API.html
83.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="Author" content="M Mclaughlin">
<title>bignumber.js API</title>
<style>
html{font-size:100%}
body{background:#fff;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:13px;
line-height:1.65em;min-height:100%;margin:0}
body,i{color:#000}
.nav{background:#fff;position:fixed;top:0;bottom:0;left:0;width:200px;overflow-y:auto;
padding:15px 0 30px 15px}
div.container{width:600px;margin:50px 0 50px 240px}
p{margin:0 0 1em;width:600px}
pre,ul{margin:1em 0}
h1,h2,h3,h4,h5{margin:0;padding:1.5em 0 0}
h1,h2{padding:.75em 0}
h1{font:400 3em Verdana,sans-serif;color:#000;margin-bottom:1em}
h2{font-size:2.25em;color:#ff2a00}
h3{font-size:1.75em;color:#4dc71f}
h4{font-size:1.75em;color:#ff2a00;padding-bottom:.75em}
h5{font-size:1.2em;margin-bottom:.4em}
h6{font-size:1.1em;margin-bottom:0.8em;padding:0.5em 0}
dd{padding-top:.35em}
dt{padding-top:.5em}
b{font-weight:700}
dt b{font-size:1.3em}
a,a:visited{color:#ff2a00;text-decoration:none}
a:active,a:hover{outline:0;text-decoration:underline}
.nav a,.nav b,.nav a:visited{display:block;color:#ff2a00;font-weight:700; margin-top:15px}
.nav b{color:#4dc71f;margin-top:20px;cursor:default;width:auto}
ul{list-style-type:none;padding:0 0 0 20px}
.nav ul{line-height:14px;padding-left:0;margin:5px 0 0}
.nav ul a,.nav ul a:visited,span{display:inline;color:#000;font-family:Verdana,Geneva,sans-serif;
font-size:11px;font-weight:400;margin:0}
.inset,ul.inset{margin-left:20px}
.inset{font-size:.9em}
.nav li{width:auto;margin:0 0 3px}
.alias{font-style:italic;margin-left:20px}
table{border-collapse:collapse;border-spacing:0;border:2px solid #a7dbd8;margin:1.75em 0;padding:0}
td,th{text-align:left;margin:0;padding:2px 5px;border:1px dotted #a7dbd8}
th{border-top:2px solid #a7dbd8;border-bottom:2px solid #a7dbd8;color:#ff2a00}
code,pre{font-family:Consolas, monaco, monospace;font-weight:400}
pre{background:#f5f5f5;white-space:pre-wrap;word-wrap:break-word;border-left:5px solid #abef98;
padding:1px 0 1px 15px;margin:1.2em 0}
code,.nav-title{color:#ff2a00}
.end{margin-bottom:25px}
.centre{text-align:center}
.error-table{font-size:13px;width:100%}
#faq{margin:3em 0 0}
li span{float:right;margin-right:10px;color:#c0c0c0}
#js{font:inherit;color:#4dc71f}
</style>
</head>
<body>
<div class="nav">
<a class='nav-title' href="#">API</a>
<b> CONSTRUCTOR </b>
<ul>
<li><a href="#bignumber">BigNumber</a></li>
</ul>
<a href="#methods">Methods</a>
<ul>
<li><a href="#another">another</a></li>
<li><a href="#config" >config</a></li>
<li>
<ul class="inset">
<li><a href="#decimal-places">DECIMAL_PLACES</a></li>
<li><a href="#rounding-mode" >ROUNDING_MODE</a></li>
<li><a href="#exponential-at">EXPONENTIAL_AT</a></li>
<li><a href="#range" >RANGE</a></li>
<li><a href="#errors" >ERRORS</a></li>
<li><a href="#crypto" >CRYPTO</a></li>
<li><a href="#modulo-mode" >MODULO_MODE</a></li>
<li><a href="#pow-precision" >POW_PRECISION</a></li>
<li><a href="#format" >FORMAT</a></li>
</ul>
</li>
<li><a href="#max" >max</a></li>
<li><a href="#min" >min</a></li>
<li><a href="#random">random</a></li>
</ul>
<a href="#constructor-properties">Properties</a>
<ul>
<li><a href="#round-up" >ROUND_UP</a></li>
<li><a href="#round-down" >ROUND_DOWN</a></li>
<li><a href="#round-ceil" >ROUND_CEIL</a></li>
<li><a href="#round-floor" >ROUND_FLOOR</a></li>
<li><a href="#round-half-up" >ROUND_HALF_UP</a></li>
<li><a href="#round-half-down" >ROUND_HALF_DOWN</a></li>
<li><a href="#round-half-even" >ROUND_HALF_EVEN</a></li>
<li><a href="#round-half-ceil" >ROUND_HALF_CEIL</a></li>
<li><a href="#round-half-floor">ROUND_HALF_FLOOR</a></li>
</ul>
<b> INSTANCE </b>
<a href="#prototype-methods">Methods</a>
<ul>
<li><a href="#abs" >absoluteValue </a><span>abs</span> </li>
<li><a href="#ceil" >ceil </a> </li>
<li><a href="#cmp" >comparedTo </a><span>cmp</span> </li>
<li><a href="#dp" >decimalPlaces </a><span>dp</span> </li>
<li><a href="#div" >dividedBy </a><span>div</span> </li>
<li><a href="#divInt" >dividedToIntegerBy </a><span>divToInt</span></li>
<li><a href="#eq" >equals </a><span>eq</span> </li>
<li><a href="#floor" >floor </a> </li>
<li><a href="#gt" >greaterThan </a><span>gt</span> </li>
<li><a href="#gte" >greaterThanOrEqualTo</a><span>gte</span> </li>
<li><a href="#isF" >isFinite </a> </li>
<li><a href="#isInt" >isInteger </a><span>isInt</span> </li>
<li><a href="#isNaN" >isNaN </a> </li>
<li><a href="#isNeg" >isNegative </a><span>isNeg</span> </li>
<li><a href="#isZ" >isZero </a> </li>
<li><a href="#lt" >lessThan </a><span>lt</span> </li>
<li><a href="#lte" >lessThanOrEqualTo </a><span>lte</span> </li>
<li><a href="#minus" >minus </a><span>sub</span> </li>
<li><a href="#mod" >modulo </a><span>mod</span> </li>
<li><a href="#neg" >negated </a><span>neg</span> </li>
<li><a href="#plus" >plus </a><span>add</span> </li>
<li><a href="#sd" >precision </a><span>sd</span> </li>
<li><a href="#round" >round </a> </li>
<li><a href="#shift" >shift </a> </li>
<li><a href="#sqrt" >squareRoot </a><span>sqrt</span> </li>
<li><a href="#times" >times </a><span>mul</span> </li>
<li><a href="#toD" >toDigits </a> </li>
<li><a href="#toE" >toExponential </a> </li>
<li><a href="#toFix" >toFixed </a> </li>
<li><a href="#toFor" >toFormat </a> </li>
<li><a href="#toFr" >toFraction </a> </li>
<li><a href="#toJSON" >toJSON </a> </li>
<li><a href="#toN" >toNumber </a> </li>
<li><a href="#pow" >toPower </a><span>pow</span> </li>
<li><a href="#toP" >toPrecision </a> </li>
<li><a href="#toS" >toString </a> </li>
<li><a href="#trunc" >truncated </a><span>trunc</span> </li>
<li><a href="#valueOf">valueOf </a> </li>
</ul>
<a href="#instance-properties">Properties</a>
<ul>
<li><a href="#coefficient">c: coefficient</a></li>
<li><a href="#exponent" >e: exponent</a></li>
<li><a href="#sign" >s: sign</a></li>
<li><a href="#isbig" >isBigNumber</a></li>
</ul>
<a href="#zero-nan-infinity">Zero, NaN & Infinity</a>
<a href="#Errors">Errors</a>
<a class='end' href="#faq">FAQ</a>
</div>
<div class="container">
<h1>bignumber<span id='js'>.js</span></h1>
<p>A JavaScript library for arbitrary-precision arithmetic.</p>
<p><a href="https://github.com/MikeMcl/bignumber.js">Hosted on GitHub</a>. </p>
<h2>API</h2>
<p>
See the <a href='https://github.com/MikeMcl/bignumber.js'>README</a> on GitHub for a
quick-start introduction.
</p>
<p>
In all examples below, <code>var</code> and semicolons are not shown, and if a commented-out
value is in quotes it means <code>toString</code> has been called on the preceding expression.
</p>
<h3>CONSTRUCTOR</h3>
<h5 id="bignumber">
BigNumber<code class='inset'>BigNumber(value [, base]) <i>⇒ BigNumber</i></code>
</h5>
<dl>
<dt><code>value</code></dt>
<dd>
<i>number|string|BigNumber</i>: see <a href='#range'>RANGE</a> for
range.
</dd>
<dd>
A numeric value.
</dd>
<dd>
Legitimate values include ±<code>0</code>, ±<code>Infinity</code> and
<code>NaN</code>.
</dd>
<dd>
Values of type <em>number</em> with more than <code>15</code> significant digits are
considered invalid (if <a href='#errors'><code>ERRORS</code></a> is true) as calling
<code><a href='#toS'>toString</a></code> or <code><a href='#valueOf'>valueOf</a></code> on
such numbers may not result in the intended value.
