codec_anotherMethod.py
13.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# Copyright 2020 InterDigital Communications, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import struct
import sys
import time
import math
from pathlib import Path
import torch
import torch.nn.functional as F
from PIL import Image
from torchvision.transforms import ToPILImage, ToTensor
import compressai
from compressai.zoo import models
model_ids = {k: i for i, k in enumerate(models.keys())}
metric_ids = {
"mse": 0,
}
def inverse_dict(d):
# We assume dict values are unique...
assert len(d.keys()) == len(set(d.keys()))
return {v: k for k, v in d.items()}
def filesize(filepath: str) -> int:
if not Path(filepath).is_file():
raise ValueError(f'Invalid file "{filepath}".')
return Path(filepath).stat().st_size
def load_image(filepath: str) -> Image.Image:
return Image.open(filepath).convert("RGB")
def img2torch(img: Image.Image) -> torch.Tensor:
return ToTensor()(img).unsqueeze(0)
def torch2img(x: torch.Tensor) -> Image.Image:
return ToPILImage()(x.clamp_(0, 1).squeeze())
def write_uints(fd, values, fmt=">{:d}I"):
fd.write(struct.pack(fmt.format(len(values)), *values))
def write_uchars(fd, values, fmt=">{:d}B"):
fd.write(struct.pack(fmt.format(len(values)), *values))
def read_uints(fd, n, fmt=">{:d}I"):
sz = struct.calcsize("I")
return struct.unpack(fmt.format(n), fd.read(n * sz))
def read_uchars(fd, n, fmt=">{:d}B"):
sz = struct.calcsize("B")
return struct.unpack(fmt.format(n), fd.read(n * sz))
def write_bytes(fd, values, fmt=">{:d}s"):
if len(values) == 0:
return
fd.write(struct.pack(fmt.format(len(values)), values))
def read_bytes(fd, n, fmt=">{:d}s"):
sz = struct.calcsize("s")
return struct.unpack(fmt.format(n), fd.read(n * sz))[0]
def get_header(model_name, metric, quality):
"""Format header information:
- 1 byte for model id
- 4 bits for metric
- 4 bits for quality param
"""
metric = metric_ids[metric]
code = (metric << 4) | (quality - 1 & 0x0F)
return model_ids[model_name], code
def parse_header(header):
"""Read header information from 2 bytes:
- 1 byte for model id
- 4 bits for metric
- 4 bits for quality param
"""
model_id, code = header
quality = (code & 0x0F) + 1
metric = code >> 4
return (
inverse_dict(model_ids)[model_id],
inverse_dict(metric_ids)[metric],
quality,
)
def pad(x, p=2 ** 6):
h, w = x.size(2), x.size(3)
H = (h + p - 1) // p * p
W = (w + p - 1) // p * p
padding_left = (W - w) // 2
padding_right = W - w - padding_left
padding_top = (H - h) // 2
padding_bottom = H - h - padding_top
return F.pad(
x,
(padding_left, padding_right, padding_top, padding_bottom),
mode="constant",
value=0,
)
def crop(x, size):
H, W = x.size(2), x.size(3)
h, w = size
padding_left = (W - w) // 2
padding_right = W - w - padding_left
padding_top = (H - h) // 2
padding_bottom = H - h - padding_top
return F.pad(
x,
(-padding_left, -padding_right, -padding_top, -padding_bottom),
mode="constant",
value=0,
)
def compute_psnr(a, b):
mse = torch.mean((a - b)**2).item()
return -10 * math.log10(mse)
def _encode(path, image, model, metric, quality, coder, i, ref, total_bpp, ff, output, log_path):
compressai.set_entropy_coder(coder)
enc_start = time.time()
img = load_image(image)
start = time.time()
net = models[model](quality=quality, metric=metric, pretrained=True).eval()
load_time = time.time() - start
x = img2torch(img)
h, w = x.size(2), x.size(3)
p = 64 # maximum 6 strides of 2
x = pad(x, p)
# header = get_header(model, metric, quality)
if i==True:
strings = []
with torch.no_grad():
out = net.compress(x)
shape = out["shape"]
with Path(output).open("ab") as f:
# write shape and number of encoded latents
write_uints(f, (shape[0], shape[1], len(out["strings"])))
for s in out["strings"]:
write_uints(f, (len(s[0]),))
write_bytes(f, s[0])
strings.append([s[0]])
with torch.no_grad():
recon_out = net.decompress(strings, (shape[0], shape[1], len(out["strings"])))
x_recon = crop(recon_out["x_hat"], (h, w))
psnr=compute_psnr(x, x_recon)
else:
diff=x-ref
#2
diff1=torch.clamp(diff, min=0.0, max=1.0)
diff2=-torch.clamp(diff, min=-1.0, max=0.0)
diff1=pad(diff1, p)
diff2=pad(diff2, p)
#2
with torch.no_grad():
out1 = net.compress(diff1)
shape1 = out1["shape"]
strings = []
with Path(output).open("ab") as f:
# write shape and number of encoded latents
write_uints(f, (shape1[0], shape1[1], len(out1["strings"])))
for s in out1["strings"]:
write_uints(f, (len(s[0]),))
write_bytes(f, s[0])
strings.append([s[0]])
with torch.no_grad():
recon_out1 = net.decompress(strings,shape)
x_hat1 = crop(recon_out1["x_hat"], (h, w))
with torch.no_grad():
out = net.compress(diff2)
shape = out["shape"]
strings = []
with Path(output).open("ab") as f:
# write shape and number of encoded latents
write_uints(f, (shape[0], shape[1], len(out["strings"])))
for s in out["strings"]:
write_uints(f, (len(s[0]),))
write_bytes(f, s[0])
strings.append([s[0]])
with torch.no_grad():
recon_out = net.decompress(strings, shape)
x_hat2 = crop(recon_out["x_hat"], (h, w))
x_recon=ref+x_hat1-x_hat2
psnr=compute_psnr(x, x_recon)
diff_img = torch2img(diff1)
diff_img.save(path+"recon/v3_diff_1_"+str(ff)+"_q"+str(quality)+".png")
diff_img = torch2img(diff2)
diff_img.save(path+"recon/v3_diff_2_"+str(ff)+"_q"+str(quality)+".png")
enc_time = time.time() - enc_start
size = filesize(output)
bpp = float(size) * 8 / (img.size[0] * img.size[1]*3)
with Path(log_path).open("a") as f:
f.write( f" {bpp-total_bpp:.4f} | "
f" {psnr:.4f} |"
f" Encoded in {enc_time:.2f}s (model loading: {load_time:.2f}s)\n")
recon_img = torch2img(x_recon)
recon_img.save(path+"recon/v3_recon"+str(ff)+"_q"+str(quality)+".png")
return psnr, bpp, x_recon, enc_time
def _decode(inputpath, coder, show, frame, output=None):
compressai.set_entropy_coder(coder)
dec_start = time.time()
with Path(inputpath).open("rb") as f:
model, metric, quality = parse_header(read_uchars(f, 2))
print(f"Model: {model:s}, metric: {metric:s}, quality: {quality:d}")
for i in range(frame):
original_size = read_uints(f, 2)
shape = read_uints(f, 2)
strings = []
n_strings = read_uints(f, 1)[0]
for _ in range(n_strings):
s = read_bytes(f, read_uints(f, 1)[0])
strings.append([s])
start = time.time()
net = models[model](quality=quality, metric=metric, pretrained=True).eval()
load_time = time.time() - start
with torch.no_grad():
out = net.decompress(strings, shape)
x_hat = crop(out["x_hat"], original_size)
img = torch2img(x_hat)
dec_time = time.time() - dec_start
print(f"Decoded in {dec_time:.2f}s (model loading: {load_time:.2f}s)")
if show:
show_image(img)
if output is not None:
img.save(output+"_frame"+str(i)+".png")
def show_image(img: Image.Image):
from matplotlib import pyplot as plt
fig, ax = plt.subplots()
ax.axis("off")
ax.title.set_text("Decoded image")
ax.imshow(img)
fig.tight_layout()
plt.show()
def encode(argv):
parser = argparse.ArgumentParser(description="Encode image to bit-stream")
parser.add_argument("image", type=str)
parser.add_argument(
"--model",
choices=models.keys(),
default=list(models.keys())[0],
help="NN model to use (default: %(default)s)",
)
parser.add_argument(
"-m",
"--metric",
choices=["mse"],
default="mse",
help="metric trained against (default: %(default)s",
)
parser.add_argument(
"-q",
"--quality",
