pconv_model.py
13.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import sys
import numpy as np
from datetime import datetime
import tensorflow as tf
from keras.models import Model
from keras.models import load_model
from keras.optimizers import Adam
from keras.layers import Input, Conv2D, UpSampling2D, Dropout, LeakyReLU, BatchNormalization, Activation, Lambda
from keras.layers.merge import Concatenate
from keras.applications import VGG16
from keras import backend as K
from keras.utils.multi_gpu_utils import multi_gpu_model
from libs.pconv_layer import PConv2D
class PConvUnet(object):
def __init__(self, img_rows=512, img_cols=512, vgg_weights="imagenet", inference_only=False, net_name='default', gpus=1, vgg_device=None):
"""Create the PConvUnet. If variable image size, set img_rows and img_cols to None
Args:
img_rows (int): image height.
img_cols (int): image width.
vgg_weights (str): which weights to pass to the vgg network.
inference_only (bool): initialize BN layers for inference.
net_name (str): Name of this network (used in logging).
gpus (int): How many GPUs to use for training.
vgg_device (str): In case of training with multiple GPUs, specify which device to run VGG inference on.
e.g. if training on 8 GPUs, vgg inference could be off-loaded exclusively to one GPU, instead of
running on one of the GPUs which is also training the UNet.
"""
# Settings
self.img_rows = img_rows
self.img_cols = img_cols
self.img_overlap = 30
self.inference_only = inference_only
self.net_name = net_name
self.gpus = gpus
self.vgg_device = vgg_device
# Scaling for VGG input
self.mean = [0.485, 0.456, 0.406]
self.std = [0.229, 0.224, 0.225]
# Assertions
assert self.img_rows >= 256, 'Height must be >256 pixels'
assert self.img_cols >= 256, 'Width must be >256 pixels'
# Set current epoch
self.current_epoch = 0
# VGG layers to extract features from (first maxpooling layers, see pp. 7 of paper)
self.vgg_layers = [3, 6, 10]
# Instantiate the vgg network
if self.vgg_device:
with tf.device(self.vgg_device):
self.vgg = self.build_vgg(vgg_weights)
else:
self.vgg = self.build_vgg(vgg_weights)
# Create UNet-like model
if self.gpus <= 1:
self.model, inputs_mask = self.build_pconv_unet()
self.compile_pconv_unet(self.model, inputs_mask)
else:
with tf.device("/cpu:0"):
self.model, inputs_mask = self.build_pconv_unet()
self.model = multi_gpu_model(self.model, gpus=self.gpus)
self.compile_pconv_unet(self.model, inputs_mask)
def build_vgg(self, weights="imagenet"):
"""
Load pre-trained VGG16 from keras applications
Extract features to be used in loss function from last conv layer, see architecture at:
https://github.com/keras-team/keras/blob/master/keras/applications/vgg16.py
"""
# Input image to extract features from
img = Input(shape=(self.img_rows, self.img_cols, 3))
# Mean center and rescale by variance as in PyTorch
processed = Lambda(lambda x: (x-self.mean) / self.std)(img)
# If inference only, just return empty model
if self.inference_only:
model = Model(inputs=img, outputs=[img for _ in range(len(self.vgg_layers))])
model.trainable = False
model.compile(loss='mse', optimizer='adam')
return model
# Get the vgg network from Keras applications
if weights in ['imagenet', None]:
vgg = VGG16(weights=weights, include_top=False)
else:
vgg = VGG16(weights=None, include_top=False)
vgg.load_weights(weights, by_name=True)
# Output the first three pooling layers
vgg.outputs = [vgg.layers[i].output for i in self.vgg_layers]
# Create model and compile
model = Model(inputs=img, outputs=vgg(processed))
model.trainable = False
model.compile(loss='mse', optimizer='adam')
return model
def build_pconv_unet(self, train_bn=True):
# INPUTS
inputs_img = Input((self.img_rows, self.img_cols, 3), name='inputs_img')
inputs_mask = Input((self.img_rows, self.img_cols, 3), name='inputs_mask')
# ENCODER
def encoder_layer(img_in, mask_in, filters, kernel_size, bn=True):