<pre>console.log( 823456789123456.3 ); // 823456789123456.2</pre>
</dd>
<dd>
There is no limit to the number of digits of a value of type <em>string</em> (other than
that of JavaScript's maximum array size).
</dd>
<dd>
Decimal string values may be in exponential, as well as normal (fixed-point) notation.
Non-decimal values must be in normal notation.
</dd>
<dd>
String values in hexadecimal literal form, e.g. <code>'0xff'</code>, are valid, as are
string values with the octal and binary prefixs <code>'0o'</code> and <code>'0b'</code>.
String values in octal literal form without the prefix will be interpreted as
decimals, e.g. <code>'011'</code> is interpreted as 11, not 9.
</dd>
<dd>Values in any base may have fraction digits.</dd>
<dd>
For bases from <code>10</code> to <code>36</code>, lower and/or upper case letters can be
used to represent values from <code>10</code> to <code>35</code>.
</dd>
<dd>
For bases above 36, <code>a-z</code> represents values from <code>10</code> to
<code>35</code>, <code>A-Z</code> from <code>36</code> to <code>61</code>, and
<code>$</code> and <code>_</code> represent <code>62</code> and <code>63</code> respectively
<i>(this can be changed by editing the <code>ALPHABET</code> variable near the top of the
source file)</i>.
</dd>
</dl>
<dl>
<dt><code>base</code></dt>
<dd>
<i>number</i>: integer, <code>2</code> to <code>64</code> inclusive
</dd>
<dd>The base of <code>value</code>.</dd>
<dd>
If <code>base</code> is omitted, or is <code>null</code> or <code>undefined</code>, base
<code>10</code> is assumed.
</dd>
</dl>
<br />
<p>Returns a new instance of a BigNumber object.</p>
<p>
If a base is specified, the value is rounded according to
the current <a href='#decimal-places'><code>DECIMAL_PLACES</code></a> and
<a href='#rounding-mode'><code>ROUNDING_MODE</code></a> configuration.
</p>
<p>
See <a href='#Errors'>Errors</a> for the treatment of an invalid <code>value</code> or
<code>base</code>.
</p>
<pre>
x = new BigNumber(9) // '9'
y = new BigNumber(x) // '9'
// 'new' is optional if ERRORS is false
BigNumber(435.345) // '435.345'
new BigNumber('5032485723458348569331745.33434346346912144534543')
new BigNumber('4.321e+4') // '43210'
new BigNumber('-735.0918e-430') // '-7.350918e-428'
new BigNumber(Infinity) // 'Infinity'
new BigNumber(NaN) // 'NaN'
new BigNumber('.5') // '0.5'
new BigNumber('+2') // '2'
new BigNumber(-10110100.1, 2) // '-180.5'
new BigNumber(-0b10110100.1) // '-180.5'
new BigNumber('123412421.234324', 5) // '607236.557696'
new BigNumber('ff.8', 16) // '255.5'
new BigNumber('0xff.8') // '255.5'</pre>
<p>
The following throws <code>'not a base 2 number'</code> if
<a href='#errors'><code>ERRORS</code></a> is true, otherwise it returns a BigNumber with value
<code>NaN</code>.
</p>
<pre>new BigNumber(9, 2)</pre>
<p>
The following throws <code>'number type has more than 15 significant digits'</code> if
<a href='#errors'><code>ERRORS</code></a> is true, otherwise it returns a BigNumber with value
<code>96517860459076820</code>.
</p>
<pre>new BigNumber(96517860459076817.4395)</pre>
<p>
The following throws <code>'not a number'</code> if <a href='#errors'><code>ERRORS</code></a>
is true, otherwise it returns a BigNumber with value <code>NaN</code>.
</p>
<pre>new BigNumber('blurgh')</pre>
<p>
A value is only rounded by the constructor if a base is specified.
</p>
<pre>BigNumber.config({ DECIMAL_PLACES: 5 })
new BigNumber(1.23456789) // '1.23456789'
new BigNumber(1.23456789, 10) // '1.23457'</pre>
<h4 id="methods">Methods</h4>
<p>The static methods of a BigNumber constructor.</p>
<h5 id="another">
another<code class='inset'>.another([obj]) <i>⇒ BigNumber constructor</i></code>
</h5>
<p><code>obj</code>: <i>object</i></p>
<p>
Returns a new independent BigNumber constructor with configuration as described by
<code>obj</code> (see <a href='#config'><code>config</code></a>), or with the default
configuration if <code>obj</code> is <code>null</code> or <code>undefined</code>.
</p>
<pre>BigNumber.config({ DECIMAL_PLACES: 5 })
BN = BigNumber.another({ DECIMAL_PLACES: 9 })
x = new BigNumber(1)
y = new BN(1)
x.div(3) // 0.33333
y.div(3) // 0.333333333
// BN = BigNumber.another({ DECIMAL_PLACES: 9 }) is equivalent to:
BN = BigNumber.another()
BN.config({ DECIMAL_PLACES: 9 })</pre>
<h5 id="config">config<code class='inset'>set([obj]) <i>⇒ object</i></code></h5>
<p>
<code>obj</code>: <i>object</i>: an object that contains some or all of the following
properties.
</p>
<p>Configures the settings for this particular BigNumber constructor.</p>
<p><i>Note: the configuration can also be supplied as an argument list, see below.</i></p>
<dl class='inset'>
<dt id="decimal-places"><code><b>DECIMAL_PLACES</b></code></dt>
<dd>
<i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
Default value: <code>20</code>
</dd>
<dd>
The <u>maximum</u> number of decimal places of the results of operations involving
division, i.e. division, square root and base conversion operations, and power
operations with negative exponents.<br />
</dd>
<dd>
<pre>BigNumber.config({ DECIMAL_PLACES: 5 })
BigNumber.set({ DECIMAL_PLACES: 5 }) // equivalent
BigNumber.config(5) // equivalent</pre>
</dd>
<dt id="rounding-mode"><code><b>ROUNDING_MODE</b></code></dt>
<dd>
<i>number</i>: integer, <code>0</code> to <code>8</code> inclusive<br />
Default value: <code>4</code> <a href="#round-half-up">(<code>ROUND_HALF_UP</code>)</a>
</dd>
<dd>
The rounding mode used in the above operations and the default rounding mode of
<a href='#round'><code>round</code></a>,
<a href='#toE'><code>toExponential</code></a>,
<a href='#toFix'><code>toFixed</code></a>,
<a href='#toFor'><code>toFormat</code></a> and
<a href='#toP'><code>toPrecision</code></a>.
</dd>
<dd>The modes are available as enumerated properties of the BigNumber constructor.</dd>
<dd>
<pre>BigNumber.config({ ROUNDING_MODE: 0 })
BigNumber.config(null, BigNumber.ROUND_UP) // equivalent</pre>
</dd>
<dt id="exponential-at"><code><b>EXPONENTIAL_AT</b></code></dt>
<dd>
<i>number</i>: integer, magnitude <code>0</code> to <code>1e+9</code> inclusive, or
<br />
<i>number</i>[]: [ integer <code>-1e+9</code> to <code>0</code> inclusive, integer
<code>0</code> to <code>1e+9</code> inclusive ]<br />
Default value: <code>[-7, 20]</code>
</dd>
<dd>
The exponent value(s) at which <code>toString</code> returns exponential notation.
</dd>
<dd>
If a single number is assigned, the value is the exponent magnitude.<br />
If an array of two numbers is assigned then the first number is the negative exponent
value at and beneath which exponential notation is used, and the second number is the
positive exponent value at and above which the same.
</dd>
<dd>
For example, to emulate JavaScript numbers in terms of the exponent values at which they
begin to use exponential notation, use <code>[-7, 20]</code>.
</dd>
<dd>
<pre>BigNumber.config({ EXPONENTIAL_AT: 2 })
new BigNumber(12.3) // '12.3' e is only 1
new BigNumber(123) // '1.23e+2'
new BigNumber(0.123) // '0.123' e is only -1
new BigNumber(0.0123) // '1.23e-2'
BigNumber.config({ EXPONENTIAL_AT: [-7, 20] })
new BigNumber(123456789) // '123456789' e is only 8
new BigNumber(0.000000123) // '1.23e-7'
// Almost never return exponential notation:
BigNumber.config({ EXPONENTIAL_AT: 1e+9 })
// Always return exponential notation:
BigNumber.config({ EXPONENTIAL_AT: 0 })</pre>
</dd>
<dd>
Regardless of the value of <code>EXPONENTIAL_AT</code>, the <code>toFixed</code> method
will always return a value in normal notation and the <code>toExponential</code> method
will always return a value in exponential form.
</dd>
<dd>
Calling <code>toString</code> with a base argument, e.g. <code>toString(10)</code>, will
also always return normal notation.
</dd>
<dt id="range"><code><b>RANGE</b></code></dt>
<dd>
<i>number</i>: integer, magnitude <code>1</code> to <code>1e+9</code> inclusive, or
<br />
<i>number</i>[]: [ integer <code>-1e+9</code> to <code>-1</code> inclusive, integer
<code>1</code> to <code>1e+9</code> inclusive ]<br />
Default value: <code>[-1e+9, 1e+9]</code>
</dd>
<dd>
The exponent value(s) beyond which overflow to <code>Infinity</code> and underflow to
zero occurs.
