_drift[1];
drift_data.hspd = gps_drift[2];
drift_data.blocked = blocked;
drift_data.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_ekf_gps_drift_pub.publish(drift_data);
}
}
void EKF2::PublishEventFlags(const hrt_abstime ×tamp)
{
// information events
uint32_t information_events = _ekf.information_event_status().value;
bool information_event_updated = false;
if (information_events != 0) {
information_event_updated = true;
_filter_information_event_changes++;
}
// warning events
uint32_t warning_events = _ekf.warning_event_status().value;
bool warning_event_updated = false;
if (warning_events != 0) {
warning_event_updated = true;
_filter_warning_event_changes++;
}
if (information_event_updated || warning_event_updated) {
estimator_event_flags_s event_flags{};
event_flags.timestamp_sample = timestamp;
event_flags.information_event_changes = _filter_information_event_changes;
event_flags.gps_checks_passed = _ekf.information_event_flags().gps_checks_passed;
event_flags.reset_vel_to_gps = _ekf.information_event_flags().reset_vel_to_gps;
event_flags.reset_vel_to_flow = _ekf.information_event_flags().reset_vel_to_flow;
event_flags.reset_vel_to_vision = _ekf.information_event_flags().reset_vel_to_vision;
event_flags.reset_vel_to_zero = _ekf.information_event_flags().reset_vel_to_zero;
event_flags.reset_pos_to_last_known = _ekf.information_event_flags().reset_pos_to_last_known;
event_flags.reset_pos_to_gps = _ekf.information_event_flags().reset_pos_to_gps;
event_flags.reset_pos_to_vision = _ekf.information_event_flags().reset_pos_to_vision;
event_flags.starting_gps_fusion = _ekf.information_event_flags().starting_gps_fusion;
event_flags.starting_vision_pos_fusion = _ekf.information_event_flags().starting_vision_pos_fusion;
event_flags.starting_vision_vel_fusion = _ekf.information_event_flags().starting_vision_vel_fusion;
event_flags.starting_vision_yaw_fusion = _ekf.information_event_flags().starting_vision_yaw_fusion;
event_flags.yaw_aligned_to_imu_gps = _ekf.information_event_flags().yaw_aligned_to_imu_gps;
event_flags.warning_event_changes = _filter_warning_event_changes;
event_flags.gps_quality_poor = _ekf.warning_event_flags().gps_quality_poor;
event_flags.gps_fusion_timout = _ekf.warning_event_flags().gps_fusion_timout;
event_flags.gps_data_stopped = _ekf.warning_event_flags().gps_data_stopped;
event_flags.gps_data_stopped_using_alternate = _ekf.warning_event_flags().gps_data_stopped_using_alternate;
event_flags.height_sensor_timeout = _ekf.warning_event_flags().height_sensor_timeout;
event_flags.stopping_navigation = _ekf.warning_event_flags().stopping_mag_use;
event_flags.invalid_accel_bias_cov_reset = _ekf.warning_event_flags().invalid_accel_bias_cov_reset;
event_flags.bad_yaw_using_gps_course = _ekf.warning_event_flags().bad_yaw_using_gps_course;
event_flags.stopping_mag_use = _ekf.warning_event_flags().stopping_mag_use;
event_flags.vision_data_stopped = _ekf.warning_event_flags().vision_data_stopped;
event_flags.emergency_yaw_reset_mag_stopped = _ekf.warning_event_flags().emergency_yaw_reset_mag_stopped;
event_flags.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_estimator_event_flags_pub.publish(event_flags);
}
_ekf.clear_information_events();
_ekf.clear_warning_events();
}
void EKF2::PublishGlobalPosition(const hrt_abstime ×tamp)
{
if (_ekf.global_position_is_valid() && !_preflt_checker.hasFailed()) {
// only publish if position has changed by at least 1 mm (map_projection_reproject is relatively expensive)
const Vector3f position{_ekf.getPosition()};
if ((_last_local_position_for_gpos - position).longerThan(0.001f)) {
// generate and publish global position data
vehicle_global_position_s global_pos;
global_pos.timestamp_sample = timestamp;
// Position of local NED origin in GPS / WGS84 frame
map_projection_reproject(&_ekf.global_origin(), position(0), position(1), &global_pos.lat, &global_pos.lon);
float delta_xy[2];
_ekf.get_posNE_reset(delta_xy, &global_pos.lat_lon_reset_counter);
global_pos.alt = -position(2) + _ekf.getEkfGlobalOriginAltitude(); // Altitude AMSL in meters
global_pos.alt_ellipsoid = filter_altitude_ellipsoid(global_pos.alt);
// global altitude has opposite sign of local down position
float delta_z;
uint8_t z_reset_counter;
_ekf.get_posD_reset(&delta_z, &z_reset_counter);
global_pos.delta_alt = -delta_z;
_ekf.get_ekf_gpos_accuracy(&global_pos.eph, &global_pos.epv);
if (_ekf.isTerrainEstimateValid()) {
// Terrain altitude in m, WGS84
global_pos.terrain_alt = _ekf.getEkfGlobalOriginAltitude() - _ekf.getTerrainVertPos();
global_pos.terrain_alt_valid = true;
} else {
global_pos.terrain_alt = NAN;
global_pos.terrain_alt_valid = false;
}
global_pos.dead_reckoning = _ekf.inertial_dead_reckoning(); // True if this position is estimated through dead-reckoning
global_pos.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_global_position_pub.publish(global_pos);
_last_local_position_for_gpos = position;
}
}
}
void EKF2::PublishInnovations(const hrt_abstime ×tamp, const imuSample &imu)
{
// publish estimator innovation data
estimator_innovations_s innovations{};
innovations.timestamp_sample = timestamp;
_ekf.getGpsVelPosInnov(innovations.gps_hvel, innovations.gps_vvel, innovations.gps_hpos, innovations.gps_vpos);
_ekf.getEvVelPosInnov(innovations.ev_hvel, innovations.ev_vvel, innovations.ev_hpos, innovations.ev_vpos);
_ekf.getBaroHgtInnov(innovations.baro_vpos);
_ekf.getRngHgtInnov(innovations.rng_vpos);
_ekf.getAuxVelInnov(innovations.aux_hvel);
_ekf.getFlowInnov(innovations.flow);
_ekf.getHeadingInnov(innovations.heading);
_ekf.getMagInnov(innovations.mag_field);
_ekf.getDragInnov(innovations.drag);
_ekf.getAirspeedInnov(innovations.airspeed);
_ekf.getBetaInnov(innovations.beta);
_ekf.getHaglInnov(innovations.hagl);
// Not yet supported
innovations.aux_vvel = NAN;
innovations.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_estimator_innovations_pub.publish(innovations);
// calculate noise filtered velocity innovations which are used for pre-flight checking
if (_standby) {
// TODO: move to run before publications
_preflt_checker.setUsingGpsAiding(_ekf.control_status_flags().gps);
_preflt_checker.setUsingFlowAiding(_ekf.control_status_flags().opt_flow);
_preflt_checker.setUsingEvPosAiding(_ekf.control_status_flags().ev_pos);
_preflt_checker.setUsingEvVelAiding(_ekf.control_status_flags().ev_vel);
