PKG-INFO
7.03 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
Metadata-Version: 2.1
Name: yolov5
Version: 5.0.5
Summary: Packaged version of the Yolov5 object detector
Home-page: https://github.com/fcakyon/yolov5-pip
Author:
License: GPL
Description: <h1 align="center">
packaged ultralytics/yolov5
</h1>
<h4 align="center">
pip install yolov5
</h4>
<div align="center">
<a href="https://badge.fury.io/py/yolov5"><img src="https://badge.fury.io/py/yolov5.svg" alt="pypi version"></a>
<a href="https://pepy.tech/project/yolov5"><img src="https://pepy.tech/badge/yolov5/month" alt="downloads"></a>
<a href="https://github.com/fcakyon/yolov5-pip/actions/workflows/ci.yml"><img src="https://github.com/fcakyon/yolov5-pip/actions/workflows/ci.yml/badge.svg" alt="ci testing"></a>
<a href="https://github.com/fcakyon/yolov5-pip/actions/workflows/package_testing.yml"><img src="https://github.com/fcakyon/yolov5-pip/actions/workflows/package_testing.yml/badge.svg" alt="package testing"></a>
</div>
## Overview
You can finally install [YOLOv5 object detector](https://github.com/ultralytics/yolov5) using [pip](https://pypi.org/project/yolov5/) and integrate into your project easily.
<img src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png" width="1000">
## Installation
- Install yolov5 using pip `(for Python >=3.7)`:
```console
pip install yolov5
```
- Install yolov5 using pip `(for Python 3.6)`:
```console
pip install "numpy>=1.18.5,<1.20" "matplotlib>=3.2.2,<4"
pip install yolov5
```
## Basic Usage
```python
import yolov5
# model
model = yolov5.load('yolov5s')
# image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# inference
results = model(img)
# inference with larger input size
results = model(img, size=1280)
# inference with test time augmentation
results = model(img, augment=True)
# show results
results.show()
# save results
results.save(save_dir='results/')
```
## Alternative Usage
```python
from yolo_module.yolov5 import YOLOv5
# set model params
model_path = "yolov5/weights/yolov5s.pt" # it automatically downloads yolov5s model to given path
device = "cuda" # or "cpu"
# init yolov5 model
yolov5 = YOLOv5(model_path, device)
# load images
image1 = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
image2 = 'https://github.com/ultralytics/yolov5/blob/master/data/images/bus.jpg'
# perform inference
results = yolov5.predict(image1)
# perform inference with larger input size
results = yolov5.predict(image1, size=1280)
# perform inference with test time augmentation
results = yolov5.predict(image1, augment=True)
# perform inference on multiple images
results = yolov5.predict([image1, image2], size=1280, augment=True)
# show detection bounding boxes on image
results.show()
# save results into "results/" folder
results.save(save_dir='results/')
```
## Scripts
You can call yolo_train, yolo_detect and yolo_test commands after installing the package via `pip`:
### Training
Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ yolo_train --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
### Inference
yolo_detect command runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ yolo_detect --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
rtmp://192.168.1.105/live/test # rtmp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```
To run inference on example images in `yolov5/data/images`:
```bash
$ yolo_detect --source yolov5/data/images --weights yolov5s.pt --conf 0.25
```
## Status
Builds for the latest commit for `Windows/Linux/MacOS` with `Python3.6/3.7/3.8`: <a href="https://github.com/fcakyon/yolov5-pip/actions/workflows/ci.yml"><img src="https://github.com/fcakyon/yolov5-python/workflows/CI%20CPU%20Testing/badge.svg" alt="CI CPU testing"></a>
Status for the train/detect/test scripts: <a href="https://github.com/fcakyon/yolov5-pip/actions/workflows/package_testing.yml"><img src="https://github.com/fcakyon/yolov5-python/workflows/Package%20CPU%20Testing/badge.svg" alt="Package CPU testing"></a>
Keywords: machine-learning,deep-learning,ml,pytorch,YOLO,object-detection,vision,YOLOv3,YOLOv4,YOLOv5
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: License :: OSI Approved :: GNU General Public License (GPL)
Classifier: Operating System :: OS Independent
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Topic :: Education
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Image Recognition
Requires-Python: >=3.6
Description-Content-Type: text/markdown
Provides-Extra: tests