test_n%.py
14.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# run train.py --dataset cifar10 --model resnet18 --data_augmentation --cutout --length 16
# run train.py --dataset cifar100 --model resnet18 --data_augmentation --cutout --length 8
# run train.py --dataset svhn --model wideresnet --learning_rate 0.01 --epochs 160 --cutout --length 20
import pdb
import argparse
import numpy as np
from tqdm import tqdm
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torch.optim.lr_scheduler import MultiStepLR
from torchvision.utils import make_grid, save_image
from torchvision import datasets, transforms
from torchvision.transforms.transforms import ToTensor
from torchvision.datasets import ImageFolder
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.dataloader import RandomSampler
from util.misc import CSVLogger
from util.cutout import Cutout
from model.resnet import ResNet18
from model.wide_resnet import WideResNet
from PIL import Image
from matplotlib.pyplot import imshow
import time
def csv2list(filename):
lists = []
file = open(filename, 'r', encoding='utf-8-sig')
while True:
line = file.readline().strip("\n")
# int_list = [int(i) for i in line]
if line:
line = line.split(",")
lists.append(line)
else:
break
return lists
# variance순으로 정렬된 logs파일에서 읽어오기
filelist = csv2list("C:/Users/82109/Desktop/캡디/캡디자료들/논문모델/cutout/logs/image_save/1_5000_deleted.csv")
for i in range(len(filelist)):
for j in range(len(filelist[0])):
filelist[i][j] = float(filelist[i][j])
transposelist = np.transpose(filelist)
# print(list)
list_tensor = torch.tensor(transposelist, dtype=torch.long)
target = list(list_tensor[2])
train_img_list = list()
for img_idx in transposelist[1]:
img_path = "C:/Users/82109/Desktop/model1/img" + str(int(img_idx)) + ".png"
train_img_list.append(img_path)
class Img_Dataset(Dataset):
def __init__(self,file_list,transform):
self.file_list = file_list
self.transform = transform
def __len__(self):
return len(self.file_list)
def __getitem__(self, index):
img_path = self.file_list[index]
images = np.array(Image.open(img_path))
# img_transformed = self.transform(images)
labels = target[index]
return images, labels
# print(list_tensor)
# topk 갯수 설정
# k = 5000
# values, indices = torch.topk(list_tensor[0], k)
# # print(values)
# image_list = []
# for i in range(k):
# image_list.append(int(list_tensor[1][49999-i].item()))
# for i in image_list:
# file = "C:/Users/82109/Desktop/1/1/img{0}.png".format(i)
# if os.path.isfile(file):
# os.remove(file)
# transform_train = transforms.Compose([ transforms.ToTensor(), ])
# normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
# std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
model_options = ['resnet18', 'wideresnet']
dataset_options = ['cifar10', 'cifar100', 'svhn']
parser = argparse.ArgumentParser(description='CNN')
parser.add_argument('--dataset', '-d', default='cifar10',
choices=dataset_options)
parser.add_argument('--model', '-a', default='resnet18',
choices=model_options)
parser.add_argument('--batch_size', type=int, default=100,
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train (default: 20)')
parser.add_argument('--learning_rate', type=float, default=0.1,
help='learning rate')
parser.add_argument('--data_augmentation', action='store_true', default=False,
help='augment data by flipping and cropping')
parser.add_argument('--cutout', action='store_true', default=False,
help='apply cutout')
parser.add_argument('--n_holes', type=int, default=0,
help='number of holes to cut out from image')
parser.add_argument('--length', type=int, default=0,
help='length of the holes')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=0,
help='random seed (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
cudnn.benchmark = True # Should make training should go faster for large models
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
test_id = args.dataset + '_' + args.model
print(args)
# Image Preprocessing
if args.dataset == 'svhn':