_preflt_checker.update(imu.delta_ang_dt, innovations);
}
}
void EKF2::PublishInnovationTestRatios(const hrt_abstime ×tamp)
{
// publish estimator innovation test ratio data
estimator_innovations_s test_ratios{};
test_ratios.timestamp_sample = timestamp;
_ekf.getGpsVelPosInnovRatio(test_ratios.gps_hvel[0], test_ratios.gps_vvel, test_ratios.gps_hpos[0],
test_ratios.gps_vpos);
_ekf.getEvVelPosInnovRatio(test_ratios.ev_hvel[0], test_ratios.ev_vvel, test_ratios.ev_hpos[0], test_ratios.ev_vpos);
_ekf.getBaroHgtInnovRatio(test_ratios.baro_vpos);
_ekf.getRngHgtInnovRatio(test_ratios.rng_vpos);
_ekf.getAuxVelInnovRatio(test_ratios.aux_hvel[0]);
_ekf.getFlowInnovRatio(test_ratios.flow[0]);
_ekf.getHeadingInnovRatio(test_ratios.heading);
_ekf.getMagInnovRatio(test_ratios.mag_field[0]);
_ekf.getDragInnovRatio(&test_ratios.drag[0]);
_ekf.getAirspeedInnovRatio(test_ratios.airspeed);
_ekf.getBetaInnovRatio(test_ratios.beta);
_ekf.getHaglInnovRatio(test_ratios.hagl);
// Not yet supported
test_ratios.aux_vvel = NAN;
test_ratios.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_estimator_innovation_test_ratios_pub.publish(test_ratios);
}
void EKF2::PublishInnovationVariances(const hrt_abstime ×tamp)
{
// publish estimator innovation variance data
estimator_innovations_s variances{};
variances.timestamp_sample = timestamp;
_ekf.getGpsVelPosInnovVar(variances.gps_hvel, variances.gps_vvel, variances.gps_hpos, variances.gps_vpos);
_ekf.getEvVelPosInnovVar(variances.ev_hvel, variances.ev_vvel, variances.ev_hpos, variances.ev_vpos);
_ekf.getBaroHgtInnovVar(variances.baro_vpos);
_ekf.getRngHgtInnovVar(variances.rng_vpos);
_ekf.getAuxVelInnovVar(variances.aux_hvel);
_ekf.getFlowInnovVar(variances.flow);
_ekf.getHeadingInnovVar(variances.heading);
_ekf.getMagInnovVar(variances.mag_field);
_ekf.getDragInnovVar(variances.drag);
_ekf.getAirspeedInnovVar(variances.airspeed);
_ekf.getBetaInnovVar(variances.beta);
_ekf.getHaglInnovVar(variances.hagl);
// Not yet supported
variances.aux_vvel = NAN;
variances.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_estimator_innovation_variances_pub.publish(variances);
}
void EKF2::PublishLocalPosition(const hrt_abstime ×tamp)
{
vehicle_local_position_s lpos;
// generate vehicle local position data
lpos.timestamp_sample = timestamp;
// Position of body origin in local NED frame
const Vector3f position{_ekf.getPosition()};
lpos.x = position(0);
lpos.y = position(1);
lpos.z = position(2);
// Velocity of body origin in local NED frame (m/s)
const Vector3f velocity{_ekf.getVelocity()};
lpos.vx = velocity(0);
lpos.vy = velocity(1);
lpos.vz = velocity(2);
// vertical position time derivative (m/s)
lpos.z_deriv = _ekf.getVerticalPositionDerivative();
// Acceleration of body origin in local frame
const Vector3f vel_deriv{_ekf.getVelocityDerivative()};
lpos.ax = vel_deriv(0);
lpos.ay = vel_deriv(1);
lpos.az = vel_deriv(2);
// TODO: better status reporting
lpos.xy_valid = _ekf.local_position_is_valid() && !_preflt_checker.hasHorizFailed();
lpos.z_valid = !_preflt_checker.hasVertFailed();
lpos.v_xy_valid = _ekf.local_position_is_valid() && !_preflt_checker.hasHorizFailed();
lpos.v_z_valid = !_preflt_checker.hasVertFailed();
// Position of local NED origin in GPS / WGS84 frame
if (_ekf.global_origin_valid()) {
lpos.ref_timestamp = _ekf.global_origin().timestamp;
lpos.ref_lat = math::degrees(_ekf.global_origin().lat_rad); // Reference point latitude in degrees
lpos.ref_lon = math::degrees(_ekf.global_origin().lon_rad); // Reference point longitude in degrees
lpos.ref_alt = _ekf.getEkfGlobalOriginAltitude(); // Reference point in MSL altitude meters
lpos.xy_global = true;
lpos.z_global = true;
} else {
lpos.ref_timestamp = 0;
lpos.ref_lat = static_cast<double>(NAN);
lpos.ref_lon = static_cast<double>(NAN);
lpos.ref_alt = NAN;
lpos.xy_global = false;
lpos.z_global = false;
}
Quatf delta_q_reset;
_ekf.get_quat_reset(&delta_q_reset(0), &lpos.heading_reset_counter);
lpos.heading = Eulerf(_ekf.getQuaternion()).psi();
lpos.delta_heading = Eulerf(delta_q_reset).psi();
// Distance to bottom surface (ground) in meters
// constrain the distance to ground to _rng_gnd_clearance
lpos.dist_bottom = math::max(_ekf.getTerrainVertPos() - lpos.z, _param_ekf2_min_rng.get());
lpos.dist_bottom_valid = _ekf.isTerrainEstimateValid();
lpos.dist_bottom_sensor_bitfield = _ekf.getTerrainEstimateSensorBitfield();
if (!_had_valid_terrain) {
_had_valid_terrain = lpos.dist_bottom_valid;
}
// only consider ground effect if compensation is configured and the vehicle is armed (props spinning)
if ((_param_ekf2_gnd_eff_dz.get() > 0.0f) && _armed && lpos.dist_bottom_valid) {
// set ground effect flag if vehicle is closer than a specified distance to the ground
_ekf.set_gnd_effect_flag(lpos.dist_bottom < _param_ekf2_gnd_max_hgt.get());
// if we have no valid terrain estimate and never had one then use ground effect flag from land detector
// _had_valid_terrain is used to make sure that we don't fall back to using this option
// if we temporarily lose terrain data due to the distance sensor getting out of range
}
_ekf.get_ekf_lpos_accuracy(&lpos.eph, &lpos.epv);
_ekf.get_ekf_vel_accuracy(&lpos.evh, &lpos.evv);
// get state reset information of position and velocity
_ekf.get_posD_reset(&lpos.delta_z, &lpos.z_reset_counter);
_ekf.get_velD_reset(&lpos.delta_vz, &lpos.vz_reset_counter);
_ekf.get_posNE_reset(&lpos.delta_xy[0], &lpos.xy_reset_counter);
_ekf.get_velNE_reset(&lpos.delta_vxy[0], &lpos.vxy_reset_counter);
// get control limit information
_ekf.get_ekf_ctrl_limits(&lpos.vxy_max, &lpos.vz_max, &lpos.hagl_min, &lpos.hagl_max);
// convert NaN to INFINITY
if (!PX4_ISFINITE(lpos.vxy_max)) {
lpos.vxy_max = INFINITY;
}
if (!PX4_ISFINITE(lpos.vz_max)) {
lpos.vz_max = INFINITY;
}
if (!PX4_ISFINITE(lpos.hagl_min)) {
lpos.hagl_min = INFINITY;
}
if (!PX4_ISFINITE(lpos.hagl_max)) {
lpos.hagl_max = INFINITY;
}
// publish vehicle local position data
lpos.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_local_position_pub.publish(lpos);
}
void EKF2::PublishOdometry(const hrt_abstime ×tamp, const imuSample &imu)
{
// generate vehicle odometry data
vehicle_odometry_s odom;
odom.timestamp_sample = imu.time_us;
odom.local_frame = vehicle_odometry_s::LOCAL_FRAME_NED;
// Vehicle odometry position
const Vector3f position{_ekf.getPosition()};
odom.x = position(0);
odom.y = position(1);
odom.z = position(2);