choices=list(range(1, 9)),
type=int,
default=3,
help="Quality setting (default: %(default)s)",
)
parser.add_argument(
"-c",
"--coder",
choices=compressai.available_entropy_coders(),
default=compressai.available_entropy_coders()[0],
help="Entropy coder (default: %(default)s)",
)
parser.add_argument(
"-f",
"--frame",
type=int,
default=100,
help="Frame setting (default: %(default)s)",
)
parser.add_argument(
"-fr",
"--framerate",
choices=[60,50,24],
type=int,
default=50,
help="Frame rate setting (default: %(default)s)",
)
parser.add_argument(
"-width",
"--width",
type=int,
default=768,
help="width setting (default: %(default))",
)
parser.add_argument(
"-hight",
"--hight",
type=int,
default=768,
help="hight setting (default: %(default))",
)
parser.add_argument("-o", "--output", help="Output path")
args = parser.parse_args(argv)
path="examples/"+args.image+"/"
if not args.output:
#args.output = Path(Path(args.image).resolve().name).with_suffix(".bin")
args.output = path+args.image+"_"+args.model+"_q"+str(args.quality)+"_v3.bin"
log_path=path+args.image+"_"+args.model+"_q"+str(args.quality)+"_v3.txt"
header = get_header(args.model, args.metric, args.quality)
with Path(args.output).open("wb") as f:
write_uchars(f, header)
write_uints(f, (args.hight, args.width))
with Path(log_path).open("w") as f:
f.write(f"model : {args.model} | "
f"quality : {args.quality} | "
f"frames : {args.frame}\n")
f.write( f"frame | bpp | "
f" psnr |"
f" Encoded time (model loading)\n"
f" {0:3d} | ")
total_psnr=0.0
total_bpp=0.0
total_time=0.0
args.image =path + args.image+"_768x768_"+str(args.framerate)+"_8bit_444"
img=args.image+"_frame"+str(0)+".png"
total_psnr, total_bpp, ref, total_time = _encode(path, img, args.model, args.metric, args.quality, args.coder, True, 0, total_bpp, 0, args.output, log_path)
for ff in range(1, args.frame):
with Path(log_path).open("a") as f:
f.write(f" {ff:3d} | ")
img=args.image+"_frame"+str(ff)+".png"
psnr, total_bpp, ref, time = _encode(path, img, args.model, args.metric, args.quality, args.coder, False, ref, total_bpp, ff, args.output, log_path)
total_psnr+=psnr
total_time+=time
total_psnr/=args.frame
total_bpp/=args.frame
with Path(log_path).open("a") as f:
f.write( f"\n Total Encoded time: {total_time:.2f}s\n"
f"\n Total PSNR: {total_psnr:.6f}\n"
f" Total BPP: {total_bpp:.6f}\n")
print(total_psnr)
print(total_bpp)
def decode(argv):
parser = argparse.ArgumentParser(description="Decode bit-stream to imager")
parser.add_argument("input", type=str)
parser.add_argument(
"-c",
"--coder",
choices=compressai.available_entropy_coders(),
default=compressai.available_entropy_coders()[0],
help="Entropy coder (default: %(default)s)",
)
parser.add_argument(
"-f",
"--frame",
choices=list(range(1, 600)),
type=int,
default=100,
help="Frame setting (default: %(default)s)",
)
parser.add_argument("--show", action="store_true")
parser.add_argument("-o", "--output", help="Output path")
args = parser.parse_args(argv)
args.input="examples/"+args.input+"/"+args.input+"_768x768_"+str(args.frame//2)+"_8bit_444_v3.bin"
args.output="examples/recon/"+args.output+"/"+args.output+"_768x768_"+str(50)+"_8bit_444"
_decode(args.input, args.coder, args.show, args.frame, args.output)
def parse_args(argv):
parser = argparse.ArgumentParser(description="")
parser.add_argument("command", choices=["encode", "decode"])
args = parser.parse_args(argv)
return args
def main(argv):
args = parse_args(argv[1:2])
argv = argv[2:]
torch.set_num_threads(1) # just to be sure
if args.command == "encode":
encode(argv)
elif args.command == "decode":
decode(argv)
if __name__ == "__main__":
main(sys.argv)