</dd>
<dd>
If a single number is assigned, it is the maximum exponent magnitude: values wth a
positive exponent of greater magnitude become <code>Infinity</code> and those with a
negative exponent of greater magnitude become zero.
<dd>
If an array of two numbers is assigned then the first number is the negative exponent
limit and the second number is the positive exponent limit.
</dd>
<dd>
For example, to emulate JavaScript numbers in terms of the exponent values at which they
become zero and <code>Infinity</code>, use <code>[-324, 308]</code>.
</dd>
<dd>
<pre>BigNumber.config({ RANGE: 500 })
BigNumber.config().RANGE // [ -500, 500 ]
new BigNumber('9.999e499') // '9.999e+499'
new BigNumber('1e500') // 'Infinity'
new BigNumber('1e-499') // '1e-499'
new BigNumber('1e-500') // '0'
BigNumber.config({ RANGE: [-3, 4] })
new BigNumber(99999) // '99999' e is only 4
new BigNumber(100000) // 'Infinity' e is 5
new BigNumber(0.001) // '0.01' e is only -3
new BigNumber(0.0001) // '0' e is -4</pre>
</dd>
<dd>
The largest possible magnitude of a finite BigNumber is
<code>9.999...e+1000000000</code>.<br />
The smallest possible magnitude of a non-zero BigNumber is <code>1e-1000000000</code>.
</dd>
<dt id="errors"><code><b>ERRORS</b></code></dt>
<dd>
<i>boolean|number</i>: <code>true</code>, <code>false</code>, <code>0</code> or
<code>1</code>.<br />
Default value: <code>true</code>
</dd>
<dd>
The value that determines whether BigNumber Errors are thrown.<br />
If <code>ERRORS</code> is false, no errors will be thrown.
</dd>
<dd>See <a href='#Errors'>Errors</a>.</dd>
<dd><pre>BigNumber.config({ ERRORS: false })</pre></dd>
<dt id="crypto"><code><b>CRYPTO</b></code></dt>
<dd>
<i>boolean|number</i>: <code>true</code>, <code>false</code>, <code>0</code> or
<code>1</code>.<br />
Default value: <code>false</code>
</dd>
<dd>
The value that determines whether cryptographically-secure pseudo-random number
generation is used.
</dd>
<dd>
If <code>CRYPTO</code> is set to <code>true</code> then the
<a href='#random'><code>random</code></a> method will generate random digits using
<code>crypto.getRandomValues</code> in browsers that support it, or
<code>crypto.randomBytes</code> if using a version of Node.js that supports it.
</dd>
<dd>
If neither function is supported by the host environment then attempting to set
<code>CRYPTO</code> to <code>true</code> will fail, and if <code>ERRORS</code>
is <code>true</code> an exception will be thrown.
</dd>
<dd>
If <code>CRYPTO</code> is <code>false</code> then the source of randomness used will be
<code>Math.random</code> (which is assumed to generate at least <code>30</code> bits of
randomness).
</dd>
<dd>See <a href='#random'><code>random</code></a>.</dd>
<dd>
<pre>BigNumber.config({ CRYPTO: true })
BigNumber.config().CRYPTO // true
BigNumber.random() // 0.54340758610486147524</pre>
</dd>
<dt id="modulo-mode"><code><b>MODULO_MODE</b></code></dt>
<dd>
<i>number</i>: integer, <code>0</code> to <code>9</code> inclusive<br />
Default value: <code>1</code> (<a href="#round-down"><code>ROUND_DOWN</code></a>)
</dd>
<dd>The modulo mode used when calculating the modulus: <code>a mod n</code>.</dd>
<dd>
The quotient, <code>q = a / n</code>, is calculated according to the
<a href='#rounding-mode'><code>ROUNDING_MODE</code></a> that corresponds to the chosen
<code>MODULO_MODE</code>.
</dd>
<dd>The remainder, <code>r</code>, is calculated as: <code>r = a - n * q</code>.</dd>
<dd>
The modes that are most commonly used for the modulus/remainder operation are shown in
the following table. Although the other rounding modes can be used, they may not give
useful results.
</dd>
<dd>
<table>
<tr><th>Property</th><th>Value</th><th>Description</th></tr>
<tr>
<td><b>ROUND_UP</b></td><td class='centre'>0</td>
<td>
The remainder is positive if the dividend is negative, otherwise it is negative.
</td>
</tr>
<tr>
<td><b>ROUND_DOWN</b></td><td class='centre'>1</td>
<td>
The remainder has the same sign as the dividend.<br />
This uses 'truncating division' and matches the behaviour of JavaScript's
remainder operator <code>%</code>.
</td>
</tr>
<tr>
<td><b>ROUND_FLOOR</b></td><td class='centre'>3</td>
<td>
The remainder has the same sign as the divisor.<br />
This matches Python's <code>%</code> operator.
</td>
</tr>
<tr>
<td><b>ROUND_HALF_EVEN</b></td><td class='centre'>6</td>
<td>The <i>IEEE 754</i> remainder function.</td>
</tr>
<tr>
<td><b>EUCLID</b></td><td class='centre'>9</td>
<td>
The remainder is always positive. Euclidian division: <br />
<code>q = sign(n) * floor(a / abs(n))</code>
</td>
</tr>
</table>
</dd>
<dd>
The rounding/modulo modes are available as enumerated properties of the BigNumber
constructor.
</dd>
<dd>See <a href='#mod'><code>modulo</code></a>.</dd>
<dd>
<pre>BigNumber.config({ MODULO_MODE: BigNumber.EUCLID })
BigNumber.config({ MODULO_MODE: 9 }) // equivalent</pre>
</dd>
<dt id="pow-precision"><code><b>POW_PRECISION</b></code></dt>
<dd>
<i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive.<br />
Default value: <code>0</code>
</dd>
<dd>
The <i>maximum</i> number of significant digits of the result of the power operation
(unless a modulus is specified).
</dd>
<dd>If set to <code>0</code>, the number of signifcant digits will not be limited.</dd>
<dd>See <a href='#pow'><code>toPower</code></a>.</dd>
<dd><pre>BigNumber.config({ POW_PRECISION: 100 })</pre></dd>
<dt id="format"><code><b>FORMAT</b></code></dt>
<dd><i>object</i></dd>
<dd>
The <code>FORMAT</code> object configures the format of the string returned by the
<a href='#toFor'><code>toFormat</code></a> method.
</dd>
<dd>
The example below shows the properties of the <code>FORMAT</code> object that are
recognised, and their default values.
</dd>
<dd>
Unlike the other configuration properties, the values of the properties of the
<code>FORMAT</code> object will not be checked for validity. The existing
<code>FORMAT</code> object will simply be replaced by the object that is passed in.
Note that all the properties shown below do not have to be included.
</dd>
<dd>See <a href='#toFor'><code>toFormat</code></a> for examples of usage.</dd>
<dd>
<pre>
BigNumber.config({
FORMAT: {
// the decimal separator
decimalSeparator: '.',
// the grouping separator of the integer part
groupSeparator: ',',
// the primary grouping size of the integer part
groupSize: 3,
// the secondary grouping size of the integer part
secondaryGroupSize: 0,
// the grouping separator of the fraction part
fractionGroupSeparator: ' ',
// the grouping size of the fraction part
fractionGroupSize: 0
}
});</pre>
</dd>
</dl>
<br />
<p>Returns an object with the above properties and their current values.</p>
<p>
If the value to be assigned to any of the above properties is <code>null</code> or
<code>undefined</code> it is ignored.
</p>
<p>See <a href='#Errors'>Errors</a> for the treatment of invalid values.</p>
<pre>
BigNumber.config({
DECIMAL_PLACES: 40,
ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
EXPONENTIAL_AT: [-10, 20],
RANGE: [-500, 500],
ERRORS: true,
CRYPTO: true,
MODULO_MODE: BigNumber.ROUND_FLOOR,
POW_PRECISION: 80,
FORMAT: {
groupSize: 3,
groupSeparator: ' ',
decimalSeparator: ','
}
});
// Alternatively but equivalently (excluding FORMAT):
BigNumber.config( 40, 7, [-10, 20], 500, 1, 1, 3, 80 )
obj = BigNumber.config();
obj.ERRORS // true
obj.RANGE // [-500, 500]</pre>
<h5 id="max">
max<code class='inset'>.max([arg1 [, arg2, ...]]) <i>⇒ BigNumber</i></code>
</h5>
<p>
<code>arg1</code>, <code>arg2</code>, ...: <i>number|string|BigNumber</i><br />
<i>See <code><a href="#bignumber">BigNumber</a></code> for further parameter details.</i>
</p>
<p>
Returns a BigNumber whose value is the maximum of <code>arg1</code>,
<code>arg2</code>,... .
</p>
<p>The argument to this method can also be an array of values.</p>
<p>The return value is always exact and unrounded.</p>
<pre>x = new BigNumber('3257869345.0378653')
BigNumber.max(4e9, x, '123456789.9') // '4000000000'
arr = [12, '13', new BigNumber(14)]
BigNumber.max(arr) // '14'</pre>
<h5 id="min">
min<code class='inset'>.min([arg1 [, arg2, ...]]) <i>⇒ BigNumber</i></code>
</h5>
<p>
<code>arg1</code>, <code>arg2</code>, ...: <i>number|string|BigNumber</i><br />
<i>See <code><a href="#bignumber">BigNumber</a></code> for further parameter details.</i>
</p>
<p>
Returns a BigNumber whose value is the minimum of <code>arg1</code>,
<code>arg2</code>,... .
