evaluate03_centroid.py
9.69 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import cv2, imutils, time, os, math, sys
import numpy as np
from mylib import config
from mylib.detection_test01 import detect_people
from scipy.spatial import distance as dist
# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([config.MODEL_PATH, "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([config.MODEL_PATH, "yolov3.weights"])
configPath = os.path.sep.join([config.MODEL_PATH, "yolov3.cfg"])
# load our YOLO object detector trained on COCO dataset (80 classes)
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# check if we are going to use GPU
if config.USE_GPU:
# set CUDA as the preferable backend and target
print("")
print("[INFO] Looking for GPU")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
### test
win_name = "scanning"
img = cv2.imread("./mylib/images/1m.jpg")
imgHeight, imgWidth = img.shape[:2]
resizeHeight = int(0.2 * imgHeight)
resizeWidth = int(0.2 * imgWidth)
img = cv2.resize(img, (resizeWidth, resizeHeight), interpolation=cv2.INTER_LINEAR)
# ### test
# # cap = cv2.VideoCapture(0)
# cap = cv2.VideoCapture("./mylib/videos/video.mp4")
# _, img = cap.read()
# ### test end
# rows, cols = img.shape[:2]
draw = img.copy()
pts_cnt = 0
pts = np.zeros((6, 2), dtype=np.float32)
dist_1m = 0
mtrx = 0
warped_dist_1m = 0
def get_transformed_points(pts, mtrx):
transformed_points = []
for pt in pts:
pnts = np.array([[pt]], dtype="float32")
bd_pnt = cv2.perspectiveTransform(pnts, mtrx)[0][0]
# pnt = [int(bd_pnt[0]), int(bd_pnt[1])]
pnt = (int(bd_pnt[0]), int(bd_pnt[1]))
transformed_points.append(pnt)
return transformed_points
def onMouse(event, x, y, flags, param):
global pts_cnt
if event == cv2.EVENT_LBUTTONDOWN:
# 좌표에 초록색 동그라미 표시
cv2.circle(draw, (x, y), 10, (0, 255, 0), -1)
cv2.imshow(win_name, draw)
# 마우스 좌표 저장
pts[pts_cnt] = (x, y)
pts_cnt += 1
if pts_cnt == 6:
topLeft = pts[0]
bottomLeft = pts[1]
bottomRight = pts[2]
topRight = pts[3]
pointx = pts[4]
pointy = pts[5]
standard_dist = []
standard_dist.append(pointx)
standard_dist.append(pointy)
pts1 = np.float32([topLeft, topRight, bottomRight, bottomLeft])
w1 = int(math.sqrt(math.pow(bottomRight[0] - bottomLeft[0], 2) + math.pow(bottomRight[1] - bottomLeft[1], 2)))
w2 = int(math.sqrt(math.pow(topRight[0] - topLeft[0], 2) + math.pow(topRight[1] - topLeft[1], 2)))
h1 = int(math.sqrt(math.pow(topRight[0] - bottomRight[0], 2) + math.pow(topRight[1] - bottomRight[1], 2)))
h2 = int(math.sqrt(math.pow(topLeft[0] - bottomLeft[0], 2) + math.pow(topLeft[1] - bottomLeft[1], 2)))
width = max([w1, w2]) # 두 좌우 거리간의 최대값이 서류의 폭
height = max([h1, h2]) # 두 상하 거리간의 최대값이 서류의 높이
# 변환 후 4개 좌표
pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]])
# 변환 행렬 계산
global mtrx
mtrx = cv2.getPerspectiveTransform(pts1, pts2)
# 원근 변환 적용
result = cv2.warpPerspective(img, mtrx, (width, height))
# warped_standard_dist = cv2.perspectiveTransform(standard_dist, mtrx)
warped_standard_dist = get_transformed_points(standard_dist, mtrx)
warped_standard_dist = np.array([r for r in warped_standard_dist])
print(warped_standard_dist)
warped_D = dist.cdist(warped_standard_dist, warped_standard_dist, metric="euclidean")
points = np.array([r for r in standard_dist])
standard_dst = dist.cdist(points, points, metric="euclidean")
for i in range(0, standard_dst.shape[0]):
for j in range(i + 1, standard_dst.shape[1]):
global dist_1m
dist_1m = standard_dst[i, j]
print("[INFO] 변환 전 두 점 사이의 거리 계산")
print("Original 1m's pixel distance: {}".format(dist_1m))
for i in range(0, warped_D.shape[0]):
for j in range(i + 1, warped_D.shape[1]):
global warped_dist_1m
warped_dist_1m = warped_D[i, j]
print("[INFO] 변환 후 두 점 사이의 거리 계산")
print("Warped 1m's pixel distance : {}".format(warped_dist_1m))
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imshow(win_name, img)
cv2.setMouseCallback(win_name, onMouse)
cv2.waitKey(0)
cv2.destroyAllWindows()
### test end
for meter in range(1, 4):
print("[INFO] Reading the images..")
