model.py
15.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
from __future__ import print_function, division
# pytorch imports
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, models, transforms
from torchvision import transforms, utils
from tensorboardX import SummaryWriter
# general imports
import os
import time
from shutil import rmtree
# data science imports
import csv
import cxr_dataset as CXR
import eval_model as E
use_gpu = torch.cuda.is_available()
gpu_count = torch.cuda.device_count()
print("Available GPU count:" + str(gpu_count))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def checkpoint(model, best_loss, epoch, LR, filename):
"""
Saves checkpoint of torchvision model during training.
Args:
model: torchvision model to be saved
best_loss: best val loss achieved so far in training
epoch: current epoch of training
LR: current learning rate in training
Returns:
None
"""
print('saving')
state = {
'model': model,
'best_loss': best_loss,
'epoch': epoch,
'rng_state': torch.get_rng_state(),
'LR': LR
}
torch.save(state, 'results/' + filename)
def pos_neg_weights_in_batch(labels_batch):
num_total = labels_batch.shape[0] * labels_batch.shape[1]
num_positives = labels_batch.sum()
num_negatives = num_total - num_positives
if not num_positives == 0:
beta_p = num_negatives / num_positives
else:
beta_p = num_negatives
beta_p = torch.as_tensor(beta_p)
beta_p = beta_p.to(device)
beta_p = beta_p.type(torch.cuda.FloatTensor)
return beta_p
def train_model(
model,
criterion,
optimizer,
LR,
num_epochs,
dataloaders,
dataset_sizes,
weight_decay,
weighted_cross_entropy_batchwise=False,
fine_tune=False,
regression=False):
"""
Fine tunes torchvision model to NIH CXR data.
Args:
model: torchvision model to be finetuned (densenet-121 in this case)
criterion: loss criterion (binary cross entropy loss, BCELoss)
optimizer: optimizer to use in training (SGD)
LR: learning rate
num_epochs: continue training up to this many epochs
dataloaders: pytorch train and val dataloaders
dataset_sizes: length of train and val datasets
weight_decay: weight decay parameter we use in SGD with momentum
Returns:
model: trained torchvision model
best_epoch: epoch on which best model val loss was obtained
"""
since = time.time()
start_epoch = 1
best_loss = 999999
best_epoch = -1
last_train_loss = -1
tensorboard_writer_train = SummaryWriter('runs/loss/train_loss')
tensorboard_writer_val = SummaryWriter('runs/loss/val_loss')
if not fine_tune:
PRED_LABEL = [
'Atelectasis',
'Cardiomegaly',
'Effusion',
'Infiltration',
'Mass',
'Nodule',
'Pneumonia',
'Pneumothorax',
'Consolidation',
'Edema',
'Emphysema',
'Fibrosis',
'Pleural_Thickening',
'Hernia']
else:
PRED_LABEL = [
'Detector01',
'Detector2',
'Detector3']
if not regression:
tensorboard_writer_auc = {}
tensorboard_writer_AP = {}
for label in PRED_LABEL:
tensorboard_writer_auc[label] = SummaryWriter('runs/auc/'+label)
tensorboard_writer_AP[label] = SummaryWriter('runs/ap/' + label)
else:
tensorboard_writer_mae = SummaryWriter('runs/mae')
# iterate over epochs
for epoch in range(start_epoch, num_epochs + 1):
print('Epoch {}/{}'.format(epoch, num_epochs))
print('-' * 10)
# set model to train or eval mode based on whether we are in train or
# val; necessary to get correct predictions given batchnorm
for phase in ['train', 'val']:
if phase == 'train':
model.train(True)
else:
model.train(False)
running_loss = 0.0
total_done = 0