// Vehicle odometry linear velocity
odom.velocity_frame = vehicle_odometry_s::LOCAL_FRAME_FRD;
const Vector3f velocity{_ekf.getVelocity()};
odom.vx = velocity(0);
odom.vy = velocity(1);
odom.vz = velocity(2);
// Vehicle odometry quaternion
_ekf.getQuaternion().copyTo(odom.q);
// Vehicle odometry angular rates
const Vector3f gyro_bias{_ekf.getGyroBias()};
const Vector3f rates{imu.delta_ang / imu.delta_ang_dt};
odom.rollspeed = rates(0) - gyro_bias(0);
odom.pitchspeed = rates(1) - gyro_bias(1);
odom.yawspeed = rates(2) - gyro_bias(2);
// get the covariance matrix size
static constexpr size_t POS_URT_SIZE = sizeof(odom.pose_covariance) / sizeof(odom.pose_covariance[0]);
static constexpr size_t VEL_URT_SIZE = sizeof(odom.velocity_covariance) / sizeof(odom.velocity_covariance[0]);
// Get covariances to vehicle odometry
float covariances[24];
_ekf.covariances_diagonal().copyTo(covariances);
// initially set pose covariances to 0
for (size_t i = 0; i < POS_URT_SIZE; i++) {
odom.pose_covariance[i] = 0.0;
}
// set the position variances
odom.pose_covariance[odom.COVARIANCE_MATRIX_X_VARIANCE] = covariances[7];
odom.pose_covariance[odom.COVARIANCE_MATRIX_Y_VARIANCE] = covariances[8];
odom.pose_covariance[odom.COVARIANCE_MATRIX_Z_VARIANCE] = covariances[9];
// TODO: implement propagation from quaternion covariance to Euler angle covariance
// by employing the covariance law
// initially set velocity covariances to 0
for (size_t i = 0; i < VEL_URT_SIZE; i++) {
odom.velocity_covariance[i] = 0.0;
}
// set the linear velocity variances
odom.velocity_covariance[odom.COVARIANCE_MATRIX_VX_VARIANCE] = covariances[4];
odom.velocity_covariance[odom.COVARIANCE_MATRIX_VY_VARIANCE] = covariances[5];
odom.velocity_covariance[odom.COVARIANCE_MATRIX_VZ_VARIANCE] = covariances[6];
// publish vehicle odometry data
odom.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_odometry_pub.publish(odom);
}
void EKF2::PublishOdometryAligned(const hrt_abstime ×tamp, const vehicle_odometry_s &ev_odom)
{
const Quatf quat_ev2ekf = _ekf.getVisionAlignmentQuaternion(); // rotates from EV to EKF navigation frame
const Dcmf ev_rot_mat(quat_ev2ekf);
vehicle_odometry_s aligned_ev_odom{ev_odom};
// Rotate external position and velocity into EKF navigation frame
const Vector3f aligned_pos = ev_rot_mat * Vector3f(ev_odom.x, ev_odom.y, ev_odom.z);
aligned_ev_odom.x = aligned_pos(0);
aligned_ev_odom.y = aligned_pos(1);
aligned_ev_odom.z = aligned_pos(2);
switch (ev_odom.velocity_frame) {
case vehicle_odometry_s::BODY_FRAME_FRD: {
const Vector3f aligned_vel = Dcmf(_ekf.getQuaternion()) * Vector3f(ev_odom.vx, ev_odom.vy, ev_odom.vz);
aligned_ev_odom.vx = aligned_vel(0);
aligned_ev_odom.vy = aligned_vel(1);
aligned_ev_odom.vz = aligned_vel(2);
break;
}
case vehicle_odometry_s::LOCAL_FRAME_FRD: {
const Vector3f aligned_vel = ev_rot_mat * Vector3f(ev_odom.vx, ev_odom.vy, ev_odom.vz);
aligned_ev_odom.vx = aligned_vel(0);
aligned_ev_odom.vy = aligned_vel(1);
aligned_ev_odom.vz = aligned_vel(2);
break;
}
}
aligned_ev_odom.velocity_frame = vehicle_odometry_s::LOCAL_FRAME_NED;
// Compute orientation in EKF navigation frame
Quatf ev_quat_aligned = quat_ev2ekf * Quatf(ev_odom.q) ;
ev_quat_aligned.normalize();
ev_quat_aligned.copyTo(aligned_ev_odom.q);
quat_ev2ekf.copyTo(aligned_ev_odom.q_offset);
_estimator_visual_odometry_aligned_pub.publish(aligned_ev_odom);
}
void EKF2::PublishSensorBias(const hrt_abstime ×tamp)
{
// estimator_sensor_bias
estimator_sensor_bias_s bias{};
bias.timestamp_sample = timestamp;
const Vector3f gyro_bias{_ekf.getGyroBias()};
const Vector3f accel_bias{_ekf.getAccelBias()};
const Vector3f mag_bias{_mag_cal_last_bias};
// only publish on change
if ((gyro_bias - _last_gyro_bias_published).longerThan(0.001f)
|| (accel_bias - _last_accel_bias_published).longerThan(0.001f)
|| (mag_bias - _last_mag_bias_published).longerThan(0.001f)) {
// take device ids from sensor_selection_s if not using specific vehicle_imu_s
if (_device_id_gyro != 0) {
bias.gyro_device_id = _device_id_gyro;
gyro_bias.copyTo(bias.gyro_bias);
bias.gyro_bias_limit = math::radians(20.f); // 20 degrees/s see Ekf::constrainStates()
_ekf.getGyroBiasVariance().copyTo(bias.gyro_bias_variance);
bias.gyro_bias_valid = true;
_last_gyro_bias_published = gyro_bias;
}
if ((_device_id_accel != 0) && !(_param_ekf2_aid_mask.get() & MASK_INHIBIT_ACC_BIAS)) {
bias.accel_device_id = _device_id_accel;
accel_bias.copyTo(bias.accel_bias);
bias.accel_bias_limit = _params->acc_bias_lim;
_ekf.getAccelBiasVariance().copyTo(bias.accel_bias_variance);
bias.accel_bias_valid = !_ekf.fault_status_flags().bad_acc_bias;
_last_accel_bias_published = accel_bias;
}
if (_device_id_mag != 0) {
bias.mag_device_id = _device_id_mag;
mag_bias.copyTo(bias.mag_bias);
bias.mag_bias_limit = 0.5f; // 0.5 Gauss see Ekf::constrainStates()
_mag_cal_last_bias_variance.copyTo(bias.mag_bias_variance);
bias.mag_bias_valid = _mag_cal_available;
_last_mag_bias_published = mag_bias;
}
bias.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_estimator_sensor_bias_pub.publish(bias);
}
}
void EKF2::PublishStates(const hrt_abstime ×tamp)
{
// publish estimator states
estimator_states_s states;
states.timestamp_sample = timestamp;
states.n_states = 24;
_ekf.getStateAtFusionHorizonAsVector().copyTo(states.states);
_ekf.covariances_diagonal().copyTo(states.covariances);
states.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_estimator_states_pub.publish(states);
}
void EKF2::PublishStatus(const hrt_abstime ×tamp)
{
estimator_status_s status{};
status.timestamp_sample = timestamp;
_ekf.getOutputTrackingError().copyTo(status.output_tracking_error);
_ekf.get_gps_check_status(&status.gps_check_fail_flags);
// only report enabled GPS check failures (the param indexes are shifted by 1 bit, because they don't include
// the GPS Fix bit, which is always checked)
status.gps_check_fail_flags &= ((uint16_t)_params->gps_check_mask << 1) | 1;
status.control_mode_flags = _ekf.control_status().value;
status.filter_fault_flags = _ekf.fault_status().value;
uint16_t innov_check_flags_temp = 0;
_ekf.get_innovation_test_status(innov_check_flags_temp, status.mag_test_ratio,
status.vel_test_ratio, status.pos_test_ratio,
status.hgt_test_ratio, status.tas_test_ratio,
status.hagl_test_ratio, status.beta_test_ratio);
// Bit mismatch between ecl and Firmware, combine the 2 first bits to preserve msg definition
