Run_test03.py
9.48 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from mylib import config, thread
from mylib.mailer import Mailer
from mylib.detection_test01 import detect_people
from imutils.video import VideoStream, FPS
from scipy.spatial import distance as dist
import numpy as np
import argparse, imutils, cv2, os, time, schedule, sys
#----------------------------Parse req. arguments------------------------------#
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", type=str, default="",
help="path to (optional) input video file")
ap.add_argument("-o", "--output", type=str, default="",
help="path to (optional) output video file")
ap.add_argument("-d", "--display", type=int, default=1,
help="whether or not output frame should be displayed")
args = vars(ap.parse_args())
#------------------------------------------------------------------------------#
# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([config.MODEL_PATH, "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([config.MODEL_PATH, "yolov3.weights"])
configPath = os.path.sep.join([config.MODEL_PATH, "yolov3.cfg"])
# load our YOLO object detector trained on COCO dataset (80 classes)
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# check if we are going to use GPU
if config.USE_GPU:
# set CUDA as the preferable backend and target
print("")
print("[INFO] Looking for GPU")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# if a video path was not supplied, grab a reference to the camera
if not args.get("input", False):
print("[INFO] Starting the live stream..")
vs = cv2.VideoCapture(config.url)
# otherwise, grab a reference to the video file
else:
print("[INFO] Starting the video..")
vs = cv2.VideoCapture(args["input"])
writer = None
# start the FPS counter
fps = FPS().start()
### test
win_name = "ROI 및 MIN_DISTANCE 지정"
pts_cnt = 0
dist_std = 0
def onMouse(event, x, y, flags, param):
global pts_cnt
if event == cv2.EVENT_LBUTTONDOWN:
# 좌표에 초록색 동그라미 표시
cv2.circle(draw, (x, y), 10, (0, 255, 0), -1)
cv2.imshow(win_name, draw)
# 마우스 좌표 저장
pts[pts_cnt] = [x, y]
pts_cnt += 1
if pts_cnt == 6:
topLeft = pts[0]
bottomLeft = pts[1]
bottomRight = pts[2]
topRight = pts[3]
ptA = pts[4]
ptB = pts[5]
# 변환 전 4개 좌표
pts1 = np.float32([topLeft, topRight, bottomRight, bottomLeft])
# standard_dist = np.float32([ptA, ptB])
standard_dist = []
standard_dist.append(ptA)
standard_dist.append(ptB)
print(standard_dist)
# 변환 후 영상에 사용할 서류의 폭과 높이 계산
w1 = abs(bottomRight[0] - bottomLeft[0])
w2 = abs(topRight[0] - topLeft[0])
h1 = abs(topRight[1] - bottomRight[1])
h2 = abs(topLeft[1] - bottomLeft[1])
width = max([w1, w2]) # 두 좌우 거리간의 최대값이 서류의 폭
height = max([h1, h2]) # 두 상하 거리간의 최대값이 서류의 높이
# 변환 후 4개 좌표
pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]])
# 변환 행렬 계산
mtrx = cv2.getPerspectiveTransform(pts1, pts2)
# 원근 변환 적용
result = cv2.warpPerspective(frame, mtrx, (width, height))
# warped_standard_dist = cv2.perspectiveTransform(standard_dist, mtrx)
warped_standard_dist = get_transformed_points(standard_dist, mtrx)
warped_standard_dist = np.array([r for r in warped_standard_dist])
print(warped_standard_dist)
warped_D = dist.cdist(warped_standard_dist, warped_standard_dist, metric="euclidean")
for i in range(0, warped_D.shape[0]):
for j in range(i + 1, warped_D.shape[1]):
global dist_std
dist_std = warped_D[i, j]
print("Warped Social pixel distance : {}".format(warped_D[i, j]))
cv2.imshow('scanned', result)
cv2.waitKey(1)
# cv2.destroyAllWindows()
def get_transformed_points(pts, mtrx):
transformed_points = []
for pt in pts:
pnts = np.array([[pt]], dtype="float32")
bd_pnt = cv2.perspectiveTransform(pnts, mtrx)[0][0]
# pnt = [int(bd_pnt[0]), int(bd_pnt[1])]
pnt = (int(bd_pnt[0]), int(bd_pnt[1]))
transformed_points.append(pnt)
return transformed_points
while True:
(grabbed, frame) = vs.read()
frame = imutils.resize(frame, width=1000)
draw = frame.copy()
pts = np.zeros((6, 2), dtype=np.float32)
cv2.imshow(win_name, frame)
cv2.setMouseCallback(win_name, onMouse)
if pts_cnt >= 6:
cv2.destroyAllWindows()
break
k = cv2.waitKey(0) & 0xFF
if k == ord("f"):
continue
elif k == ord("q"):
print("[INFO] Exit System...")