</p>
<p>The argument to this method can also be an array of values.</p>
<p>The return value is always exact and unrounded.</p>
<pre>x = new BigNumber('3257869345.0378653')
BigNumber.min(4e9, x, '123456789.9') // '123456789.9'
arr = [2, new BigNumber(-14), '-15.9999', -12]
BigNumber.min(arr) // '-15.9999'</pre>
<h5 id="random">
random<code class='inset'>.random([dp]) <i>⇒ BigNumber</i></code>
</h5>
<p><code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive</p>
<p>
Returns a new BigNumber with a pseudo-random value equal to or greater than <code>0</code> and
less than <code>1</code>.
</p>
<p>
The return value will have <code>dp</code> decimal places (or less if trailing zeros are
produced).<br />
If <code>dp</code> is omitted then the number of decimal places will default to the current
<a href='#decimal-places'><code>DECIMAL_PLACES</code></a> setting.
</p>
<p>
Depending on the value of this BigNumber constructor's
<a href='#crypto'><code>CRYPTO</code></a> setting and the support for the
<code>crypto</code> object in the host environment, the random digits of the return value are
generated by either <code>Math.random</code> (fastest), <code>crypto.getRandomValues</code>
(Web Cryptography API in recent browsers) or <code>crypto.randomBytes</code> (Node.js).
</p>
<p>
If <a href='#crypto'><code>CRYPTO</code></a> is <code>true</code>, i.e. one of the
<code>crypto</code> methods is to be used, the value of a returned BigNumber should be
cryptographically-secure and statistically indistinguishable from a random value.
</p>
<pre>BigNumber.config({ DECIMAL_PLACES: 10 })
BigNumber.random() // '0.4117936847'
BigNumber.random(20) // '0.78193327636914089009'</pre>
<h4 id="constructor-properties">Properties</h4>
<p>
The library's enumerated rounding modes are stored as properties of the constructor.<br />
(They are not referenced internally by the library itself.)
</p>
<p>
Rounding modes <code>0</code> to <code>6</code> (inclusive) are the same as those of Java's
BigDecimal class.
</p>
<table>
<tr>
<th>Property</th>
<th>Value</th>
<th>Description</th>
</tr>
<tr>
<td id="round-up"><b>ROUND_UP</b></td>
<td class='centre'>0</td>
<td>Rounds away from zero</td>
</tr>
<tr>
<td id="round-down"><b>ROUND_DOWN</b></td>
<td class='centre'>1</td>
<td>Rounds towards zero</td>
</tr>
<tr>
<td id="round-ceil"><b>ROUND_CEIL</b></td>
<td class='centre'>2</td>
<td>Rounds towards <code>Infinity</code></td>
</tr>
<tr>
<td id="round-floor"><b>ROUND_FLOOR</b></td>
<td class='centre'>3</td>
<td>Rounds towards <code>-Infinity</code></td>
</tr>
<tr>
<td id="round-half-up"><b>ROUND_HALF_UP</b></td>
<td class='centre'>4</td>
<td>
Rounds towards nearest neighbour.<br />
If equidistant, rounds away from zero
</td>
</tr>
<tr>
<td id="round-half-down"><b>ROUND_HALF_DOWN</b></td>
<td class='centre'>5</td>
<td>
Rounds towards nearest neighbour.<br />
If equidistant, rounds towards zero
</td>
</tr>
<tr>
<td id="round-half-even"><b>ROUND_HALF_EVEN</b></td>
<td class='centre'>6</td>
<td>
Rounds towards nearest neighbour.<br />
If equidistant, rounds towards even neighbour
</td>
</tr>
<tr>
<td id="round-half-ceil"><b>ROUND_HALF_CEIL</b></td>
<td class='centre'>7</td>
<td>
Rounds towards nearest neighbour.<br />
If equidistant, rounds towards <code>Infinity</code>
</td>
</tr>
<tr>
<td id="round-half-floor"><b>ROUND_HALF_FLOOR</b></td>
<td class='centre'>8</td>
<td>
Rounds towards nearest neighbour.<br />
If equidistant, rounds towards <code>-Infinity</code>
</td>
</tr>
</table>
<pre>
BigNumber.config({ ROUNDING_MODE: BigNumber.ROUND_CEIL })
BigNumber.config({ ROUNDING_MODE: 2 }) // equivalent</pre>
<h3>INSTANCE</h3>
<h4 id="prototype-methods">Methods</h4>
<p>The methods inherited by a BigNumber instance from its constructor's prototype object.</p>
<p>A BigNumber is immutable in the sense that it is not changed by its methods. </p>
<p>
The treatment of ±<code>0</code>, ±<code>Infinity</code> and <code>NaN</code> is
consistent with how JavaScript treats these values.
</p>
<p>
Many method names have a shorter alias.<br />
(Internally, the library always uses the shorter method names.)
</p>
<h5 id="abs">absoluteValue<code class='inset'>.abs() <i>⇒ BigNumber</i></code></h5>
<p>
Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of
this BigNumber.
</p>
<p>The return value is always exact and unrounded.</p>
<pre>
x = new BigNumber(-0.8)
y = x.absoluteValue() // '0.8'
z = y.abs() // '0.8'</pre>
<h5 id="ceil">ceil<code class='inset'>.ceil() <i>⇒ BigNumber</i></code></h5>
<p>
Returns a BigNumber whose value is the value of this BigNumber rounded to
a whole number in the direction of positive <code>Infinity</code>.
</p>
<pre>
x = new BigNumber(1.3)
x.ceil() // '2'
y = new BigNumber(-1.8)
y.ceil() // '-1'</pre>
<h5 id="cmp">comparedTo<code class='inset'>.cmp(n [, base]) <i>⇒ number</i></code></h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<table>
<tr><th>Returns</th><th> </th></tr>
<tr>
<td class='centre'><code>1</code></td>
<td>If the value of this BigNumber is greater than the value of <code>n</code></td>
</tr>
<tr>
<td class='centre'><code>-1</code></td>
<td>If the value of this BigNumber is less than the value of <code>n</code></td>
</tr>
<tr>
<td class='centre'><code>0</code></td>
<td>If this BigNumber and <code>n</code> have the same value</td>
</tr>
<tr>
<td class='centre'><code>null</code></td>
<td>If the value of either this BigNumber or <code>n</code> is <code>NaN</code></td>
</tr>
</table>
<pre>
x = new BigNumber(Infinity)
y = new BigNumber(5)
x.comparedTo(y) // 1
x.comparedTo(x.minus(1)) // 0
y.cmp(NaN) // null
y.cmp('110', 2) // -1</pre>
<h5 id="dp">decimalPlaces<code class='inset'>.dp() <i>⇒ number</i></code></h5>
<p>
Return the number of decimal places of the value of this BigNumber, or <code>null</code> if
the value of this BigNumber is ±<code>Infinity</code> or <code>NaN</code>.
</p>
<pre>
x = new BigNumber(123.45)
x.decimalPlaces() // 2
y = new BigNumber('9.9e-101')
y.dp() // 102</pre>
<h5 id="div">dividedBy<code class='inset'>.div(n [, base]) <i>⇒ BigNumber</i></code>
</h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<p>
Returns a BigNumber whose value is the value of this BigNumber divided by
<code>n</code>, rounded according to the current
<a href='#decimal-places'><code>DECIMAL_PLACES</code></a> and
<a href='#rounding-mode'><code>ROUNDING_MODE</code></a> configuration.
</p>
<pre>
x = new BigNumber(355)
y = new BigNumber(113)
x.dividedBy(y) // '3.14159292035398230088'
x.div(5) // '71'
x.div(47, 16) // '5'</pre>
<h5 id="divInt">
dividedToIntegerBy<code class='inset'>.divToInt(n [, base]) ⇒
<i>BigNumber</i></code>
</h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<p>
Return a BigNumber whose value is the integer part of dividing the value of this BigNumber by
<code>n</code>.
</p>
<pre>
x = new BigNumber(5)
y = new BigNumber(3)
x.dividedToIntegerBy(y) // '1'
x.divToInt(0.7) // '7'
x.divToInt('0.f', 16) // '5'</pre>
<h5 id="eq">equals<code class='inset'>.eq(n [, base]) <i>⇒ boolean</i></code></h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<p>
Returns <code>true</code> if the value of this BigNumber equals the value of <code>n</code>,
otherwise returns <code>false</code>.<br />
As with JavaScript, <code>NaN</code> does not equal <code>NaN</code>.
</p>
<p>Note: This method uses the <a href='#cmp'><code>comparedTo</code></a> method internally.</p>
<pre>
0 === 1e-324 // true
x = new BigNumber(0)
x.equals('1e-324') // false
BigNumber(-0).eq(x) // true ( -0 === 0 )
BigNumber(255).eq('ff', 16) // true
y = new BigNumber(NaN)
y.equals(NaN) // false</pre>
<h5 id="floor">floor<code class='inset'>.floor() <i>⇒ BigNumber</i></code></h5>
<p>
Returns a BigNumber whose value is the value of this BigNumber rounded to a whole number in
the direction of negative <code>Infinity</code>.