for data in dataloaders[phase]:
if not regression:
inputs, labels, _ = data
else:
inputs, ground_truths, _ = data
batch_size = inputs.shape[0]
inputs = inputs.to(device)
if not regression:
labels = (labels.to(device)).float()
else:
ground_truths = (ground_truths.to(device)).float()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
# calculate gradient and update parameters in train phase
optimizer.zero_grad()
if weighted_cross_entropy_batchwise:
beta = pos_neg_weights_in_batch(labels)
criterion = nn.BCEWithLogitsLoss(pos_weight=beta)
if not regression:
loss = criterion(outputs, labels)
else:
ground_truths = ground_truths.unsqueeze(1)
loss = criterion(outputs, ground_truths)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * batch_size
epoch_loss = running_loss / dataset_sizes[phase]
if phase == 'train':
tensorboard_writer_train.add_scalar('Loss', epoch_loss, epoch)
last_train_loss = epoch_loss
elif phase == 'val':
tensorboard_writer_val.add_scalar('Loss', epoch_loss, epoch)
if not regression:
preds, aucs = E.make_pred_multilabel(dataloaders['val'], model, save_as_csv=False, fine_tune=fine_tune)
aucs.set_index('label', inplace=True)
print(aucs)
for label in PRED_LABEL:
tensorboard_writer_auc[label].add_scalar('AUC', aucs.loc[label, 'auc'], epoch)
tensorboard_writer_AP[label].add_scalar('AP', aucs.loc[label, 'AP'], epoch)
else:
mae, _, _ = E.evaluate_mae(dataloaders['val'], model)
print('MAE: ', mae)
tensorboard_writer_mae.add_scalar('MAE', mae, epoch)
print(phase + ' epoch {}:loss {:.4f} with data size {}'.format(
epoch, epoch_loss, dataset_sizes[phase]))
# checkpoint model if has best val loss yet
if phase == 'val' and epoch_loss < best_loss:
best_loss = epoch_loss
best_epoch = epoch
if not fine_tune:
checkpoint(model, best_loss, epoch, LR, filename='checkpoint_best')
elif fine_tune and not regression:
checkpoint(model, best_loss, epoch, LR, filename='classification_checkpoint_best')
else:
checkpoint(model, best_loss, epoch, LR, filename='regression_checkpoint_best')
# log training and validation loss over each epoch
with open("results/log_train", 'a') as logfile:
logwriter = csv.writer(logfile, delimiter=',')
if epoch == 1:
logwriter.writerow(["epoch", "train_loss", "val_loss"])
logwriter.writerow([epoch, last_train_loss, epoch_loss])
# Save model after each epoch
# checkpoint(model, best_loss, epoch, LR, filename='checkpoint')
total_done += batch_size
if total_done % (100 * batch_size) == 0:
print("completed " + str(total_done) + " so far in epoch")
# print elapsed time from the beginning after each epoch
print('Training complete in {:.0f}m {:.0f}s'.format(
(time.time() - since) // 60, (time.time() - since) % 60))
# total time
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
# load best model weights to return
if not fine_tune:
checkpoint_best = torch.load('results/checkpoint_best')
elif fine_tune and not regression:
checkpoint_best = torch.load('results/classification_checkpoint_best')
else:
checkpoint_best = torch.load('results/regression_checkpoint_best')
model = checkpoint_best['model']
return model, best_epoch
def train_cnn(PATH_TO_IMAGES, LR, WEIGHT_DECAY, fine_tune=False, regression=False, freeze=False, adam=False,
initial_model_path=None, initial_brixia_model_path=None, weighted_cross_entropy_batchwise=False,
modification=None, weighted_cross_entropy=False):
"""
Train torchvision model to NIH data given high level hyperparameters.