conv, mask = PConv2D(filters, kernel_size, strides=2, padding='same')([img_in, mask_in])
if bn:
conv = BatchNormalization(name='EncBN'+str(encoder_layer.counter))(conv, training=train_bn)
conv = Activation('relu')(conv)
encoder_layer.counter += 1
return conv, mask
encoder_layer.counter = 0
e_conv1, e_mask1 = encoder_layer(inputs_img, inputs_mask, 64, 7, bn=False)
e_conv2, e_mask2 = encoder_layer(e_conv1, e_mask1, 128, 5)
e_conv3, e_mask3 = encoder_layer(e_conv2, e_mask2, 256, 5)
e_conv4, e_mask4 = encoder_layer(e_conv3, e_mask3, 512, 3)
e_conv5, e_mask5 = encoder_layer(e_conv4, e_mask4, 512, 3)
e_conv6, e_mask6 = encoder_layer(e_conv5, e_mask5, 512, 3)
e_conv7, e_mask7 = encoder_layer(e_conv6, e_mask6, 512, 3)
e_conv8, e_mask8 = encoder_layer(e_conv7, e_mask7, 512, 3)
# DECODER
def decoder_layer(img_in, mask_in, e_conv, e_mask, filters, kernel_size, bn=True):
up_img = UpSampling2D(size=(2,2))(img_in)
up_mask = UpSampling2D(size=(2,2))(mask_in)
concat_img = Concatenate(axis=3)([e_conv,up_img])
concat_mask = Concatenate(axis=3)([e_mask,up_mask])
conv, mask = PConv2D(filters, kernel_size, padding='same')([concat_img, concat_mask])
if bn:
conv = BatchNormalization()(conv)
conv = LeakyReLU(alpha=0.2)(conv)
return conv, mask
d_conv9, d_mask9 = decoder_layer(e_conv8, e_mask8, e_conv7, e_mask7, 512, 3)
d_conv10, d_mask10 = decoder_layer(d_conv9, d_mask9, e_conv6, e_mask6, 512, 3)
d_conv11, d_mask11 = decoder_layer(d_conv10, d_mask10, e_conv5, e_mask5, 512, 3)
d_conv12, d_mask12 = decoder_layer(d_conv11, d_mask11, e_conv4, e_mask4, 512, 3)
d_conv13, d_mask13 = decoder_layer(d_conv12, d_mask12, e_conv3, e_mask3, 256, 3)
d_conv14, d_mask14 = decoder_layer(d_conv13, d_mask13, e_conv2, e_mask2, 128, 3)
d_conv15, d_mask15 = decoder_layer(d_conv14, d_mask14, e_conv1, e_mask1, 64, 3)
d_conv16, d_mask16 = decoder_layer(d_conv15, d_mask15, inputs_img, inputs_mask, 3, 3, bn=False)
outputs = Conv2D(3, 1, activation = 'sigmoid', name='outputs_img')(d_conv16)
# Setup the model inputs / outputs
model = Model(inputs=[inputs_img, inputs_mask], outputs=outputs)
return model, inputs_mask
def compile_pconv_unet(self, model, inputs_mask, lr=0.0002):
model.compile(
optimizer = Adam(lr=lr),
loss=self.loss_total(inputs_mask),
metrics=[self.PSNR]
)
def loss_total(self, mask):
"""
Creates a loss function which sums all the loss components
and multiplies by their weights. See paper eq. 7.
"""
def loss(y_true, y_pred):
# Compute predicted image with non-hole pixels set to ground truth
y_comp = mask * y_true + (1-mask) * y_pred
# Compute the vgg features.
if self.vgg_device:
with tf.device(self.vgg_device):
vgg_out = self.vgg(y_pred)
vgg_gt = self.vgg(y_true)
vgg_comp = self.vgg(y_comp)
else:
vgg_out = self.vgg(y_pred)
vgg_gt = self.vgg(y_true)
vgg_comp = self.vgg(y_comp)
# Compute loss components
l1 = self.loss_valid(mask, y_true, y_pred)
l2 = self.loss_hole(mask, y_true, y_pred)
l3 = self.loss_perceptual(vgg_out, vgg_gt, vgg_comp)
l4 = self.loss_style(vgg_out, vgg_gt)
l5 = self.loss_style(vgg_comp, vgg_gt)
l6 = self.loss_tv(mask, y_comp)
# Return loss function
return l1 + 6*l2 + 0.05*l3 + 120*(l4+l5) + 0.1*l6
return loss
def loss_hole(self, mask, y_true, y_pred):
"""Pixel L1 loss within the hole / mask"""
return self.l1((1-mask) * y_true, (1-mask) * y_pred)
def loss_valid(self, mask, y_true, y_pred):
"""Pixel L1 loss outside the hole / mask"""
return self.l1(mask * y_true, mask * y_pred)
def loss_perceptual(self, vgg_out, vgg_gt, vgg_comp):
"""Perceptual loss based on VGG16, see. eq. 3 in paper"""
loss = 0
for o, c, g in zip(vgg_out, vgg_comp, vgg_gt):
loss += self.l1(o, g) + self.l1(c, g)
return loss
def loss_style(self, output, vgg_gt):
"""Style loss based on output/computation, used for both eq. 4 & 5 in paper"""
loss = 0
for o, g in zip(output, vgg_gt):
loss += self.l1(self.gram_matrix(o), self.gram_matrix(g))
return loss
def loss_tv(self, mask, y_comp):
"""Total variation loss, used for smoothing the hole region, see. eq. 6"""
