PKG-INFO 7.03 KB
Metadata-Version: 2.1
Name: yolov5
Version: 5.0.5
Summary: Packaged version of the Yolov5 object detector
Home-page: https://github.com/fcakyon/yolov5-pip
Author: 
License: GPL
Description: <h1 align="center">
          packaged ultralytics/yolov5
        </h1>
        
        <h4 align="center">
          pip install yolov5
        </h4>
        
        <div align="center">
          <a href="https://badge.fury.io/py/yolov5"><img src="https://badge.fury.io/py/yolov5.svg" alt="pypi version"></a>
          <a href="https://pepy.tech/project/yolov5"><img src="https://pepy.tech/badge/yolov5/month" alt="downloads"></a>
          <a href="https://github.com/fcakyon/yolov5-pip/actions/workflows/ci.yml"><img src="https://github.com/fcakyon/yolov5-pip/actions/workflows/ci.yml/badge.svg" alt="ci testing"></a>
          <a href="https://github.com/fcakyon/yolov5-pip/actions/workflows/package_testing.yml"><img src="https://github.com/fcakyon/yolov5-pip/actions/workflows/package_testing.yml/badge.svg" alt="package testing"></a>
        </div>
        
        ## Overview
        
        You can finally install [YOLOv5 object detector](https://github.com/ultralytics/yolov5) using [pip](https://pypi.org/project/yolov5/) and integrate into your project easily.
        
        <img src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png" width="1000">
        
        ## Installation
        
        - Install yolov5 using pip `(for Python >=3.7)`:
        
        ```console
        pip install yolov5
        ```
        
        - Install yolov5 using pip `(for Python 3.6)`:
        
        ```console
        pip install "numpy>=1.18.5,<1.20" "matplotlib>=3.2.2,<4"
        pip install yolov5
        ```
        
        ## Basic Usage
        
        ```python
        import yolov5
        
        # model
        model = yolov5.load('yolov5s')
        
        # image
        img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
        
        # inference
        results = model(img)
        
        # inference with larger input size
        results = model(img, size=1280)
        
        # inference with test time augmentation
        results = model(img, augment=True)
        
        # show results
        results.show()
        
        # save results
        results.save(save_dir='results/')
        
        ```
        
        ## Alternative Usage
        
        ```python
        from yolo_module.yolov5 import YOLOv5
        
        # set model params
        model_path = "yolov5/weights/yolov5s.pt" # it automatically downloads yolov5s model to given path
        device = "cuda" # or "cpu"
        
        # init yolov5 model
        yolov5 = YOLOv5(model_path, device)
        
        # load images
        image1 = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
        image2 = 'https://github.com/ultralytics/yolov5/blob/master/data/images/bus.jpg'
        
        # perform inference
        results = yolov5.predict(image1)
        
        # perform inference with larger input size
        results = yolov5.predict(image1, size=1280)
        
        # perform inference with test time augmentation
        results = yolov5.predict(image1, augment=True)
        
        # perform inference on multiple images
        results = yolov5.predict([image1, image2], size=1280, augment=True)
        
        # show detection bounding boxes on image
        results.show()
        
        # save results into "results/" folder
        results.save(save_dir='results/')
        ```
        
        ## Scripts
        
        You can call yolo_train, yolo_detect and yolo_test commands after installing the package via `pip`:
        
        ### Training
        
        Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
        
        ```bash
        $ yolo_train --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                            yolov5m                                40
                                            yolov5l                                24
                                            yolov5x                                16
        ```
        
        ### Inference
        
        yolo_detect command runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
        
        ```bash
        $ yolo_detect --source 0  # webcam
                               file.jpg  # image
                               file.mp4  # video
                               path/  # directory
                               path/*.jpg  # glob
                               rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                               rtmp://192.168.1.105/live/test  # rtmp stream
                               http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream
        ```
        
        To run inference on example images in `yolov5/data/images`:
        
        ```bash
        $ yolo_detect --source yolov5/data/images --weights yolov5s.pt --conf 0.25
        ```
        
        ## Status
        
        Builds for the latest commit for `Windows/Linux/MacOS` with `Python3.6/3.7/3.8`: <a href="https://github.com/fcakyon/yolov5-pip/actions/workflows/ci.yml"><img src="https://github.com/fcakyon/yolov5-python/workflows/CI%20CPU%20Testing/badge.svg" alt="CI CPU testing"></a>
        
        Status for the train/detect/test scripts: <a href="https://github.com/fcakyon/yolov5-pip/actions/workflows/package_testing.yml"><img src="https://github.com/fcakyon/yolov5-python/workflows/Package%20CPU%20Testing/badge.svg" alt="Package CPU testing"></a>
        
Keywords: machine-learning,deep-learning,ml,pytorch,YOLO,object-detection,vision,YOLOv3,YOLOv4,YOLOv5
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: License :: OSI Approved :: GNU General Public License (GPL)
Classifier: Operating System :: OS Independent
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Topic :: Education
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Image Recognition
Requires-Python: >=3.6
Description-Content-Type: text/markdown
Provides-Extra: tests