// TODO: legacy use only, those flags are also in estimator_status_flags
status.innovation_check_flags = (innov_check_flags_temp >> 1) | (innov_check_flags_temp & 0x1);
_ekf.get_ekf_lpos_accuracy(&status.pos_horiz_accuracy, &status.pos_vert_accuracy);
_ekf.get_ekf_soln_status(&status.solution_status_flags);
_ekf.getImuVibrationMetrics().copyTo(status.vibe);
// reset counters
status.reset_count_vel_ne = _ekf.state_reset_status().velNE_counter;
status.reset_count_vel_d = _ekf.state_reset_status().velD_counter;
status.reset_count_pos_ne = _ekf.state_reset_status().posNE_counter;
status.reset_count_pod_d = _ekf.state_reset_status().posD_counter;
status.reset_count_quat = _ekf.state_reset_status().quat_counter;
status.time_slip = _last_time_slip_us * 1e-6f;
status.pre_flt_fail_innov_heading = _preflt_checker.hasHeadingFailed();
status.pre_flt_fail_innov_vel_horiz = _preflt_checker.hasHorizVelFailed();
status.pre_flt_fail_innov_vel_vert = _preflt_checker.hasVertVelFailed();
status.pre_flt_fail_innov_height = _preflt_checker.hasHeightFailed();
status.pre_flt_fail_mag_field_disturbed = _ekf.control_status_flags().mag_field_disturbed;
status.accel_device_id = _device_id_accel;
status.baro_device_id = _device_id_baro;
status.gyro_device_id = _device_id_gyro;
status.mag_device_id = _device_id_mag;
status.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_estimator_status_pub.publish(status);
}
void EKF2::PublishStatusFlags(const hrt_abstime ×tamp)
{
// publish at ~ 1 Hz (or immediately if filter control status or fault status changes)
bool update = (hrt_elapsed_time(&_last_status_flag_update) >= 1_s);
// filter control status
if (_ekf.control_status().value != _filter_control_status) {
update = true;
_filter_control_status = _ekf.control_status().value;
_filter_control_status_changes++;
}
// filter fault status
if (_ekf.fault_status().value != _filter_fault_status) {
update = true;
_filter_fault_status = _ekf.fault_status().value;
_filter_fault_status_changes++;
}
// innovation check fail status
if (_ekf.innov_check_fail_status().value != _innov_check_fail_status) {
update = true;
_innov_check_fail_status = _ekf.innov_check_fail_status().value;
_innov_check_fail_status_changes++;
}
if (update) {
estimator_status_flags_s status_flags{};
status_flags.timestamp_sample = timestamp;
status_flags.control_status_changes = _filter_control_status_changes;
status_flags.cs_tilt_align = _ekf.control_status_flags().tilt_align;
status_flags.cs_yaw_align = _ekf.control_status_flags().yaw_align;
status_flags.cs_gps = _ekf.control_status_flags().gps;
status_flags.cs_opt_flow = _ekf.control_status_flags().opt_flow;
status_flags.cs_mag_hdg = _ekf.control_status_flags().mag_hdg;
status_flags.cs_mag_3d = _ekf.control_status_flags().mag_3D;
status_flags.cs_mag_dec = _ekf.control_status_flags().mag_dec;
status_flags.cs_in_air = _ekf.control_status_flags().in_air;
status_flags.cs_wind = _ekf.control_status_flags().wind;
status_flags.cs_baro_hgt = _ekf.control_status_flags().baro_hgt;
status_flags.cs_rng_hgt = _ekf.control_status_flags().rng_hgt;
status_flags.cs_gps_hgt = _ekf.control_status_flags().gps_hgt;
status_flags.cs_ev_pos = _ekf.control_status_flags().ev_pos;
status_flags.cs_ev_yaw = _ekf.control_status_flags().ev_yaw;
status_flags.cs_ev_hgt = _ekf.control_status_flags().ev_hgt;
status_flags.cs_fuse_beta = _ekf.control_status_flags().fuse_beta;
status_flags.cs_mag_field_disturbed = _ekf.control_status_flags().mag_field_disturbed;
status_flags.cs_fixed_wing = _ekf.control_status_flags().fixed_wing;
status_flags.cs_mag_fault = _ekf.control_status_flags().mag_fault;
status_flags.cs_fuse_aspd = _ekf.control_status_flags().fuse_aspd;
status_flags.cs_gnd_effect = _ekf.control_status_flags().gnd_effect;
status_flags.cs_rng_stuck = _ekf.control_status_flags().rng_stuck;
status_flags.cs_gps_yaw = _ekf.control_status_flags().gps_yaw;
status_flags.cs_mag_aligned_in_flight = _ekf.control_status_flags().mag_aligned_in_flight;
status_flags.cs_ev_vel = _ekf.control_status_flags().ev_vel;
status_flags.cs_synthetic_mag_z = _ekf.control_status_flags().synthetic_mag_z;
status_flags.cs_vehicle_at_rest = _ekf.control_status_flags().vehicle_at_rest;
status_flags.fault_status_changes = _filter_fault_status_changes;
status_flags.fs_bad_mag_x = _ekf.fault_status_flags().bad_mag_x;
status_flags.fs_bad_mag_y = _ekf.fault_status_flags().bad_mag_y;
status_flags.fs_bad_mag_z = _ekf.fault_status_flags().bad_mag_z;
status_flags.fs_bad_hdg = _ekf.fault_status_flags().bad_hdg;
status_flags.fs_bad_mag_decl = _ekf.fault_status_flags().bad_mag_decl;
status_flags.fs_bad_airspeed = _ekf.fault_status_flags().bad_airspeed;
status_flags.fs_bad_sideslip = _ekf.fault_status_flags().bad_sideslip;
status_flags.fs_bad_optflow_x = _ekf.fault_status_flags().bad_optflow_X;
status_flags.fs_bad_optflow_y = _ekf.fault_status_flags().bad_optflow_Y;
status_flags.fs_bad_vel_n = _ekf.fault_status_flags().bad_vel_N;
status_flags.fs_bad_vel_e = _ekf.fault_status_flags().bad_vel_E;
status_flags.fs_bad_vel_d = _ekf.fault_status_flags().bad_vel_D;
status_flags.fs_bad_pos_n = _ekf.fault_status_flags().bad_pos_N;
status_flags.fs_bad_pos_e = _ekf.fault_status_flags().bad_pos_E;
status_flags.fs_bad_pos_d = _ekf.fault_status_flags().bad_pos_D;
status_flags.fs_bad_acc_bias = _ekf.fault_status_flags().bad_acc_bias;
status_flags.fs_bad_acc_vertical = _ekf.fault_status_flags().bad_acc_vertical;
status_flags.fs_bad_acc_clipping = _ekf.fault_status_flags().bad_acc_clipping;
status_flags.innovation_fault_status_changes = _innov_check_fail_status_changes;
status_flags.reject_hor_vel = _ekf.innov_check_fail_status_flags().reject_hor_vel;
status_flags.reject_ver_vel = _ekf.innov_check_fail_status_flags().reject_ver_vel;
status_flags.reject_hor_pos = _ekf.innov_check_fail_status_flags().reject_hor_pos;
status_flags.reject_ver_pos = _ekf.innov_check_fail_status_flags().reject_ver_pos;
status_flags.reject_mag_x = _ekf.innov_check_fail_status_flags().reject_mag_x;
status_flags.reject_mag_y = _ekf.innov_check_fail_status_flags().reject_mag_y;
status_flags.reject_mag_z = _ekf.innov_check_fail_status_flags().reject_mag_z;
status_flags.reject_yaw = _ekf.innov_check_fail_status_flags().reject_yaw;
status_flags.reject_airspeed = _ekf.innov_check_fail_status_flags().reject_airspeed;
status_flags.reject_sideslip = _ekf.innov_check_fail_status_flags().reject_sideslip;