# Create dilated hole region using a 3x3 kernel of all 1s.
kernel = K.ones(shape=(3, 3, mask.shape[3], mask.shape[3]))
dilated_mask = K.conv2d(1-mask, kernel, data_format='channels_last', padding='same')
# Cast values to be [0., 1.], and compute dilated hole region of y_comp
dilated_mask = K.cast(K.greater(dilated_mask, 0), 'float32')
P = dilated_mask * y_comp
# Calculate total variation loss
a = self.l1(P[:,1:,:,:], P[:,:-1,:,:])
b = self.l1(P[:,:,1:,:], P[:,:,:-1,:])
return a+b
def fit_generator(self, generator, *args, **kwargs):
"""Fit the U-Net to a (images, targets) generator
Args:
generator (generator): generator supplying input image & mask, as well as targets.
*args: arguments to be passed to fit_generator
**kwargs: keyword arguments to be passed to fit_generator
"""
self.model.fit_generator(
generator,
*args, **kwargs
)
def summary(self):
"""Get summary of the UNet model"""
print(self.model.summary())
def load(self, filepath, train_bn=True, lr=0.0002):
# Create UNet-like model
self.model, inputs_mask = self.build_pconv_unet(train_bn)
self.compile_pconv_unet(self.model, inputs_mask, lr)
# Load weights into model
epoch = int(os.path.basename(filepath).split('.')[1].split('-')[0])
assert epoch > 0, "Could not parse weight file. Should include the epoch"
self.current_epoch = epoch
self.model.load_weights(filepath)
@staticmethod
def PSNR(y_true, y_pred):
"""
PSNR is Peek Signal to Noise Ratio, see https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
The equation is:
PSNR = 20 * log10(MAX_I) - 10 * log10(MSE)
Our input is scaled with be within the range -2.11 to 2.64 (imagenet value scaling). We use the difference between these
two values (4.75) as MAX_I
"""
#return 20 * K.log(4.75) / K.log(10.0) - 10.0 * K.log(K.mean(K.square(y_pred - y_true))) / K.log(10.0)
return - 10.0 * K.log(K.mean(K.square(y_pred - y_true))) / K.log(10.0)
@staticmethod
def current_timestamp():
return datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
@staticmethod
def l1(y_true, y_pred):
"""Calculate the L1 loss used in all loss calculations"""
if K.ndim(y_true) == 4:
return K.mean(K.abs(y_pred - y_true), axis=[1,2,3])
elif K.ndim(y_true) == 3:
return K.mean(K.abs(y_pred - y_true), axis=[1,2])
else:
raise NotImplementedError("Calculating L1 loss on 1D tensors? should not occur for this network")
@staticmethod
def gram_matrix(x, norm_by_channels=False):
"""Calculate gram matrix used in style loss"""
# Assertions on input
assert K.ndim(x) == 4, 'Input tensor should be a 4d (B, H, W, C) tensor'
assert K.image_data_format() == 'channels_last', "Please use channels-last format"
# Permute channels and get resulting shape
x = K.permute_dimensions(x, (0, 3, 1, 2))
shape = K.shape(x)
B, C, H, W = shape[0], shape[1], shape[2], shape[3]
# Reshape x and do batch dot product
features = K.reshape(x, K.stack([B, C, H*W]))
gram = K.batch_dot(features, features, axes=2)
# Normalize with channels, height and width
gram = gram / K.cast(C * H * W, x.dtype)
return gram
# Prediction functions
######################
def predict(self, sample, **kwargs):
"""Run prediction using this model"""
return self.model.predict(sample, **kwargs)