Args:
PATH_TO_IMAGES: path to NIH images
LR: learning rate
WEIGHT_DECAY: weight decay parameter for SGD
Returns:
preds: torchvision model predictions on test fold with ground truth for comparison
aucs: AUCs for each train,test tuple
"""
NUM_EPOCHS = 100
BATCH_SIZE = 32
try:
rmtree('results/')
except BaseException:
pass # directory doesn't yet exist, no need to clear it
os.makedirs("results/")
# use imagenet mean,std for normalization
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
N_LABELS = 14 # we are predicting 14 labels
N_COVID_LABELS = 3 # we are predicting 3 COVID labels
# define torchvision transforms
data_transforms = {
'train': transforms.Compose([
# transforms.RandomHorizontalFlip(),
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]),
'val': transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]),
}
# create train/val dataloaders
transformed_datasets = {}
transformed_datasets['train'] = CXR.CXRDataset(
path_to_images=PATH_TO_IMAGES,
fold='train',
transform=data_transforms['train'],
fine_tune=fine_tune,
regression=regression)
transformed_datasets['val'] = CXR.CXRDataset(
path_to_images=PATH_TO_IMAGES,
fold='val',
transform=data_transforms['val'],
fine_tune=fine_tune,
regression=regression)
dataloaders = {}
dataloaders['train'] = torch.utils.data.DataLoader(
transformed_datasets['train'],
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=8)
dataloaders['val'] = torch.utils.data.DataLoader(
transformed_datasets['val'],
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=8)
# please do not attempt to train without GPU as will take excessively long
if not use_gpu:
raise ValueError("Error, requires GPU")
if initial_model_path or initial_brixia_model_path:
if initial_model_path:
saved_model = torch.load(initial_model_path)
else:
saved_model = torch.load(initial_brixia_model_path)
model = saved_model['model']
del saved_model
if fine_tune and not initial_brixia_model_path:
num_ftrs = model.module.classifier.in_features
if freeze:
for feature in model.module.features:
for param in feature.parameters():
param.requires_grad = False
if feature == model.module.features.transition2:
break
if not regression:
model.module.classifier = nn.Linear(num_ftrs, N_COVID_LABELS)
else:
model.module.classifier = nn.Sequential(
nn.Linear(num_ftrs, 1),
nn.ReLU(inplace=True)
)
else:
model = models.densenet121(pretrained=True)
num_ftrs = model.classifier.in_features
model.classifier = nn.Linear(num_ftrs, N_LABELS)
if modification == 'transition_layer':
# num_ftrs = model.features.norm5.num_features
up1 = torch.nn.Sequential(torch.nn.ConvTranspose2d(num_ftrs, num_ftrs, kernel_size=3, stride=2, padding=1),
torch.nn.BatchNorm2d(num_ftrs),
torch.nn.ReLU(True))
up2 = torch.nn.Sequential(torch.nn.ConvTranspose2d(num_ftrs, num_ftrs, kernel_size=3, stride=2, padding=1),
torch.nn.BatchNorm2d(num_ftrs))
transition_layer = torch.nn.Sequential(up1, up2)
model.features.add_module('transition_chestX', transition_layer)
if modification == 'remove_last_block':
model.features.denseblock4 = nn.Sequential()
model.features.transition3 = nn.Sequential()
# model.features.norm5 = nn.BatchNorm2d(512)
# model.classifier = nn.Linear(512, N_LABELS)
if modification == 'remove_last_two_block':
model.features.denseblock4 = nn.Sequential()
model.features.transition3 = nn.Sequential()
model.features.transition2 = nn.Sequential()
model.features.denseblock3 = nn.Sequential()
model.features.norm5 = nn.BatchNorm2d(512)
model.classifier = nn.Linear(512, N_LABELS)
print(model)
# put model on GPU
if not initial_model_path:
model = nn.DataParallel(model)
model.to(device)
if regression:
criterion = nn.MSELoss()
else:
if weighted_cross_entropy:
pos_weights = transformed_datasets['train'].pos_neg_balance_weights()
print(pos_weights)
# pos_weights[pos_weights>40] = 40
criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weights)
else:
criterion = nn.BCEWithLogitsLoss()
if adam:
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=LR, weight_decay=WEIGHT_DECAY)
else:
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=LR, weight_decay=WEIGHT_DECAY, momentum=0.9)
dataset_sizes = {x: len(transformed_datasets[x]) for x in ['train', 'val']}
# train model
if regression:
model, best_epoch = train_model(model, criterion, optimizer, LR, num_epochs=NUM_EPOCHS,
dataloaders=dataloaders, dataset_sizes=dataset_sizes,
weight_decay=WEIGHT_DECAY, fine_tune=fine_tune, regression=regression)
else:
model, best_epoch = train_model(model, criterion, optimizer, LR, num_epochs=NUM_EPOCHS,
dataloaders=dataloaders, dataset_sizes=dataset_sizes, weight_decay=WEIGHT_DECAY,
weighted_cross_entropy_batchwise=weighted_cross_entropy_batchwise,
fine_tune=fine_tune)
# get preds and AUCs on test fold
preds, aucs = E.make_pred_multilabel(dataloaders['val'], model, save_as_csv=False, fine_tune=fine_tune)
return preds, aucs