</p>
<pre>
x = new BigNumber(1.8)
x.floor() // '1'
y = new BigNumber(-1.3)
y.floor() // '-2'</pre>
<h5 id="gt">greaterThan<code class='inset'>.gt(n [, base]) <i>⇒ boolean</i></code></h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<p>
Returns <code>true</code> if the value of this BigNumber is greater than the value of
<code>n</code>, otherwise returns <code>false</code>.
</p>
<p>Note: This method uses the <a href='#cmp'><code>comparedTo</code></a> method internally.</p>
<pre>
0.1 > (0.3 - 0.2) // true
x = new BigNumber(0.1)
x.greaterThan(BigNumber(0.3).minus(0.2)) // false
BigNumber(0).gt(x) // false
BigNumber(11, 3).gt(11.1, 2) // true</pre>
<h5 id="gte">
greaterThanOrEqualTo<code class='inset'>.gte(n [, base]) <i>⇒ boolean</i></code>
</h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<p>
Returns <code>true</code> if the value of this BigNumber is greater than or equal to the value
of <code>n</code>, otherwise returns <code>false</code>.
</p>
<p>Note: This method uses the <a href='#cmp'><code>comparedTo</code></a> method internally.</p>
<pre>
(0.3 - 0.2) >= 0.1 // false
x = new BigNumber(0.3).minus(0.2)
x.greaterThanOrEqualTo(0.1) // true
BigNumber(1).gte(x) // true
BigNumber(10, 18).gte('i', 36) // true</pre>
<h5 id="isF">isFinite<code class='inset'>.isFinite() <i>⇒ boolean</i></code></h5>
<p>
Returns <code>true</code> if the value of this BigNumber is a finite number, otherwise
returns <code>false</code>.
</p>
<p>
The only possible non-finite values of a BigNumber are <code>NaN</code>, <code>Infinity</code>
and <code>-Infinity</code>.
</p>
<pre>
x = new BigNumber(1)
x.isFinite() // true
y = new BigNumber(Infinity)
y.isFinite() // false</pre>
<p>
Note: The native method <code>isFinite()</code> can be used if
<code>n <= Number.MAX_VALUE</code>.
</p>
<h5 id="isInt">isInteger<code class='inset'>.isInt() <i>⇒ boolean</i></code></h5>
<p>
Returns <code>true</code> if the value of this BigNumber is a whole number, otherwise returns
<code>false</code>.
</p>
<pre>
x = new BigNumber(1)
x.isInteger() // true
y = new BigNumber(123.456)
y.isInt() // false</pre>
<h5 id="isNaN">isNaN<code class='inset'>.isNaN() <i>⇒ boolean</i></code></h5>
<p>
Returns <code>true</code> if the value of this BigNumber is <code>NaN</code>, otherwise
returns <code>false</code>.
</p>
<pre>
x = new BigNumber(NaN)
x.isNaN() // true
y = new BigNumber('Infinity')
y.isNaN() // false</pre>
<p>Note: The native method <code>isNaN()</code> can also be used.</p>
<h5 id="isNeg">isNegative<code class='inset'>.isNeg() <i>⇒ boolean</i></code></h5>
<p>
Returns <code>true</code> if the value of this BigNumber is negative, otherwise returns
<code>false</code>.
</p>
<pre>
x = new BigNumber(-0)
x.isNegative() // true
y = new BigNumber(2)
y.isNeg() // false</pre>
<p>Note: <code>n < 0</code> can be used if <code>n <= -Number.MIN_VALUE</code>.</p>
<h5 id="isZ">isZero<code class='inset'>.isZero() <i>⇒ boolean</i></code></h5>
<p>
Returns <code>true</code> if the value of this BigNumber is zero or minus zero, otherwise
returns <code>false</code>.
</p>
<pre>
x = new BigNumber(-0)
x.isZero() && x.isNeg() // true
y = new BigNumber(Infinity)
y.isZero() // false</pre>
<p>Note: <code>n == 0</code> can be used if <code>n >= Number.MIN_VALUE</code>.</p>
<h5 id="lt">lessThan<code class='inset'>.lt(n [, base]) <i>⇒ boolean</i></code></h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<p>
Returns <code>true</code> if the value of this BigNumber is less than the value of
<code>n</code>, otherwise returns <code>false</code>.
</p>
<p>Note: This method uses the <a href='#cmp'><code>comparedTo</code></a> method internally.</p>
<pre>
(0.3 - 0.2) < 0.1 // true
x = new BigNumber(0.3).minus(0.2)
x.lessThan(0.1) // false
BigNumber(0).lt(x) // true
BigNumber(11.1, 2).lt(11, 3) // true</pre>
<h5 id="lte">
lessThanOrEqualTo<code class='inset'>.lte(n [, base]) <i>⇒ boolean</i></code>
</h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<p>
Returns <code>true</code> if the value of this BigNumber is less than or equal to the value of
<code>n</code>, otherwise returns <code>false</code>.
</p>
<p>Note: This method uses the <a href='#cmp'><code>comparedTo</code></a> method internally.</p>
<pre>
0.1 <= (0.3 - 0.2) // false
x = new BigNumber(0.1)
x.lessThanOrEqualTo(BigNumber(0.3).minus(0.2)) // true
BigNumber(-1).lte(x) // true
BigNumber(10, 18).lte('i', 36) // true</pre>
<h5 id="minus">
minus<code class='inset'>.minus(n [, base]) <i>⇒ BigNumber</i></code>
</h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<p>Returns a BigNumber whose value is the value of this BigNumber minus <code>n</code>.</p>
<p>The return value is always exact and unrounded.</p>
<pre>
0.3 - 0.1 // 0.19999999999999998
x = new BigNumber(0.3)
x.minus(0.1) // '0.2'
x.minus(0.6, 20) // '0'</pre>
<h5 id="mod">modulo<code class='inset'>.mod(n [, base]) <i>⇒ BigNumber</i></code></h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<p>
Returns a BigNumber whose value is the value of this BigNumber modulo <code>n</code>, i.e.
the integer remainder of dividing this BigNumber by <code>n</code>.
</p>
<p>
The value returned, and in particular its sign, is dependent on the value of the
<a href='#modulo-mode'><code>MODULO_MODE</code></a> setting of this BigNumber constructor.
If it is <code>1</code> (default value), the result will have the same sign as this BigNumber,
and it will match that of Javascript's <code>%</code> operator (within the limits of double
precision) and BigDecimal's <code>remainder</code> method.
</p>
<p>The return value is always exact and unrounded.</p>
<p>
See <a href='#modulo-mode'><code>MODULO_MODE</code></a> for a description of the other
modulo modes.
</p>
<pre>
1 % 0.9 // 0.09999999999999998
x = new BigNumber(1)
x.modulo(0.9) // '0.1'
y = new BigNumber(33)
y.mod('a', 33) // '3'</pre>
<h5 id="neg">negated<code class='inset'>.neg() <i>⇒ BigNumber</i></code></h5>
<p>
Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by
<code>-1</code>.
</p>
<pre>
x = new BigNumber(1.8)
x.negated() // '-1.8'
y = new BigNumber(-1.3)
y.neg() // '1.3'</pre>
<h5 id="plus">plus<code class='inset'>.plus(n [, base]) <i>⇒ BigNumber</i></code></h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<p>Returns a BigNumber whose value is the value of this BigNumber plus <code>n</code>.</p>
<p>The return value is always exact and unrounded.</p>
<pre>
0.1 + 0.2 // 0.30000000000000004
x = new BigNumber(0.1)
y = x.plus(0.2) // '0.3'
BigNumber(0.7).plus(x).plus(y) // '1'
x.plus('0.1', 8) // '0.225'</pre>
<h5 id="sd">precision<code class='inset'>.sd([z]) <i>⇒ number</i></code></h5>
<p>
<code>z</code>: <i>boolean|number</i>: <code>true</code>, <code>false</code>, <code>0</code>
or <code>1</code>
</p>
<p>Returns the number of significant digits of the value of this BigNumber.</p>
<p>
If <code>z</code> is <code>true</code> or <code>1</code> then any trailing zeros of the
integer part of a number are counted as significant digits, otherwise they are not.
</p>
<pre>
x = new BigNumber(1.234)
x.precision() // 4
y = new BigNumber(987000)
y.sd() // 3
y.sd(true) // 6</pre>
<h5 id="round">round<code class='inset'>.round([dp [, rm]]) <i>⇒ BigNumber</i></code></h5>
<p>
<code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
<code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
</p>
<p>
Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode
<code>rm</code> to a maximum of <code>dp</code> decimal places.
</p>
<p>
if <code>dp</code> is omitted, or is <code>null</code> or <code>undefined</code>, the
return value is <code>n</code> rounded to a whole number.<br />
if <code>rm</code> is omitted, or is <code>null</code> or <code>undefined</code>,
<a href='#rounding-mode'><code>ROUNDING_MODE</code></a> is used.
</p>
<p>
See <a href='#Errors'>Errors</a> for the treatment of other non-integer or out of range
<code>dp</code> or <code>rm</code> values.