status_flags.reject_hagl = _ekf.innov_check_fail_status_flags().reject_hagl;
status_flags.reject_optflow_x = _ekf.innov_check_fail_status_flags().reject_optflow_X;
status_flags.reject_optflow_y = _ekf.innov_check_fail_status_flags().reject_optflow_Y;
status_flags.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_estimator_status_flags_pub.publish(status_flags);
_last_status_flag_update = status_flags.timestamp;
}
}
void EKF2::PublishYawEstimatorStatus(const hrt_abstime ×tamp)
{
static_assert(sizeof(yaw_estimator_status_s::yaw) / sizeof(float) == N_MODELS_EKFGSF,
"yaw_estimator_status_s::yaw wrong size");
yaw_estimator_status_s yaw_est_test_data;
if (_ekf.getDataEKFGSF(&yaw_est_test_data.yaw_composite, &yaw_est_test_data.yaw_variance,
yaw_est_test_data.yaw,
yaw_est_test_data.innov_vn, yaw_est_test_data.innov_ve,
yaw_est_test_data.weight)) {
yaw_est_test_data.timestamp_sample = timestamp;
yaw_est_test_data.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_yaw_est_pub.publish(yaw_est_test_data);
}
}
void EKF2::PublishWindEstimate(const hrt_abstime ×tamp)
{
if (_ekf.get_wind_status()) {
// Publish wind estimate only if ekf declares them valid
wind_s wind{};
wind.timestamp_sample = timestamp;
const Vector2f wind_vel = _ekf.getWindVelocity();
const Vector2f wind_vel_var = _ekf.getWindVelocityVariance();
_ekf.getAirspeedInnov(wind.tas_innov);
_ekf.getAirspeedInnovVar(wind.tas_innov_var);
_ekf.getBetaInnov(wind.beta_innov);
_ekf.getBetaInnovVar(wind.beta_innov_var);
wind.windspeed_north = wind_vel(0);
wind.windspeed_east = wind_vel(1);
wind.variance_north = wind_vel_var(0);
wind.variance_east = wind_vel_var(1);
wind.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_wind_pub.publish(wind);
}
}
void EKF2::PublishOpticalFlowVel(const hrt_abstime ×tamp, const optical_flow_s &flow_sample)
{
estimator_optical_flow_vel_s flow_vel{};
flow_vel.timestamp_sample = flow_sample.timestamp;
_ekf.getFlowVelBody().copyTo(flow_vel.vel_body);
_ekf.getFlowVelNE().copyTo(flow_vel.vel_ne);
_ekf.getFlowUncompensated().copyTo(flow_vel.flow_uncompensated_integral);
_ekf.getFlowCompensated().copyTo(flow_vel.flow_compensated_integral);
_ekf.getFlowGyro().copyTo(flow_vel.gyro_rate_integral);
flow_vel.timestamp = _replay_mode ? timestamp : hrt_absolute_time();
_estimator_optical_flow_vel_pub.publish(flow_vel);
}
float EKF2::filter_altitude_ellipsoid(float amsl_hgt)
{
float height_diff = static_cast<float>(_gps_alttitude_ellipsoid) * 1e-3f - amsl_hgt;
if (_gps_alttitude_ellipsoid_previous_timestamp == 0) {
_wgs84_hgt_offset = height_diff;
_gps_alttitude_ellipsoid_previous_timestamp = _gps_time_usec;
} else if (_gps_time_usec != _gps_alttitude_ellipsoid_previous_timestamp) {
// apply a 10 second first order low pass filter to baro offset
float dt = 1e-6f * (_gps_time_usec - _gps_alttitude_ellipsoid_previous_timestamp);
_gps_alttitude_ellipsoid_previous_timestamp = _gps_time_usec;
float offset_rate_correction = 0.1f * (height_diff - _wgs84_hgt_offset);
_wgs84_hgt_offset += dt * constrain(offset_rate_correction, -0.1f, 0.1f);
}
return amsl_hgt + _wgs84_hgt_offset;
}
void EKF2::UpdateAirspeedSample(ekf2_timestamps_s &ekf2_timestamps)
{
// EKF airspeed sample
airspeed_s airspeed;
if (_airspeed_sub.update(&airspeed)) {
// The airspeed measurement received via the airspeed.msg topic has not been corrected
// for scale favtor errors and requires the ASPD_SCALE correction to be applied.
// This could be avoided if true_airspeed_m_s from the airspeed-validated.msg topic
// was used instead, however this would introduce a potential circular dependency
// via the wind estimator that uses EKF velocity estimates.
const float true_airspeed_m_s = airspeed.true_airspeed_m_s * _airspeed_scale_factor;
// only set airspeed data if condition for airspeed fusion are met
if ((_param_ekf2_arsp_thr.get() > FLT_EPSILON) && (true_airspeed_m_s > _param_ekf2_arsp_thr.get())) {
airspeedSample airspeed_sample {
.time_us = airspeed.timestamp,
.true_airspeed = true_airspeed_m_s,
.eas2tas = airspeed.true_airspeed_m_s / airspeed.indicated_airspeed_m_s,
};
_ekf.setAirspeedData(airspeed_sample);
}
ekf2_timestamps.airspeed_timestamp_rel = (int16_t)((int64_t)airspeed.timestamp / 100 -
(int64_t)ekf2_timestamps.timestamp / 100);
}
}
void EKF2::UpdateAuxVelSample(ekf2_timestamps_s &ekf2_timestamps)
{
// EKF auxillary velocity sample
// - use the landing target pose estimate as another source of velocity data
const unsigned last_generation = _landing_target_pose_sub.get_last_generation();
landing_target_pose_s landing_target_pose;
if (_landing_target_pose_sub.update(&landing_target_pose)) {
if (_landing_target_pose_sub.get_last_generation() != last_generation + 1) {
PX4_ERR("%d - landing_target_pose lost, generation %d -> %d", _instance, last_generation,
_landing_target_pose_sub.get_last_generation());
}
// we can only use the landing target if it has a fixed position and a valid velocity estimate
if (landing_target_pose.is_static && landing_target_pose.rel_vel_valid) {
// velocity of vehicle relative to target has opposite sign to target relative to vehicle
auxVelSample auxvel_sample{
.time_us = landing_target_pose.timestamp,
.vel = Vector3f{-landing_target_pose.vx_rel, -landing_target_pose.vy_rel, 0.0f},
.velVar = Vector3f{landing_target_pose.cov_vx_rel, landing_target_pose.cov_vy_rel, 0.0f},
};
_ekf.setAuxVelData(auxvel_sample);
}
}
}
void EKF2::UpdateBaroSample(ekf2_timestamps_s &ekf2_timestamps)
{
// EKF baro sample
vehicle_air_data_s airdata;
if (_airdata_sub.update(&airdata)) {
_ekf.set_air_density(airdata.rho);
_ekf.setBaroData(baroSample{airdata.timestamp_sample, airdata.baro_alt_meter});
_device_id_baro = airdata.baro_device_id;
ekf2_timestamps.vehicle_air_data_timestamp_rel = (int16_t)((int64_t)airdata.timestamp / 100 -
(int64_t)ekf2_timestamps.timestamp / 100);
}
}
bool EKF2::UpdateExtVisionSample(ekf2_timestamps_s &ekf2_timestamps, vehicle_odometry_s &ev_odom)
{
bool new_ev_odom = false;
const unsigned last_generation = _ev_odom_sub.get_last_generation();
// EKF external vision sample
if (_ev_odom_sub.update(&ev_odom)) {
if (_ev_odom_sub.get_last_generation() != last_generation + 1) {
PX4_ERR("%d - vehicle_visual_odometry lost, generation %d -> %d", _instance, last_generation,
_ev_odom_sub.get_last_generation());
}
if (_param_ekf2_aid_mask.get() & (MASK_USE_EVPOS | MASK_USE_EVYAW | MASK_USE_EVVEL)) {