sys.exit()
elif k != ord("f") and k != ord("q"):
pts_cnt = 0
continue
cv2.destroyAllWindows()
### test end
# loop over the frames from the video stream
while True:
(grabbed, frame) = vs.read()
# if the frame was not grabbed, then we have reached the end of the stream
if not grabbed:
break
# resize the frame and then detect people (and only people) in it
frame = imutils.resize(frame, width=700)
results = detect_people(frame, net, ln, personIdx=LABELS.index("person"))
# initialize the set of indexes that violate the max/min social distance limits
serious = set()
abnormal = set()
# ensure there are *at least* two people detections (required in
# order to compute our pairwise distance maps)
if len(results) >= 2:
# extract all centroids from the results and compute the
# Euclidean distances between all pairs of the centroids
# centroids = np.array([r[2] for r in results]) # test
feets = np.array([r[3] for r in results])
# D = dist.cdist(centroids, centroids, metric="euclidean") # test
D = dist.cdist(feets, feets, metric="euclidean")
# loop over the upper triangular of the distance matrix
for i in range(0, D.shape[0]):
for j in range(i + 1, D.shape[1]):
# check to see if the distance between any two
# centroid pairs is less than the configured number of pixels
if D[i, j] < config.MIN_DISTANCE:
# update our violation set with the indexes of the centroid pairs
serious.add(i)
serious.add(j)
# # update our abnormal set if the centroid distance is below max distance limit
# if (D[i, j] < config.MAX_DISTANCE) and not serious:
# abnormal.add(i)
# abnormal.add(j)
# loop over the results
for (i, (prob, bbox, centroid, feet)) in enumerate(results):
# extract the bounding box and centroid coordinates, then
# initialize the color of the annotation
(startX, startY, endX, endY) = bbox
(cX, cY) = centroid
(fX, fY) = feet
color = (0, 255, 0) # green
# if the index pair exists within the violation/abnormal sets, then update the color
if i in serious:
color = (0, 0, 255) # red
# elif i in abnormal:
# color = (0, 255, 255) #orange = (0, 165, 255)
# draw (1) a bounding box around the person and (2) the
# centroid coordinates of the person,
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
# cv2.circle(frame, (cX, cY), 5, color, 2) # test
cv2.circle(frame, (fX, fY), 5, color, 2) # img, 원의 중심 좌표, 반지름, 색, 선의 두께
## test
# draw some of the parameters
Safe_Distance = "Safe distance: >{} px".format(config.MAX_DISTANCE)
cv2.putText(frame, Safe_Distance, (470, frame.shape[0] - 25),
cv2.FONT_HERSHEY_COMPLEX, 0.60, (255, 0, 0), 2)
# Threshold = "Threshold limit: {}".format(config.Threshold)
# cv2.putText(frame, Threshold, (470, frame.shape[0] - 50),
# cv2.FONT_HERSHEY_COMPLEX, 0.60, (255, 0, 0), 2)
# draw the total number of social distancing violations on the output frame
text = "Total serious violations: {}".format(len(serious))
cv2.putText(frame, text, (10, frame.shape[0] - 55),
cv2.FONT_HERSHEY_COMPLEX, 0.70, (0, 0, 255), 2)
# text1 = "Total abnormal violations: {}".format(len(abnormal))
# cv2.putText(frame, text1, (10, frame.shape[0] - 25),
# cv2.FONT_HERSHEY_COMPLEX, 0.70, (0, 255, 255), 2)
## test end
# #------------------------------Alert function----------------------------------#
# if len(serious) >= config.Threshold:
# cv2.putText(frame, "-ALERT: Violations over limit-", (10, frame.shape[0] - 80),
# cv2.FONT_HERSHEY_COMPLEX, 0.60, (0, 0, 255), 2)
# if config.ALERT:
# print("")
# print('[INFO] Sending mail...')
# Mailer().send(config.MAIL)
# print('[INFO] Mail sent')
# #config.ALERT = False
# #------------------------------------------------------------------------------#
# check to see if the output frame should be displayed to our screen
if args["display"] > 0:
# show the output frame
cv2.imshow("Real-Time Monitoring/Analysis Window", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# update the FPS counter
fps.update()
# if an output video file path has been supplied and the video
# writer has not been initialized, do so now
if args["output"] != "" and writer is None:
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args["output"], fourcc, 25,
(frame.shape[1], frame.shape[0]), True)
# if the video writer is not None, write the frame to the output video file
if writer is not None:
writer.write(frame)
# stop the timer and display FPS information
fps.stop()
print("===========================")
print("[INFO] Elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] Approx. FPS: {:.2f}".format(fps.fps()))
# close any open windows
cv2.destroyAllWindows()