</p>
<pre>
x = 1234.56
Math.round(x) // 1235
y = new BigNumber(x)
y.round() // '1235'
y.round(1) // '1234.6'
y.round(2) // '1234.56'
y.round(10) // '1234.56'
y.round(0, 1) // '1234'
y.round(0, 6) // '1235'
y.round(1, 1) // '1234.5'
y.round(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
y // '1234.56'</pre>
<h5 id="shift">shift<code class='inset'>.shift(n) <i>⇒ BigNumber</i></code></h5>
<p>
<code>n</code>: <i>number</i>: integer,
<code>-9007199254740991</code> to <code>9007199254740991</code> inclusive
</p>
<p>
Returns a BigNumber whose value is the value of this BigNumber shifted <code>n</code> places.
<p>
The shift is of the decimal point, i.e. of powers of ten, and is to the left if <code>n</code>
is negative or to the right if <code>n</code> is positive.
</p>
<p>The return value is always exact and unrounded.</p>
<pre>
x = new BigNumber(1.23)
x.shift(3) // '1230'
x.shift(-3) // '0.00123'</pre>
<h5 id="sqrt">squareRoot<code class='inset'>.sqrt() <i>⇒ BigNumber</i></code></h5>
<p>
Returns a BigNumber whose value is the square root of the value of this BigNumber,
rounded according to the current
<a href='#decimal-places'><code>DECIMAL_PLACES</code></a> and
<a href='#rounding-mode'><code>ROUNDING_MODE</code></a> configuration.
</p>
<p>
The return value will be correctly rounded, i.e. rounded as if the result was first calculated
to an infinite number of correct digits before rounding.
</p>
<pre>
x = new BigNumber(16)
x.squareRoot() // '4'
y = new BigNumber(3)
y.sqrt() // '1.73205080756887729353'</pre>
<h5 id="times">times<code class='inset'>.times(n [, base]) <i>⇒ BigNumber</i></code></h5>
<p>
<code>n</code>: <i>number|string|BigNumber</i><br />
<code>base</code>: <i>number</i><br />
<i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
</p>
<p>Returns a BigNumber whose value is the value of this BigNumber times <code>n</code>.</p>
<p>The return value is always exact and unrounded.</p>
<pre>
0.6 * 3 // 1.7999999999999998
x = new BigNumber(0.6)
y = x.times(3) // '1.8'
BigNumber('7e+500').times(y) // '1.26e+501'
x.times('-a', 16) // '-6'</pre>
<h5 id="toD">
toDigits<code class='inset'>.toDigits([sd [, rm]]) <i>⇒ BigNumber</i></code>
</h5>
<p>
<code>sd</code>: <i>number</i>: integer, <code>1</code> to <code>1e+9</code> inclusive.<br />
<code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive.
</p>
<p>
Returns a BigNumber whose value is the value of this BigNumber rounded to <code>sd</code>
significant digits using rounding mode <code>rm</code>.
</p>
<p>
If <code>sd</code> is omitted or is <code>null</code> or <code>undefined</code>, the return
value will not be rounded.<br />
If <code>rm</code> is omitted or is <code>null</code> or <code>undefined</code>,
<a href='#rounding-mode'><code>ROUNDING_MODE</code></a> will be used.
</p>
<p>
See <a href='#Errors'>Errors</a> for the treatment of other non-integer or out of range
<code>sd</code> or <code>rm</code> values.
</p>
<pre>
BigNumber.config({ precision: 5, rounding: 4 })
x = new BigNumber(9876.54321)
x.toDigits() // '9876.5'
x.toDigits(6) // '9876.54'
x.toDigits(6, BigNumber.ROUND_UP) // '9876.55'
x.toDigits(2) // '9900'
x.toDigits(2, 1) // '9800'
x // '9876.54321'</pre>
<h5 id="toE">
toExponential<code class='inset'>.toExponential([dp [, rm]]) <i>⇒ string</i></code>
</h5>
<p>
<code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
<code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
</p>
<p>
Returns a string representing the value of this BigNumber in exponential notation rounded
using rounding mode <code>rm</code> to <code>dp</code> decimal places, i.e with one digit
before the decimal point and <code>dp</code> digits after it.
</p>
<p>
If the value of this BigNumber in exponential notation has fewer than <code>dp</code> fraction
digits, the return value will be appended with zeros accordingly.
</p>
<p>
If <code>dp</code> is omitted, or is <code>null</code> or <code>undefined</code>, the number
of digits after the decimal point defaults to the minimum number of digits necessary to
represent the value exactly.<br />
If <code>rm</code> is omitted or is <code>null</code> or <code>undefined</code>,
<a href='#rounding-mode'><code>ROUNDING_MODE</code></a> is used.
</p>
<p>
See <a href='#Errors'>Errors</a> for the treatment of other non-integer or out of range
<code>dp</code> or <code>rm</code> values.
</p>
<pre>
x = 45.6
y = new BigNumber(x)
x.toExponential() // '4.56e+1'
y.toExponential() // '4.56e+1'
x.toExponential(0) // '5e+1'
y.toExponential(0) // '5e+1'
x.toExponential(1) // '4.6e+1'
y.toExponential(1) // '4.6e+1'
y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN)
x.toExponential(3) // '4.560e+1'
y.toExponential(3) // '4.560e+1'</pre>
<h5 id="toFix">
toFixed<code class='inset'>.toFixed([dp [, rm]]) <i>⇒ string</i></code>
</h5>
<p>
<code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
<code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
</p>
<p>
Returns a string representing the value of this BigNumber in normal (fixed-point) notation
rounded to <code>dp</code> decimal places using rounding mode <code>rm</code>.
</p>
<p>
If the value of this BigNumber in normal notation has fewer than <code>dp</code> fraction
digits, the return value will be appended with zeros accordingly.
</p>
<p>
Unlike <code>Number.prototype.toFixed</code>, which returns exponential notation if a number
is greater or equal to <code>10<sup>21</sup></code>, this method will always return normal
notation.
</p>
<p>
If <code>dp</code> is omitted or is <code>null</code> or <code>undefined</code>, the return
value will be unrounded and in normal notation. This is also unlike
<code>Number.prototype.toFixed</code>, which returns the value to zero decimal places.<br />
It is useful when fixed-point notation is required and the current
<a href="#exponential-at"><code>EXPONENTIAL_AT</code></a> setting causes
<code><a href='#toS'>toString</a></code> to return exponential notation.<br />
If <code>rm</code> is omitted or is <code>null</code> or <code>undefined</code>,
<a href='#rounding-mode'><code>ROUNDING_MODE</code></a> is used.
</p>
<p>
See <a href='#Errors'>Errors</a> for the treatment of other non-integer or out of range
<code>dp</code> or <code>rm</code> values.
</p>
<pre>
x = 3.456
y = new BigNumber(x)
x.toFixed() // '3'
y.toFixed() // '3.456'
y.toFixed(0) // '3'
x.toFixed(2) // '3.46'
y.toFixed(2) // '3.46'
y.toFixed(2, 1) // '3.45' (ROUND_DOWN)
x.toFixed(5) // '3.45600'
y.toFixed(5) // '3.45600'</pre>
<h5 id="toFor">
toFormat<code class='inset'>.toFormat([dp [, rm]]) <i>⇒ string</i></code>
</h5>
<p>
<code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
<code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
</p>
<p>
<p>
Returns a string representing the value of this BigNumber in normal (fixed-point) notation
rounded to <code>dp</code> decimal places using rounding mode <code>rm</code>, and formatted
according to the properties of the <a href='#format'><code>FORMAT</code></a> object.
</p>
<p>
See the examples below for the properties of the
<a href='#format'><code>FORMAT</code></a> object, their types and their usage.
</p>
<p>
If <code>dp</code> is omitted or is <code>null</code> or <code>undefined</code>, then the
return value is not rounded to a fixed number of decimal places.<br />
If <code>rm</code> is omitted or is <code>null</code> or <code>undefined</code>,
<a href='#rounding-mode'><code>ROUNDING_MODE</code></a> is used.
</p>
<p>
See <a href='#Errors'>Errors</a> for the treatment of other non-integer or out of range
<code>dp</code> or <code>rm</code> values.
</p>
<pre>
format = {
decimalSeparator: '.',
groupSeparator: ',',
groupSize: 3,
secondaryGroupSize: 0,
fractionGroupSeparator: ' ',
fractionGroupSize: 0
}
BigNumber.config({ FORMAT: format })
x = new BigNumber('123456789.123456789')
x.toFormat() // '123,456,789.123456789'
x.toFormat(1) // '123,456,789.1'
// If a reference to the object assigned to FORMAT has been retained,
// the format properties can be changed directly
format.groupSeparator = ' '
format.fractionGroupSize = 5
x.toFormat() // '123 456 789.12345 6789'
BigNumber.config({
FORMAT: {
decimalSeparator: ',',
groupSeparator: '.',
groupSize: 3,
secondaryGroupSize: 2
}
})
x.toFormat(6) // '12.34.56.789,123'</pre>
<h5 id="toFr">
toFraction<code class='inset'>.toFraction([max]) <i>⇒ [string, string]</i></code>
</h5>
<p>
<code>max</code>: <i>number|string|BigNumber</i>: integer >= <code>1</code> and <
<code>Infinity</code>
</p>
<p>
Returns a string array representing the value of this BigNumber as a simple fraction with an
integer numerator and an integer denominator. The denominator will be a positive non-zero
value less than or equal to <code>max</code>.