extVisionSample ev_data{};
// if error estimates are unavailable, use parameter defined defaults
// check for valid velocity data
if (PX4_ISFINITE(ev_odom.vx) && PX4_ISFINITE(ev_odom.vy) && PX4_ISFINITE(ev_odom.vz)) {
ev_data.vel(0) = ev_odom.vx;
ev_data.vel(1) = ev_odom.vy;
ev_data.vel(2) = ev_odom.vz;
if (ev_odom.velocity_frame == vehicle_odometry_s::BODY_FRAME_FRD) {
ev_data.vel_frame = velocity_frame_t::BODY_FRAME_FRD;
} else {
ev_data.vel_frame = velocity_frame_t::LOCAL_FRAME_FRD;
}
// velocity measurement error from ev_data or parameters
float param_evv_noise_var = sq(_param_ekf2_evv_noise.get());
if (!_param_ekf2_ev_noise_md.get() && PX4_ISFINITE(ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VX_VARIANCE])
&& PX4_ISFINITE(ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VY_VARIANCE])
&& PX4_ISFINITE(ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VZ_VARIANCE])) {
ev_data.velCov(0, 0) = ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VX_VARIANCE];
ev_data.velCov(0, 1) = ev_data.velCov(1, 0) = ev_odom.velocity_covariance[1];
ev_data.velCov(0, 2) = ev_data.velCov(2, 0) = ev_odom.velocity_covariance[2];
ev_data.velCov(1, 1) = ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VY_VARIANCE];
ev_data.velCov(1, 2) = ev_data.velCov(2, 1) = ev_odom.velocity_covariance[7];
ev_data.velCov(2, 2) = ev_odom.velocity_covariance[ev_odom.COVARIANCE_MATRIX_VZ_VARIANCE];
} else {
ev_data.velCov = matrix::eye<float, 3>() * param_evv_noise_var;
}
}
// check for valid position data
if (PX4_ISFINITE(ev_odom.x) && PX4_ISFINITE(ev_odom.y) && PX4_ISFINITE(ev_odom.z)) {
ev_data.pos(0) = ev_odom.x;
ev_data.pos(1) = ev_odom.y;
ev_data.pos(2) = ev_odom.z;
float param_evp_noise_var = sq(_param_ekf2_evp_noise.get());
// position measurement error from ev_data or parameters
if (!_param_ekf2_ev_noise_md.get() && PX4_ISFINITE(ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_X_VARIANCE])
&& PX4_ISFINITE(ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_Y_VARIANCE])
&& PX4_ISFINITE(ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_Z_VARIANCE])) {
ev_data.posVar(0) = fmaxf(param_evp_noise_var, ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_X_VARIANCE]);
ev_data.posVar(1) = fmaxf(param_evp_noise_var, ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_Y_VARIANCE]);
ev_data.posVar(2) = fmaxf(param_evp_noise_var, ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_Z_VARIANCE]);
} else {
ev_data.posVar.setAll(param_evp_noise_var);
}
}
// check for valid orientation data
if (PX4_ISFINITE(ev_odom.q[0])) {
ev_data.quat = Quatf(ev_odom.q);
// orientation measurement error from ev_data or parameters
float param_eva_noise_var = sq(_param_ekf2_eva_noise.get());
if (!_param_ekf2_ev_noise_md.get() && PX4_ISFINITE(ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_YAW_VARIANCE])) {
ev_data.angVar = fmaxf(param_eva_noise_var, ev_odom.pose_covariance[ev_odom.COVARIANCE_MATRIX_YAW_VARIANCE]);
} else {
ev_data.angVar = param_eva_noise_var;
}
}
// use timestamp from external computer, clocks are synchronized when using MAVROS
ev_data.time_us = ev_odom.timestamp_sample;
_ekf.setExtVisionData(ev_data);
new_ev_odom = true;
}
ekf2_timestamps.visual_odometry_timestamp_rel = (int16_t)((int64_t)ev_odom.timestamp / 100 -
(int64_t)ekf2_timestamps.timestamp / 100);
}
return new_ev_odom;
}
bool EKF2::UpdateFlowSample(ekf2_timestamps_s &ekf2_timestamps, optical_flow_s &optical_flow)
{
bool new_optical_flow = false;
const unsigned last_generation = _optical_flow_sub.get_last_generation();
if (_optical_flow_sub.update(&optical_flow)) {
if (_optical_flow_sub.get_last_generation() != last_generation + 1) {
PX4_ERR("%d - optical_flow lost, generation %d -> %d", _instance, last_generation,
_optical_flow_sub.get_last_generation());
}
if (_param_ekf2_aid_mask.get() & MASK_USE_OF) {
flowSample flow {
.time_us = optical_flow.timestamp,
// NOTE: the EKF uses the reverse sign convention to the flow sensor. EKF assumes positive LOS rate
// is produced by a RH rotation of the image about the sensor axis.
.flow_xy_rad = Vector2f{-optical_flow.pixel_flow_x_integral, -optical_flow.pixel_flow_y_integral},
.gyro_xyz = Vector3f{-optical_flow.gyro_x_rate_integral, -optical_flow.gyro_y_rate_integral, -optical_flow.gyro_z_rate_integral},
.dt = 1e-6f * (float)optical_flow.integration_timespan,
.quality = optical_flow.quality,
};
if (PX4_ISFINITE(optical_flow.pixel_flow_y_integral) &&
PX4_ISFINITE(optical_flow.pixel_flow_x_integral) &&
flow.dt < 1) {
// Save sensor limits reported by the optical flow sensor
_ekf.set_optical_flow_limits(optical_flow.max_flow_rate, optical_flow.min_ground_distance,
optical_flow.max_ground_distance);
_ekf.setOpticalFlowData(flow);
new_optical_flow = true;
}
}
ekf2_timestamps.optical_flow_timestamp_rel = (int16_t)((int64_t)optical_flow.timestamp / 100 -
(int64_t)ekf2_timestamps.timestamp / 100);
}
return new_optical_flow;
}
void EKF2::UpdateGpsSample(ekf2_timestamps_s &ekf2_timestamps)
{
// EKF GPS message
if (_param_ekf2_aid_mask.get() & MASK_USE_GPS) {
vehicle_gps_position_s vehicle_gps_position;
if (_vehicle_gps_position_sub.update(&vehicle_gps_position)) {
gps_message gps_msg{
.time_usec = vehicle_gps_position.timestamp,
.lat = vehicle_gps_position.lat,
.lon = vehicle_gps_position.lon,
.alt = vehicle_gps_position.alt,
.yaw = vehicle_gps_position.heading,
.yaw_offset = vehicle_gps_position.heading_offset,
.fix_type = vehicle_gps_position.fix_type,
.eph = vehicle_gps_position.eph,
.epv = vehicle_gps_position.epv,
.sacc = vehicle_gps_position.s_variance_m_s,
.vel_m_s = vehicle_gps_position.vel_m_s,
.vel_ned = Vector3f{
vehicle_gps_position.vel_n_m_s,
vehicle_gps_position.vel_e_m_s,
vehicle_gps_position.vel_d_m_s
},
.vel_ned_valid = vehicle_gps_position.vel_ned_valid,
.nsats = vehicle_gps_position.satellites_used,
.pdop = sqrtf(vehicle_gps_position.hdop *vehicle_gps_position.hdop
+ vehicle_gps_position.vdop * vehicle_gps_position.vdop),
};
_ekf.setGpsData(gps_msg);
if(hold != int(gps_msg.time_usec/1000000))
{
if(!check_warning())
{
dm_read(DM_KEY_MISSION_STATE, 0, &mission, sizeof(mission_s));
hold=int(gps_msg.time_usec/1000000);
if(hold%2==0)
{
calculate_inclination_target();
print_target_gps();
//print_current_gps(gps_msg);
double check=calculate_inclination_current(gps_msg);
check_inclination(check);
}
}
}
_gps_time_usec = gps_msg.time_usec;
