KimJyun

최종 코드 업로드

This diff could not be displayed because it is too large.
import pandas as pd
import torch
import numpy as np
from torch.utils.data import Dataset
import os
from PIL import Image
class CXRDataset(Dataset):
def __init__(
self,
path_to_images,
fold,
transform=None,
transform_bb=None,
finding="any",
fine_tune=False,
regression=False,
label_path="/content/gdrive/MyDrive/ColabNotebooks/brixia/labels"):
self.transform = transform
self.transform_bb = transform_bb
self.path_to_images = path_to_images
if not fine_tune:
self.df = pd.read_csv(label_path + "/nih_original_split.csv")
elif fine_tune and not regression:
self.df = pd.read_csv(label_path + "/brixia_split_classification.csv")
else:
self.df = pd.read_csv(label_path + "/brixia_split_regression.csv")
self.fold = fold
self.fine_tune = fine_tune
self.regression = regression
if not fold == 'BBox':
self.df = self.df[self.df['fold'] == fold]
else:
bbox_images_df = pd.read_csv(label_path + "/BBox_List_2017.csv")
self.df = pd.merge(left=self.df, right=bbox_images_df, how="inner", on="Image Index")
if not self.fine_tune:
self.PRED_LABEL = [
'Atelectasis',
'Cardiomegaly',
'Effusion',
'Infiltration',
'Mass',
'Nodule',
'Pneumonia',
'Pneumothorax',
'Consolidation',
'Edema',
'Emphysema',
'Fibrosis',
'Pleural_Thickening',
'Hernia']
else:
self.PRED_LABEL = [
'Detector01',
'Detector2',
'Detector3']
if not finding == "any" and not fine_tune: # can filter for positive findings of the kind described; useful for evaluation
self.df = self.df[self.df['Finding Label'] == finding]
elif not finding == "any" and fine_tune and not regression:
self.df = self.df[self.df[finding] == 1]
self.df = self.df.set_index("Image Index")
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
image = Image.open(
os.path.join(
self.path_to_images,
self.df.index[idx]))
image = image.convert('RGB')
if not self.fine_tune:
label = np.zeros(len(self.PRED_LABEL), dtype=int)
for i in range(0, len(self.PRED_LABEL)):
# can leave zero if zero, else make one
if self.df[self.PRED_LABEL[i].strip()].iloc[idx].astype('int') > 0:
label[i] = self.df[self.PRED_LABEL[i].strip()
].iloc[idx].astype('int')
elif self.fine_tune and not self.regression:
covid_label = np.zeros(len(self.PRED_LABEL), dtype=int)
covid_label[0] = self.df['Detector01'].iloc[idx]
covid_label[1] = self.df['Detector2'].iloc[idx]
covid_label[2] = self.df['Detector3'].iloc[idx]
else:
ground_truth = np.array(self.df['BrixiaScoreGlobal'].iloc[idx].astype('float32'))
if self.transform:
image = self.transform(image)
if self.fold == "BBox":
# exctract bounding box coordinates from dataframe, they exist in the the columns specified below
bounding_box = self.df.iloc[idx, -7:-3].to_numpy()
if self.transform_bb:
transformed_bounding_box = self.transform_bb(bounding_box)
return image, label, self.df.index[idx], transformed_bounding_box
elif self.fine_tune and not self.regression:
return image, covid_label, self.df.index[idx]
elif self.fine_tune and self.regression:
return image, ground_truth, self.df.index[idx]
else:
return image, label, self.df.index[idx]
def pos_neg_balance_weights(self):
pos_neg_weights = []
for i in range(0, len(self.PRED_LABEL)):
num_negatives = self.df[self.df[self.PRED_LABEL[i].strip()] == 0].shape[0]
num_positives = self.df[self.df[self.PRED_LABEL[i].strip()] == 1].shape[0]
pos_neg_weights.append(num_negatives / num_positives)
pos_neg_weights = torch.Tensor(pos_neg_weights)
pos_neg_weights = pos_neg_weights.cuda()
pos_neg_weights = pos_neg_weights.type(torch.cuda.FloatTensor)
return pos_neg_weights
class RescaleBB(object):
"""Rescale the bounding box in a sample to a given size.
Args:
output_image_size (int): Desired output size.