</p>
<p>
If a maximum denominator, <code>max</code>, is not specified, or is <code>null</code> or
<code>undefined</code>, the denominator will be the lowest value necessary to represent the
number exactly.
</p>
<p>
See <a href='#Errors'>Errors</a> for the treatment of other non-integer or out of range
<code>max</code> values.
</p>
<pre>
x = new BigNumber(1.75)
x.toFraction() // '7, 4'
pi = new BigNumber('3.14159265358')
pi.toFraction() // '157079632679,50000000000'
pi.toFraction(100000) // '312689, 99532'
pi.toFraction(10000) // '355, 113'
pi.toFraction(100) // '311, 99'
pi.toFraction(10) // '22, 7'
pi.toFraction(1) // '3, 1'</pre>
<h5 id="toJSON">toJSON<code class='inset'>.toJSON() <i>⇒ string</i></code></h5>
<p>As <code>valueOf</code>.</p>
<pre>
x = new BigNumber('177.7e+457')
y = new BigNumber(235.4325)
z = new BigNumber('0.0098074')
// Serialize an array of three BigNumbers
str = JSON.stringify( [x, y, z] )
// "["1.777e+459","235.4325","0.0098074"]"
// Return an array of three BigNumbers
JSON.parse(str, function (key, val) {
return key === '' ? val : new BigNumber(val)
})</pre>
<h5 id="toN">toNumber<code class='inset'>.toNumber() <i>⇒ number</i></code></h5>
<p>Returns the value of this BigNumber as a JavaScript number primitive.</p>
<p>
Type coercion with, for example, the unary plus operator will also work, except that a
BigNumber with the value minus zero will be converted to positive zero.
</p>
<pre>
x = new BigNumber(456.789)
x.toNumber() // 456.789
+x // 456.789
y = new BigNumber('45987349857634085409857349856430985')
y.toNumber() // 4.598734985763409e+34
z = new BigNumber(-0)
1 / +z // Infinity
1 / z.toNumber() // -Infinity</pre>
<h5 id="pow">toPower<code class='inset'>.pow(n [, m]) <i>⇒ BigNumber</i></code></h5>
<p>
<code>n</code>: <i>number</i>: integer,
<code>-9007199254740991</code> to <code>9007199254740991</code> inclusive<br />
<code>m</code>: <i>number|string|BigNumber</i>
</p>
<p>
Returns a BigNumber whose value is the value of this BigNumber raised to the power
<code>n</code>, and optionally modulo a modulus <code>m</code>.
</p>
<p>
If <code>n</code> is negative the result is rounded according to the current
<a href='#decimal-places'><code>DECIMAL_PLACES</code></a> and
<a href='#rounding-mode'><code>ROUNDING_MODE</code></a> configuration.
</p>
<p>
If <code>n</code> is not an integer or is out of range:
</p>
<p class='inset'>
If <code>ERRORS</code> is <code>true</code> a BigNumber Error is thrown,<br />
else if <code>n</code> is greater than <code>9007199254740991</code>, it is interpreted as
<code>Infinity</code>;<br />
else if <code>n</code> is less than <code>-9007199254740991</code>, it is interpreted as
<code>-Infinity</code>;<br />
else if <code>n</code> is otherwise a number, it is truncated to an integer;<br />
else it is interpreted as <code>NaN</code>.
</p>
<p>
As the number of digits of the result of the power operation can grow so large so quickly,
e.g. 123.456<sup>10000</sup> has over <code>50000</code> digits, the number of significant
digits calculated is limited to the value of the
<a href='#pow-precision'><code>POW_PRECISION</code></a> setting (unless a modulus
<code>m</code> is specified).
</p>
<p>
By default <a href='#pow-precision'><code>POW_PRECISION</code></a> is set to <code>0</code>.
This means that an unlimited number of significant digits will be calculated, and that the
method's performance will decrease dramatically for larger exponents.
</p>
<p>
Negative exponents will be calculated to the number of decimal places specified by
<a href='#decimal-places'><code>DECIMAL_PLACES</code></a> (but not to more than
<a href='#pow-precision'><code>POW_PRECISION</code></a> significant digits).
</p>
<p>
If <code>m</code> is specified and the value of <code>m</code>, <code>n</code> and this
BigNumber are positive integers, then a fast modular exponentiation algorithm is used,
otherwise if any of the values is not a positive integer the operation will simply be
performed as <code>x.toPower(n).modulo(m)</code> with a
<a href='#pow-precision'><code>POW_PRECISION</code></a> of <code>0</code>.
</p>
<pre>
Math.pow(0.7, 2) // 0.48999999999999994
x = new BigNumber(0.7)
x.toPower(2) // '0.49'
BigNumber(3).pow(-2) // '0.11111111111111111111'</pre>
<h5 id="toP">
toPrecision<code class='inset'>.toPrecision([sd [, rm]]) <i>⇒ string</i></code>
</h5>
<p>
<code>sd</code>: <i>number</i>: integer, <code>1</code> to <code>1e+9</code> inclusive<br />
<code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
</p>
<p>
Returns a string representing the value of this BigNumber rounded to <code>sd</code>
significant digits using rounding mode <code>rm</code>.
</p>
<p>
If <code>sd</code> is less than the number of digits necessary to represent the integer part
of the value in normal (fixed-point) notation, then exponential notation is used.
</p>
<p>
If <code>sd</code> is omitted, or is <code>null</code> or <code>undefined</code>, then the
return value is the same as <code>n.toString()</code>.<br />
If <code>rm</code> is omitted or is <code>null</code> or <code>undefined</code>,
<a href='#rounding-mode'><code>ROUNDING_MODE</code></a> is used.
</p>
<p>
See <a href='#Errors'>Errors</a> for the treatment of other non-integer or out of range
<code>sd</code> or <code>rm</code> values.
</p>
<pre>
x = 45.6
y = new BigNumber(x)
x.toPrecision() // '45.6'
y.toPrecision() // '45.6'
x.toPrecision(1) // '5e+1'
y.toPrecision(1) // '5e+1'
y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP)
y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN)
x.toPrecision(5) // '45.600'
y.toPrecision(5) // '45.600'</pre>
<h5 id="toS">toString<code class='inset'>.toString([base]) <i>⇒ string</i></code></h5>
<p><code>base</code>: <i>number</i>: integer, <code>2</code> to <code>64</code> inclusive</p>
<p>
Returns a string representing the value of this BigNumber in the specified base, or base
<code>10</code> if <code>base</code> is omitted or is <code>null</code> or
<code>undefined</code>.
</p>
<p>
For bases above <code>10</code>, values from <code>10</code> to <code>35</code> are
represented by <code>a-z</code> (as with <code>Number.prototype.toString</code>),
<code>36</code> to <code>61</code> by <code>A-Z</code>, and <code>62</code> and
<code>63</code> by <code>$</code> and <code>_</code> respectively.
</p>
<p>
If a base is specified the value is rounded according to the current
<a href='#decimal-places'><code>DECIMAL_PLACES</code></a>
and <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> configuration.
</p>
<p>
If a base is not specified, and this BigNumber has a positive
exponent that is equal to or greater than the positive component of the
current <a href="#exponential-at"><code>EXPONENTIAL_AT</code></a> setting,
or a negative exponent equal to or less than the negative component of the
setting, then exponential notation is returned.
</p>
<p>If <code>base</code> is <code>null</code> or <code>undefined</code> it is ignored.</p>
<p>
See <a href='#Errors'>Errors</a> for the treatment of other non-integer or out of range
<code>base</code> values.
</p>
<pre>
x = new BigNumber(750000)
x.toString() // '750000'
BigNumber.config({ EXPONENTIAL_AT: 5 })
x.toString() // '7.5e+5'
y = new BigNumber(362.875)
y.toString(2) // '101101010.111'
y.toString(9) // '442.77777777777777777778'
y.toString(32) // 'ba.s'
BigNumber.config({ DECIMAL_PLACES: 4 });
z = new BigNumber('1.23456789')
z.toString() // '1.23456789'
z.toString(10) // '1.2346'</pre>
<h5 id="trunc">truncated<code class='inset'>.trunc() <i>⇒ BigNumber</i></code></h5>
<p>
Returns a BigNumber whose value is the value of this BigNumber truncated to a whole number.
</p>
<pre>
x = new BigNumber(123.456)
x.truncated() // '123'
y = new BigNumber(-12.3)
y.trunc() // '-12'</pre>
<h5 id="valueOf">valueOf<code class='inset'>.valueOf() <i>⇒ string</i></code></h5>
<p>
As <code>toString</code>, but does not accept a base argument and includes the minus sign
for negative zero.
</p>
<pre>
x = new BigNumber('-0')
x.toString() // '0'
x.valueOf() // '-0'
y = new BigNumber('1.777e+457')
y.valueOf() // '1.777e+457'</pre>
<h4 id="instance-properties">Properties</h4>
<p>The properties of a BigNumber instance:</p>
<table>
<tr>
<th>Property</th>
<th>Description</th>
<th>Type</th>
<th>Value</th>
</tr>
<tr>
<td class='centre' id='coefficient'><b>c</b></td>
<td>coefficient<sup>*</sup></td>
<td><i>number</i><code>[]</code></td>
<td> Array of base <code>1e14</code> numbers</td>
</tr>
<tr>
<td class='centre' id='exponent'><b>e</b></td>
<td>exponent</td>
<td><i>number</i></td>
<td>Integer, <code>-1000000000</code> to <code>1000000000</code> inclusive</td>
</tr>
<tr>
<td class='centre' id='sign'><b>s</b></td>
<td>sign</td>
<td><i>number</i></td>
<td><code>-1</code> or <code>1</code></td>
</tr>
<tr>
<td class='centre' id='isbig'><b>isBigNumber</b></td>
<td>type identifier</td>
<td><i>boolean</i></td>
<td><code>true</code></td>
</tr>
</table>
<p><sup>*</sup>significand</p>
<p>
The value of any of the <code>c</code>, <code>e</code> and <code>s</code> properties may also
be <code>null</code>.