_gps_alttitude_ellipsoid = vehicle_gps_position.alt_ellipsoid;
}
}
}
void EKF2::check_inclination(double check)
{
double origin=inclination[int(mission.current_seq)-1];
std:: cout << "(origin : "<<origin<<" | check : "<<check<<")";
if(origin-1<=check && check <= origin+1)
{
std::cout<<"\t--- Good moving"<<std::endl;
warning_count=0;
}
else
{
std::cout<<"\t--- Bad moving"<<std::endl;
warning_count++;
}
}
bool EKF2::check_warning()
{
if(warning_count>=15)
{
std::cout<<"* [abnormal moving detected] *"<<std::endl;
return true;
}
return false;
}
void EKF2::print_current_gps(gps_message gps_msg)
{
std::cout<<"curre\t#"<<mission.current_seq<<"(lat/lon/alt)\t" << gps_msg.lat << "\t"<<gps_msg.lon<<"\t"<<gps_msg.alt<<std::endl;
}
void EKF2::calculate_inclination_target()
{
double x,y;
inclination=new double[int(mission.count)];
for (int i = 0; i < int(mission.count)-1; i++) {
struct mission_item_s mission_item {};
struct mission_item_s next_mission_item {};
dm_read((dm_item_t)mission.dataman_id, i, &mission_item, sizeof(mission_item_s));
dm_read((dm_item_t)mission.dataman_id, i+1, &next_mission_item, sizeof(mission_item_s));
x=next_mission_item.lat-mission_item.lat;
y=next_mission_item.lon-mission_item.lon;
std::cout.setf(std::ios::fixed);
std::cout.precision(7);
if(x!=0.0){
inclination[i]=y/x;
}
else
{
inclination[i]=0.0;
}
}
}
double EKF2::calculate_inclination_current(gps_message gps_msg)
{
double x,y;
double check_inclination=0;
x=target_lat-gps_msg.lat;
y=target_lon-gps_msg.lon;
if(x!=0.0){
check_inclination=y/x;
}
std::cout.setf(std::ios::fixed);
std::cout.precision(7);
return check_inclination;
}
void EKF2::set_target_gps()
{
std::cout.unsetf(std::ios::fixed);
for (size_t i = 0; i < mission.count; i++) {
struct mission_item_s mission_item {};
if(int(mission.current_seq)==int(i)){
dm_read((dm_item_t)mission.dataman_id, i, &mission_item, sizeof(mission_item_s));
target_lat=int32_t(mission_item.lat * long(pow(10,7)));
target_lon=int32_t(mission_item.lon * long(pow(10,7)));
target_alt=int32_t(mission_item.altitude * long(pow(10,4)));
}
}
}
void EKF2::UpdateMagSample(ekf2_timestamps_s &ekf2_timestamps)
{
const unsigned last_generation = _magnetometer_sub.get_last_generation();
vehicle_magnetometer_s magnetometer;
if (_magnetometer_sub.update(&magnetometer)) {
if (_magnetometer_sub.get_last_generation() != last_generation + 1) {
perf_count(_mag_missed_perf);
PX4_DEBUG("%d - vehicle_magnetometer lost, generation %d -> %d", _instance, last_generation,
_magnetometer_sub.get_last_generation());
}
bool reset = false;
// check if magnetometer has changed
if (magnetometer.device_id != _device_id_mag) {
if (_device_id_mag != 0) {
PX4_WARN("%d - mag sensor ID changed %d -> %d", _instance, _device_id_mag, magnetometer.device_id);
}
reset = true;
} else if (magnetometer.calibration_count > _mag_calibration_count) {
// existing calibration has changed, reset saved mag bias
PX4_DEBUG("%d - mag %d calibration updated, resetting bias", _instance, _device_id_mag);
reset = true;
}
if (reset) {
_ekf.resetMagBias();
_device_id_mag = magnetometer.device_id;
_mag_calibration_count = magnetometer.calibration_count;
// reset magnetometer bias learning
_mag_cal_total_time_us = 0;
_mag_cal_last_us = 0;
_mag_cal_available = false;
}
_ekf.setMagData(magSample{magnetometer.timestamp_sample, Vector3f{magnetometer.magnetometer_ga}});
ekf2_timestamps.vehicle_magnetometer_timestamp_rel = (int16_t)((int64_t)magnetometer.timestamp / 100 -
(int64_t)ekf2_timestamps.timestamp / 100);
}
}
void EKF2::UpdateRangeSample(ekf2_timestamps_s &ekf2_timestamps)
{
if (!_distance_sensor_selected) {
// get subscription index of first downward-facing range sensor
uORB::SubscriptionMultiArray<distance_sensor_s> distance_sensor_subs{ORB_ID::distance_sensor};
for (unsigned i = 0; i < distance_sensor_subs.size(); i++) {
distance_sensor_s distance_sensor;
if (distance_sensor_subs[i].copy(&distance_sensor)) {
// only use the first instace which has the correct orientation
if ((hrt_elapsed_time(&distance_sensor.timestamp) < 100_ms)
&& (distance_sensor.orientation == distance_sensor_s::ROTATION_DOWNWARD_FACING)) {
if (_distance_sensor_sub.ChangeInstance(i)) {
PX4_INFO("%d - selected distance_sensor:%d", _instance, i);
_distance_sensor_selected = true;
}
}
}
}
}
// EKF range sample
const unsigned last_generation = _distance_sensor_sub.get_last_generation();
distance_sensor_s distance_sensor;
if (_distance_sensor_sub.update(&distance_sensor)) {
if (_distance_sensor_sub.get_last_generation() != last_generation + 1) {
PX4_ERR("%d - distance_sensor lost, generation %d -> %d", _instance, last_generation,
_distance_sensor_sub.get_last_generation());
}
ekf2_timestamps.distance_sensor_timestamp_rel = (int16_t)((int64_t)distance_sensor.timestamp / 100 -
(int64_t)ekf2_timestamps.timestamp / 100);
if (distance_sensor.orientation == distance_sensor_s::ROTATION_DOWNWARD_FACING) {
rangeSample range_sample {
.time_us = distance_sensor.timestamp,
.rng = distance_sensor.current_distance,
.quality = distance_sensor.signal_quality,
};
_ekf.setRangeData(range_sample);
// Save sensor limits reported by the rangefinder
_ekf.set_rangefinder_limits(distance_sensor.min_distance, distance_sensor.max_distance);
_last_range_sensor_update = distance_sensor.timestamp;
return;
}
}
if (hrt_elapsed_time(&_last_range_sensor_update) > 1_s) {
_distance_sensor_selected = false;
}
}
void EKF2::UpdateMagCalibration(const hrt_abstime ×tamp)
{
// Check if conditions are OK for learning of magnetometer bias values
// the EKF is operating in the correct mode and there are no filter faults
if (_ekf.control_status_flags().in_air && _ekf.control_status_flags().mag_3D && (_ekf.fault_status().value == 0)) {
if (_mag_cal_last_us != 0) {
_mag_cal_total_time_us += timestamp - _mag_cal_last_us;
// Start checking mag bias estimates when we have accumulated sufficient calibration time
if (_mag_cal_total_time_us > 30_s) {
_mag_cal_last_bias = _ekf.getMagBias();
_mag_cal_last_bias_variance = _ekf.getMagBiasVariance();
_mag_cal_available = true;
}
}
_mag_cal_last_us = timestamp;
} else {
// conditions are NOT OK for learning magnetometer bias, reset timestamp
// but keep the accumulated calibration time
_mag_cal_last_us = 0;
if (_ekf.fault_status().value != 0) {
// if a filter fault has occurred, assume previous learning was invalid and do not
// count it towards total learning time.