"""
def __init__(self, output_image_size, original_image_size):
assert isinstance(output_image_size, int)
self.output_image_size = output_image_size
self.original_image_size = original_image_size
def __call__(self, sample):
assert sample.shape == (4,)
x, y, w, h = sample[0], sample[1], sample[2], sample[3]
scale_factor = self.output_image_size / self.original_image_size
new_x, new_y, new_w, new_h = x * scale_factor, y * scale_factor, w * scale_factor, h * scale_factor
transformed_sample = np.array([new_x, new_y, new_w, new_h])
return transformed_sample
class BrixiaScoreLocal:
def __init__(self, label_path):
self.data_brixia = pd.read_csv(label_path + "/metadata_global_v2.csv", sep=";")
self.data_brixia.set_index("Filename", inplace=True)
def getScore(self, filename,print_score=False):
score = self.data_brixia.loc[filename.replace(".jpg", ".dcm"), "BrixiaScore"].astype(str)
score = '0' * (6 - len(score)) + score
if print_score:
print('Brixia 6 regions Score: ')
print(score[0], ' | ', score[3])
print(score[1], ' | ', score[4])
print(score[2], ' | ', score[5])
return list(map(int, score))
import torch
import pandas as pd
import cxr_dataset as CXR
from torch.utils.data import Dataset, DataLoader
import sklearn.metrics as sklm
import numpy as np
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def make_pred_multilabel(dataloader, model, save_as_csv=False, fine_tune=False):
"""
Gives predictions for test fold and calculates AUCs using previously trained model
Args:
data_transforms: torchvision transforms to preprocess raw images; same as validation transforms
model: densenet-121 from torchvision previously fine tuned to training data
PATH_TO_IMAGES: path at which NIH images can be found
Returns:
pred_df: dataframe containing individual predictions and ground truth for each test image
auc_df: dataframe containing aggregate AUCs by train/test tuples
"""
batch_size = dataloader.batch_size
# set model to eval mode; required for proper predictions given use of batchnorm
model.train(False)
# create empty dfs
pred_df = pd.DataFrame(columns=["Image Index"])
true_df = pd.DataFrame(columns=["Image Index"])
# iterate over dataloader
for i, data in enumerate(dataloader):
inputs, labels, _ = data
inputs, labels = inputs.to(device), labels.to(device)
true_labels = labels.cpu().data.numpy()
# batch_size = true_labels.shape
outputs = model(inputs)
outputs = torch.sigmoid(outputs)
probs = outputs.cpu().data.numpy()
# get predictions and true values for each item in batch
for j in range(0, true_labels.shape[0]):
thisrow = {}
truerow = {}
thisrow["Image Index"] = dataloader.dataset.df.index[batch_size * i + j]
truerow["Image Index"] = dataloader.dataset.df.index[batch_size * i + j]
# iterate over each entry in prediction vector; each corresponds to
# individual label
for k in range(len(dataloader.dataset.PRED_LABEL)):
thisrow["prob_" + dataloader.dataset.PRED_LABEL[k]] = probs[j, k]
truerow[dataloader.dataset.PRED_LABEL[k]] = true_labels[j, k]
pred_df = pred_df.append(thisrow, ignore_index=True)
true_df = true_df.append(truerow, ignore_index=True)
# if(i % 10 == 0):
# print(str(i * BATCH_SIZE))
auc_df = pd.DataFrame(columns=["label", "auc"])
# calc AUCs
for column in true_df:
if not fine_tune:
if column not in [
'Atelectasis',
'Cardiomegaly',
'Effusion',
'Infiltration',
'Mass',
'Nodule',
'Pneumonia',
'Pneumothorax',
'Consolidation',
'Edema',
'Emphysema',
'Fibrosis',
'Pleural_Thickening',
'Hernia']:
continue
else:
if column not in [
'Detector01',
'Detector2',
'Detector3']:
continue
actual = true_df[column]
pred = pred_df["prob_" + column]
thisrow = {}
thisrow['label'] = column
thisrow['auc'] = np.nan
thisrow['AP'] = np.nan
try:
thisrow['auc'] = sklm.roc_auc_score(actual.to_numpy().astype(int), pred.to_numpy())
thisrow['AP'] = sklm.average_precision_score(actual.to_numpy().astype(int), pred.to_numpy())
except BaseException:
print("can't calculate auc for " + str(column))
auc_df = auc_df.append(thisrow, ignore_index=True)
if save_as_csv:
pred_df.to_csv("results/preds.csv", index=False)
auc_df.to_csv("results/aucs.csv", index=False)
return pred_df, auc_df
def evaluate_mae(dataloader, model):
"""
Calculates MAE using previously trained model
Args:
data_transforms: torchvision transforms to preprocess raw images; same as validation transforms
model: densenet-121 from torchvision previously fine tuned to training data
Returns:
mae: MAE
"""
# calc preds in batches of 32, can reduce if your GPU has less RAM
batch_size = dataloader.batch_size
# set model to eval mode; required for proper predictions given use of batchnorm
model.train(False)
# create empty dfs
pred_df = pd.DataFrame(columns=["Image Index"])
true_df = pd.DataFrame(columns=["Image Index"])
# iterate over dataloader
for i, data in enumerate(dataloader):
inputs, ground_truths, _ = data
inputs, ground_truths = inputs.to(device), ground_truths.to(device)
true_scores = ground_truths.cpu().data.numpy()
outputs = model(inputs)
preds = outputs.cpu().data.numpy()
# get predictions and true values for each item in batch
for j in range(0, true_scores.shape[0]):
thisrow = {}
truerow = {}
thisrow["Image Index"] = dataloader.dataset.df.index[batch_size * i + j]
truerow["Image Index"] = dataloader.dataset.df.index[batch_size * i + j]
# iterate over each entry in prediction vector; each corresponds to
# individual label
thisrow["pred_score"] = preds[j]
truerow["true_score"] = true_scores[j]
pred_df = pred_df.append(thisrow, ignore_index=True)
true_df = true_df.append(truerow, ignore_index=True)
actual = true_df["true_score"]
pred = pred_df["pred_score"]
try:
mae = sklm.mean_absolute_error(actual.to_numpy().astype(int), pred.to_numpy())
return mae, true_df, pred_df
except BaseException:
print("can't calculate mae")
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.