helpers.py 2.84 KB
from pathlib import Path

from yolo_module.yolov5.models.yolo import Model
from yolo_module.yolov5.utils.general import set_logging, yolov5_in_syspath
from yolo_module.yolov5.utils.google_utils import attempt_download
from yolo_module.yolov5.utils.torch_utils import torch


def load_model(model_path, device=None, autoshape=True, verbose=False):
    """
    Creates a specified YOLOv5 model

    Arguments:
        model_path (str): path of the model
        config_path (str): path of the config file
        device (str): select device that model will be loaded (cpu, cuda)
        pretrained (bool): load pretrained weights into the model
        autoshape (bool): make model ready for inference
        verbose (bool): if False, yolov5 logs will be silent

    Returns:
        pytorch model

    (Adapted from yolo_module.yolov5.hubconf.create)
    """
    # set logging
    set_logging(verbose=verbose)

    # set device if not given
    if not device:
        device = "cuda:0" if torch.cuda.is_available() else "cpu"

    attempt_download(model_path)  # download if not found locally
    with yolov5_in_syspath():
        model = torch.load(model_path, map_location=torch.device(device))
    if isinstance(model, dict):
        model = model["model"]  # load model
    hub_model = Model(model.yaml).to(next(model.parameters()).device)  # create
    hub_model.load_state_dict(model.float().state_dict())  # load state_dict
    hub_model.names = model.names  # class names
    model = hub_model

    if autoshape:
        model = model.autoshape()

    return model


class YOLOv5:
    def __init__(self, model_path, device=None, load_on_init=True):
        self.model_path = model_path
        self.device = device
        if load_on_init:
            Path(model_path).parents[0].mkdir(parents=True, exist_ok=True)
            self.model = load_model(model_path=model_path, device=device, autoshape=True)
        else:
            self.model = None

    def load_model(self):
        """
        Load yolov5 weight.
        """
        Path(self.model_path).parents[0].mkdir(parents=True, exist_ok=True)
        self.model = load_model(model_path=self.model_path, device=self.device, autoshape=True)

    def predict(self, image_list, size=640, augment=False):
        """
        Perform yolov5 prediction using loaded model weights.

        Returns results as a yolov5.models.common.Detections object.
        """
        assert self.model is not None, "before predict, you need to call .load_model()"
        results = self.model(imgs=image_list, size=size, augment=augment)
        return results

if __name__ == "__main__":
    model_path = "yolov5/weights/yolov5s.pt"
    device = "cuda"
    model = load_model(model_path=model_path, config_path=None, device=device)

    from PIL import Image
    imgs = [Image.open(x) for x in Path("yolov5/data/images").glob("*.jpg")]
    results = model(imgs)