frame = cv2.imread('./mylib/images/{}m.jpg'.format(meter), cv2.IMREAD_ANYCOLOR)
imageHeight, imageWidth = frame.shape[:2]
resizeHeight = int(0.2 * imageHeight)
resizeWidth = int(0.2 * imageWidth)
# frame = imutils.resize(frame, width=700)
frame = cv2.resize(frame, (resizeWidth, resizeHeight), interpolation=cv2.INTER_LINEAR)
results = detect_people(frame, net, ln, personIdx=LABELS.index("person"))
# initialize the set of indexes that violate the max/min social distance limits
serious = set()
# ensure there are *at least* two people detections (required in
# order to compute our pairwise distance maps)
if len(results) >= 2:
# extract all centroids from the results and compute the
# Euclidean distances between all pairs of the centroids
centroids = np.array([r[2] for r in results]) # test
# feets = np.array([r[3] for r in results])
D = dist.cdist(centroids, centroids, metric="euclidean") # centroid
print("[INFO] centroid를 기준점으로")
warped_centroids = get_transformed_points(centroids, mtrx)
warped_centroids = np.array([r for r in warped_centroids])
new_D = dist.cdist(warped_centroids, warped_centroids, metric="euclidean")
# D = dist.cdist(feets, feets, metric="euclidean") # feet
# warped_feets = get_transformed_points(feets, mtrx)
# warped_feets = np.array([r for r in warped_feets])
# new_D = dist.cdist(warped_feets, warped_feets, metric="euclidean")
# print("[INFO] 발을 기준점으로")
# loop over the upper triangular of the distance matrix
for i in range(0, D.shape[0]):
for j in range(i + 1, D.shape[1]):
print("[INFO] Original")
# print("MIN_DISTANCE : {}".format(config.MIN_DISTANCE))
print("{}m's pixel distance: {}".format(meter, D[i, j]))
print("{}m's meter distance: {}".format(meter, D[i, j] / dist_1m))
# check to see if the distance between any two
# centroid pairs is less than the configured number of pixels
if D[i, j] < config.MIN_DISTANCE:
# update our violation set with the indexes of the centroid pairs
serious.add(i)
serious.add(j)
# loop over the upper triangular of the distance matrix
for i in range(0, new_D.shape[0]):
for j in range(i + 1, new_D.shape[1]):
print("[INFO] Warped")
# print("MIN_DISTANCE : {}".format(config.MIN_DISTANCE))
print("{}m's pixel distance: {}".format(meter, new_D[i, j]))
print("{}m's meter distance: {}".format(meter, new_D[i, j] / warped_dist_1m))
# check to see if the distance between any two
# centroid pairs is less than the configured number of pixels
if D[i, j] < config.MIN_DISTANCE:
# update our violation set with the indexes of the centroid pairs
serious.add(i)
serious.add(j)
# loop over the results
for (i, (prob, bbox, centroid, feet)) in enumerate(results):
# extract the bounding box and centroid coordinates, then
# initialize the color of the annotation
(startX, startY, endX, endY) = bbox
(cX, cY) = centroid
(fX, fY) = feet
color = (0, 255, 0) # green
# if the index pair exists within the violation/abnormal sets, then update the color
if i in serious:
color = (0, 0, 255) # red
# draw (1) a bounding box around the person and (2) the
# centroid coordinates of the person,
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
cv2.circle(frame, (cX, cY), 5, color, 2) # centroid
# cv2.circle(frame, (fX, fY), 5, color, 2) # feet (img, 원의 중심 좌표, 반지름, 색, 선의 두께)
## test
# draw some of the parameters
# Safe_Distance = "Safe distance: >{} px".format(config.MIN_DISTANCE)
# cv2.putText(frame, Safe_Distance, (frame.shape[1]-250, frame.shape[0] - 25),
# cv2.FONT_HERSHEY_COMPLEX, 0.60, (255, 0, 0), 2)
# draw the total number of social distancing violations on the output frame
text = "Total serious violations: {}".format(len(serious))
cv2.putText(frame, text, (10, frame.shape[0] - 50),
cv2.FONT_HERSHEY_COMPLEX, 0.70, (0, 0, 255), 2)
# show the output frame
cv2.imshow("Real-Time Monitoring/Analysis Window", frame)
key = cv2.waitKey(0)
# close any open windows
cv2.destroyAllWindows()
sys.exit()