_mag_cal_total_time_us = 0;
}
}
if (!_armed) {
// update stored declination value
if (!_mag_decl_saved) {
float declination_deg;
if (_ekf.get_mag_decl_deg(&declination_deg)) {
_param_ekf2_mag_decl.set(declination_deg);
_mag_decl_saved = true;
if (!_multi_mode) {
_param_ekf2_mag_decl.commit_no_notification();
}
}
}
}
}
int EKF2::custom_command(int argc, char *argv[])
{
return print_usage("unknown command");
}
int EKF2::task_spawn(int argc, char *argv[])
{
bool success = false;
bool replay_mode = false;
if (argc > 1 && !strcmp(argv[1], "-r")) {
PX4_INFO("replay mode enabled");
replay_mode = true;
}
#if !defined(CONSTRAINED_FLASH)
bool multi_mode = false;
int32_t imu_instances = 0;
int32_t mag_instances = 0;
int32_t sens_imu_mode = 1;
param_get(param_find("SENS_IMU_MODE"), &sens_imu_mode);
if (sens_imu_mode == 0) {
// ekf selector requires SENS_IMU_MODE = 0
multi_mode = true;
// IMUs (1 - 4 supported)
param_get(param_find("EKF2_MULTI_IMU"), &imu_instances);
if (imu_instances < 1 || imu_instances > 4) {
const int32_t imu_instances_limited = math::constrain(imu_instances, 1, 4);
PX4_WARN("EKF2_MULTI_IMU limited %d -> %d", imu_instances, imu_instances_limited);
param_set_no_notification(param_find("EKF2_MULTI_IMU"), &imu_instances_limited);
imu_instances = imu_instances_limited;
}
int32_t sens_mag_mode = 1;
param_get(param_find("SENS_MAG_MODE"), &sens_mag_mode);
if (sens_mag_mode == 0) {
param_get(param_find("EKF2_MULTI_MAG"), &mag_instances);
// Mags (1 - 4 supported)
if (mag_instances < 1 || mag_instances > 4) {
const int32_t mag_instances_limited = math::constrain(mag_instances, 1, 4);
PX4_WARN("EKF2_MULTI_MAG limited %d -> %d", mag_instances, mag_instances_limited);
param_set_no_notification(param_find("EKF2_MULTI_MAG"), &mag_instances_limited);
mag_instances = mag_instances_limited;
}
} else {
mag_instances = 1;
}
}
if (multi_mode) {
// Start EKF2Selector if it's not already running
if (_ekf2_selector.load() == nullptr) {
EKF2Selector *inst = new EKF2Selector();
if (inst) {
_ekf2_selector.store(inst);
} else {
PX4_ERR("Failed to create EKF2 selector");
return PX4_ERROR;
}
}
const hrt_abstime time_started = hrt_absolute_time();
const int multi_instances = math::min(imu_instances * mag_instances, (int)EKF2_MAX_INSTANCES);
int multi_instances_allocated = 0;
// allocate EKF2 instances until all found or arming
uORB::SubscriptionData<vehicle_status_s> vehicle_status_sub{ORB_ID(vehicle_status)};
bool ekf2_instance_created[4][4] {}; // IMUs * mags
while ((multi_instances_allocated < multi_instances)
&& (vehicle_status_sub.get().arming_state != vehicle_status_s::ARMING_STATE_ARMED)
&& ((hrt_elapsed_time(&time_started) < 30_s)
|| (vehicle_status_sub.get().hil_state == vehicle_status_s::HIL_STATE_ON))) {
vehicle_status_sub.update();
for (uint8_t mag = 0; mag < mag_instances; mag++) {
uORB::SubscriptionData<vehicle_magnetometer_s> vehicle_mag_sub{ORB_ID(vehicle_magnetometer), mag};
for (uint8_t imu = 0; imu < imu_instances; imu++) {
uORB::SubscriptionData<vehicle_imu_s> vehicle_imu_sub{ORB_ID(vehicle_imu), imu};
vehicle_mag_sub.update();
// Mag & IMU data must be valid, first mag can be ignored initially
if ((vehicle_mag_sub.get().device_id != 0 || mag == 0)
&& (vehicle_imu_sub.get().accel_device_id != 0)
&& (vehicle_imu_sub.get().gyro_device_id != 0)) {
if (!ekf2_instance_created[imu][mag]) {
EKF2 *ekf2_inst = new EKF2(true, px4::ins_instance_to_wq(imu), false);
if (ekf2_inst && ekf2_inst->multi_init(imu, mag)) {
int actual_instance = ekf2_inst->instance(); // match uORB instance numbering
if ((actual_instance >= 0) && (_objects[actual_instance].load() == nullptr)) {
_objects[actual_instance].store(ekf2_inst);
success = true;
multi_instances_allocated++;
ekf2_instance_created[imu][mag] = true;
if (actual_instance == 0) {
// force selector to run immediately if first instance started
_ekf2_selector.load()->ScheduleNow();
}
PX4_INFO("starting instance %d, IMU:%d (%d), MAG:%d (%d)", actual_instance,
imu, vehicle_imu_sub.get().accel_device_id,
mag, vehicle_mag_sub.get().device_id);
// sleep briefly before starting more instances
px4_usleep(10000);
} else {
PX4_ERR("instance numbering problem instance: %d", actual_instance);
delete ekf2_inst;
break;
}
} else {
PX4_ERR("alloc and init failed imu: %d mag:%d", imu, mag);
px4_usleep(1000000);
break;
}
}
} else {
px4_usleep(50000); // give the sensors extra time to start
continue;
}
}
}
if (multi_instances_allocated < multi_instances) {
px4_usleep(100000);
}
}
}
#endif // !CONSTRAINED_FLASH
else {
// otherwise launch regular
EKF2 *ekf2_inst = new EKF2(false, px4::wq_configurations::INS0, replay_mode);
if (ekf2_inst) {
_objects[0].store(ekf2_inst);
ekf2_inst->ScheduleNow();
success = true;
}
}
return success ? PX4_OK : PX4_ERROR;
}
int EKF2::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
Attitude and position estimator using an Extended Kalman Filter. It is used for Multirotors and Fixed-Wing.
The documentation can be found on the [ECL/EKF Overview & Tuning](https://docs.px4.io/master/en/advanced_config/tuning_the_ecl_ekf.html) page.
ekf2 can be started in replay mode (`-r`): in this mode it does not access the system time, but only uses the
timestamps from the sensor topics.
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("ekf2", "estimator");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_PARAM_FLAG('r', "Enable replay mode", true);
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
extern "C" __EXPORT int ekf2_main(int argc, char *argv[])
{
if (argc <= 1 || strcmp(argv[1], "-h") == 0) {
return EKF2::print_usage();
}
if (strcmp(argv[1], "start") == 0) {
int ret = 0;
EKF2::lock_module();
ret = EKF2::task_spawn(argc - 1, argv + 1);
if (ret < 0) {
PX4_ERR("start failed (%i)", ret);
}
EKF2::unlock_module();
return ret;
} else if (strcmp(argv[1], "status") == 0) {
if (EKF2::trylock_module()) {
#if !defined(CONSTRAINED_FLASH)
if (_ekf2_selector.load()) {
_ekf2_selector.load()->PrintStatus();
}
#endif // !CONSTRAINED_FLASH
for (int i = 0; i < EKF2_MAX_INSTANCES; i++) {
if (_objects[i].load()) {
PX4_INFO_RAW("\n");
_objects[i].load()->print_status();
}
}
EKF2::unlock_module();
} else {
PX4_WARN("module locked, try again later");
}
return 0;
} else if (strcmp(argv[1], "stop") == 0) {
EKF2::lock_module();
if (argc > 2) {
int instance = atoi(argv[2]);
if (instance >= 0 && instance < EKF2_MAX_INSTANCES) {
PX4_INFO("stopping instance %d", instance);
EKF2 *inst = _objects[instance].load();
if (inst) {
inst->request_stop();
px4_usleep(20000); // 20 ms
delete inst;
_objects[instance].store(nullptr);
}
} else {
PX4_ERR("invalid instance %d", instance);
}
} else {
// otherwise stop everything
bool was_running = false;
#if !defined(CONSTRAINED_FLASH)
if (_ekf2_selector.load()) {
PX4_INFO("stopping ekf2 selector");
_ekf2_selector.load()->Stop();
delete _ekf2_selector.load();
_ekf2_selector.store(nullptr);
was_running = true;
}
#endif // !CONSTRAINED_FLASH
for (int i = 0; i < EKF2_MAX_INSTANCES; i++) {
EKF2 *inst = _objects[i].load();
if (inst) {
PX4_INFO("stopping ekf2 instance %d", i);
was_running = true;
inst->request_stop();
px4_usleep(20000); // 20 ms
delete inst;
_objects[i].store(nullptr);
}
}
if (!was_running) {
PX4_WARN("not running");
}
}
EKF2::unlock_module();
return PX4_OK;
}
EKF2::lock_module(); // Lock here, as the method could access _object.
int ret = EKF2::custom_command(argc - 1, argv + 1);
EKF2::unlock_module();
return ret;
}