normalize = transforms.Normalize(mean=[x / 255.0 for x in[109.9, 109.7, 113.8]],
std=[x / 255.0 for x in [50.1, 50.6, 50.8]])
else:
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
train_transform = transforms.Compose([])
if args.data_augmentation:
train_transform.transforms.append(transforms.RandomCrop(32, padding=4))
train_transform.transforms.append(transforms.RandomHorizontalFlip())
train_transform.transforms.append(transforms.ToTensor())
train_transform.transforms.append(normalize)
if args.cutout:
train_transform.transforms.append(Cutout(n_holes=args.n_holes, length=args.length))
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize])
if args.dataset == 'cifar10':
num_classes = 10
train_dataset = Img_Dataset(file_list = train_img_list,
transform=train_transform)
# custom_dataset = ImageFolder(root='C:/Users/82109/Desktop/1/', transform = transform_train)
# train_dataset = datasets.CIFAR10(root='data/',
# train=True,
# transform=train_transform,
# download=True)
test_dataset = datasets.CIFAR10(root='data/',
train=False,
transform=test_transform,
download=True)
# elif args.dataset == 'cifar100':
# num_classes = 100
# train_dataset = datasets.CIFAR100(root='data/',
# train=True,
# transform=train_transform,
# download=True)
# test_dataset = datasets.CIFAR100(root='data/',
# train=False,
# transform=test_transform,
# download=True)
# elif args.dataset == 'svhn':
# num_classes = 10
# train_dataset = datasets.SVHN(root='data/',
# split='train',
# transform=train_transform,
# download=True)
# extra_dataset = datasets.SVHN(root='data/',
# split='extra',
# transform=train_transform,
# download=True)
# # Combine both training splits (https://arxiv.org/pdf/1605.07146.pdf)
# data = np.concatenate([train_dataset.data, extra_dataset.data], axis=0)
# labels = np.concatenate([train_dataset.labels, extra_dataset.labels], axis=0)
# train_dataset.data = data
# train_dataset.labels = labels
# test_dataset = datasets.SVHN(root='data/',
# split='test',
# transform=test_transform,
# download=True)
# # Data Loader (Input Pipeline)
# train_loader = torch.utils.data.DataLoader(custom_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True,num_workers=0)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=False,
# sampler=RandomSampler(train_dataset, True, 40000),
pin_memory=True,
num_workers=0)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=args.batch_size,
shuffle=False,
pin_memory=True,
num_workers=0)
if args.model == 'resnet18':
cnn = ResNet18(num_classes=num_classes)
elif args.model == 'wideresnet':
if args.dataset == 'svhn':
cnn = WideResNet(depth=16, num_classes=num_classes, widen_factor=8,
dropRate=0.4)
else:
cnn = WideResNet(depth=28, num_classes=num_classes, widen_factor=10,
dropRate=0.3)
cnn = cnn.cuda()
criterion = nn.CrossEntropyLoss().cuda()
cnn_optimizer = torch.optim.SGD(cnn.parameters(), lr=args.learning_rate,
momentum=0.9, nesterov=True, weight_decay=5e-4)
# scheduler = MultiStepLR(cnn_optimizer, milestones=[60, 120, 160], gamma=0.2)
if args.dataset == 'svhn':
scheduler = MultiStepLR(cnn_optimizer, milestones=[80, 120], gamma=0.1)
else:
scheduler = MultiStepLR(cnn_optimizer, milestones=[60, 120, 160], gamma=0.2)
test_id = 'custom_dataset_resnet18'
filename = 'logs/' + test_id + '.csv'
csv_logger = CSVLogger(args=args, fieldnames=['epoch', 'train_acc', 'test_acc'], filename=filename)
def test(loader):
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
correct = 0.
total = 0.
count = 0
for images, labels in loader:
images = images.cuda()
labels = labels.cuda()
with torch.no_grad():
pred = cnn(images)
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
# if (pred == labels).sum().item():
# print('match')
# count +=1
correct += (pred == labels).sum().item()
val_acc = correct / total
cnn.train()
return val_acc
# kl_sum = 0
# y_bar = torch.zeros(8, 10).detach().cuda()
# y_bar 구하는 epoch
for epoch in range(1):
xentropy_loss_avg = 0.
correct = 0.
total = 0.
norm_const = 0
kldiv = 0
# pred_sum = torch.Tensor([0] * 10).detach().cuda()
count = 0
progress_bar = tqdm(train_loader)
for i, (images, labels) in enumerate(progress_bar):
progress_bar.set_description('Epoch ' + str(epoch))
images = Variable(images.view([args.batch_size,3,32,32]).float().cuda())
labels = Variable(labels.float().cuda())
labels = torch.tensor(labels, dtype=torch.long, device=torch.device('cuda:0'))
cnn.zero_grad()
pred = cnn(images)
xentropy_loss = criterion(pred, labels)
xentropy_loss.backward()
cnn_optimizer.step()
xentropy_loss_avg += xentropy_loss.item()
pred_softmax = nn.functional.softmax(pred).cuda()
# Calculate running average of accuracy
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
correct += (pred == labels.data).sum().item()
accuracy = correct / total
# for a in range(pred_softmax.data.size()[0]):
# for b in range(y_bar.size()[1]):
# y_bar[epoch][b] += torch.log(pred_softmax.data[a][b])
progress_bar.set_postfix(
xentropy='%.3f' % (xentropy_loss_avg / (i + 1)),
acc='%.3f' % accuracy)
# count += 1
# xentropy = xentropy_loss_avg / count
# y_bar[epoch] = torch.Tensor([x / 50000 for x in y_bar[epoch]]).cuda()
# y_bar[epoch] = torch.exp(y_bar[epoch])
# for index in range(y_bar.size()[1]):
# norm_const += y_bar[epoch][index]
# for index in range(y_bar.size()[1]):
# y_bar[epoch][index] = y_bar[epoch][index] / norm_const
# print("y_bar[{0}] : ".format(epoch), y_bar[epoch])
test_acc = test(test_loader)
# print(pred, labels.data)
tqdm.write('test_acc: %.3f' % (test_acc))
scheduler.step() # Use this line for PyTorch <1.4
# scheduler.step() # Use this line for PyTorch >=1.4
row = {'epoch': str(epoch), 'train_acc': str(accuracy), 'test_acc': str(test_acc)}
csv_logger.writerow(row)
# del pred
# torch.cuda.empty_cache()
# var_tensor = torch.zeros(8, 50000).detach().cuda()
# var_addeachcol = torch.zeros(1, 50000).detach().cuda()
# # kl_div 구하는 epoch
# for epoch in range(1):
# checkpoint = torch.load('C:/Users/82109/Desktop/캡디/캡디자료들/논문모델/Cutout/checkpoints/sampling/sampling_{0}.pt'.format(8), map_location = torch.device('cuda:0'))
# cnn.load_state_dict(checkpoint)
# cnn.eval()
# kldiv = 0
# for i, (images, labels) in enumerate(progress_bar):
# progress_bar.set_description('Epoch ' + str(epoch) + ': Calculate kl_div')
# images = images.cuda()
# labels = labels.cuda()
# cnn.zero_grad()
# pred = cnn(images)
# pred_softmax = nn.functional.softmax(pred).cuda()
# # 입력 두 개의 shape이 다르면 batchsize로 평균을 내서 반환.
# kldiv = torch.nn.functional.kl_div(y_bar[epoch], pred_softmax, reduction='sum')
# # 1 * 50000에 한 모델의 데이터별 variance 저장
# var_tensor[epoch][i] += abs(kldiv).detach()
# var_addeachcol[0][i] += var_tensor[epoch][i]
# kl_sum += kldiv.detach()
# # print(y_bar_copy.size(), pred_softmax.size())
# # print(kl_sum)
# var = abs(kl_sum.item() / 50000)
# print("Variance : ", var)
# csv_logger.writerow({'var' : float(var)})
# # print(var_tensor)
# for i in range(var_addeachcol.size()[1]):
# var_addeachcol[0][i] = var_addeachcol[0][i] / 8
# print(var_addeachcol)
# # var_addeachcol[0] = torch.Tensor([x / 8 for x in var_addeachcol]).cuda()
# var_sorted = torch.argsort(var_addeachcol)
# print(var_sorted)
# for i in range(var_addeachcol.size()[1]):
# csv_logger.writerow({'avg_var' : float(var_addeachcol[0][i]), 'arg_var' : float(var_sorted[0][i]), 'index' : float(i + 1)})
torch.save(cnn.state_dict(), 'checkpoints/' + test_id + '.pt')
csv_logger.close()