</p>
<p>
From v2.0.0 of this library, the value of the coefficient of a BigNumber is stored in a
normalised base <code>100000000000000</code> floating point format, as opposed to the base
<code>10</code> format used in v1.x.x
</p>
<p>
This change means the properties of a BigNumber are now best considered to be read-only.
Previously it was acceptable to change the exponent of a BigNumber by writing to its exponent
property directly, but this is no longer recommended as the number of digits in the first
element of the coefficient array is dependent on the exponent, so the coefficient would also
need to be altered.
</p>
<p>
Note that, as with JavaScript numbers, the original exponent and fractional trailing zeros are
not necessarily preserved.
</p>
<pre>x = new BigNumber(0.123) // '0.123'
x.toExponential() // '1.23e-1'
x.c // '1,2,3'
x.e // -1
x.s // 1
y = new Number(-123.4567000e+2) // '-12345.67'
y.toExponential() // '-1.234567e+4'
z = new BigNumber('-123.4567000e+2') // '-12345.67'
z.toExponential() // '-1.234567e+4'
z.c // '1,2,3,4,5,6,7'
z.e // 4
z.s // -1</pre>
<p>Checking if a value is a BigNumber instance:</p>
<pre>
x = new BigNumber(3)
x instanceof BigNumber // true
x.isBigNumber // true
BN = BigNumber.another();
y = new BN(3)
y instanceof BigNumber // false
y.isBigNumber // true</pre>
<h4 id="zero-nan-infinity">Zero, NaN and Infinity</h4>
<p>
The table below shows how ±<code>0</code>, <code>NaN</code> and
±<code>Infinity</code> are stored.
</p>
<table>
<tr>
<th> </th>
<th class='centre'>c</th>
<th class='centre'>e</th>
<th class='centre'>s</th>
</tr>
<tr>
<td>±0</td>
<td><code>[0]</code></td>
<td><code>0</code></td>
<td><code>±1</code></td>
</tr>
<tr>
<td>NaN</td>
<td><code>null</code></td>
<td><code>null</code></td>
<td><code>null</code></td>
</tr>
<tr>
<td>±Infinity</td>
<td><code>null</code></td>
<td><code>null</code></td>
<td><code>±1</code></td>
</tr>
</table>
<pre>
x = new Number(-0) // 0
1 / x == -Infinity // true
y = new BigNumber(-0) // '0'
y.c // '0' ( [0].toString() )
y.e // 0
y.s // -1</pre>
<h4 id='Errors'>Errors</h4>
<p>
The errors that are thrown are generic <code>Error</code> objects with <code>name</code>
<i>BigNumber Error</i>.
</p>
<p>
The table below shows the errors that may be thrown if <code>ERRORS</code> is
<code>true</code>, and the action taken if <code>ERRORS</code> is <code>false</code>.
</p>
<table class='error-table'>
<tr>
<th>Method(s)</th>
<th>ERRORS: true<br />Throw BigNumber Error</th>
<th>ERRORS: false<br />Action on invalid argument</th>
</tr>
<tr>
<td rowspan=5>
<code>
BigNumber<br />
comparedTo<br />
dividedBy<br />
dividedToIntegerBy<br />
equals<br />
greaterThan<br />
greaterThanOrEqualTo<br />
lessThan<br />
lessThanOrEqualTo<br />
minus<br />
modulo<br />
plus<br />
times
</code></td>
<td>number type has more than<br />15 significant digits</td>
<td>Accept.</td>
</tr>
<tr>
<td>not a base... number</td>
<td>Substitute <code>NaN</code>.</td>
</tr>
<tr>
<td>base not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td>base out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td>not a number<sup>*</sup></td>
<td>Substitute <code>NaN</code>.</td>
</tr>
<tr>
<td><code>another</code></td>
<td>not an object</td>
<td>Ignore.</td>
</tr>
<tr>
<td rowspan=17><code>config</code></td>
<td><code>DECIMAL_PLACES</code> not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td><code>DECIMAL_PLACES</code> out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td><code>ROUNDING_MODE</code> not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td><code>ROUNDING_MODE</code> out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td><code>EXPONENTIAL_AT</code> not an integer<br />or not [integer, integer]</td>
<td>Truncate to integer(s).<br />Ignore if not number(s).</td>
</tr>
<tr>
<td><code>EXPONENTIAL_AT</code> out of range<br />or not [negative, positive]</td>
<td>Ignore.</td>
</tr>
<tr>
<td><code>RANGE</code> not an integer<br />or not [integer, integer]</td>
<td> Truncate to integer(s).<br />Ignore if not number(s).</td>
</tr>
<tr>
<td><code>RANGE</code> cannot be zero</td>
<td>Ignore.</td>
</tr>
<tr>
<td><code>RANGE</code> out of range<br />or not [negative, positive]</td>
<td>Ignore.</td>
</tr>
<tr>
<td><code>ERRORS</code> not a boolean<br />or binary digit</td>
<td>Ignore.</td>
</tr>
<tr>
<td><code>CRYPTO</code> not a boolean<br />or binary digit</td>
<td>Ignore.</td>
</tr>
<tr>
<td><code>CRYPTO</code> crypto unavailable</td>
<td>Ignore.</td>
</tr>
<tr>
<td><code>MODULO_MODE</code> not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td><code>MODULO_MODE</code> out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td><code>POW_PRECISION</code> not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td><code>POW_PRECISION</code> out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td><code>FORMAT</code> not an object</td>
<td>Ignore.</td>
</tr>
<tr>
<td><code>precision</code></td>
<td>argument not a boolean<br />or binary digit</td>
<td>Ignore.</td>
</tr>
<tr>
<td rowspan=4><code>round</code></td>
<td>decimal places not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td>decimal places out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td>rounding mode not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td>rounding mode out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td rowspan=2><code>shift</code></td>
<td>argument not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td>argument out of range</td>
<td>Substitute ±<code>Infinity</code>.
</tr>
<tr>
<td rowspan=4>
<code>toExponential</code><br />
<code>toFixed</code><br />
<code>toFormat</code>
</td>
<td>decimal places not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td>decimal places out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td>rounding mode not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td>rounding mode out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td rowspan=2><code>toFraction</code></td>
<td>max denominator not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td>max denominator out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td rowspan=4>
<code>toDigits</code><br />
<code>toPrecision</code>
</td>
<td>precision not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td>precision out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td>rounding mode not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td>rounding mode out of range</td>
<td>Ignore.</td>
</tr>
<tr>
<td rowspan=2><code>toPower</code></td>
<td>exponent not an integer</td>
<td>Truncate to integer.<br />Substitute <code>NaN</code> if not a number.</td>
</tr>
<tr>
<td>exponent out of range</td>
<td>Substitute ±<code>Infinity</code>.
</td>
</tr>
<tr>
<td rowspan=2><code>toString</code></td>
<td>base not an integer</td>
<td>Truncate to integer.<br />Ignore if not a number.</td>
</tr>
<tr>
<td>base out of range</td>
<td>Ignore.</td>
</tr>
</table>
<p><sup>*</sup>No error is thrown if the value is <code>NaN</code> or 'NaN'.</p>
<p>
The message of a <i>BigNumber Error</i> will also contain the name of the method from which
the error originated.
</p>
<p>To determine if an exception is a <i>BigNumber Error</i>:</p>
<pre>
try {
// ...
} catch (e) {
if ( e instanceof Error && e.name == 'BigNumber Error' ) {
// ...
}
}</pre>
<h4 id='faq'>FAQ</h4>
<h6>Why are trailing fractional zeros removed from BigNumbers?</h6>
<p>
Some arbitrary-precision libraries retain trailing fractional zeros as they can indicate the
precision of a value. This can be useful but the results of arithmetic operations can be
misleading.
</p>
<pre>
x = new BigDecimal("1.0")
y = new BigDecimal("1.1000")
z = x.add(y) // 2.1000
x = new BigDecimal("1.20")
y = new BigDecimal("3.45000")
z = x.multiply(y) // 4.1400000</pre>
<p>
To specify the precision of a value is to specify that the value lies
within a certain range.
</p>
<p>
In the first example, <code>x</code> has a value of <code>1.0</code>. The trailing zero shows
the precision of the value, implying that it is in the range <code>0.95</code> to
<code>1.05</code>. Similarly, the precision indicated by the trailing zeros of <code>y</code>
indicates that the value is in the range <code>1.09995</code> to <code>1.10005</code>.
</p>
<p>
If we add the two lowest values in the ranges we have, <code>0.95 + 1.09995 = 2.04995</code>,
and if we add the two highest values we have, <code>1.05 + 1.10005 = 2.15005</code>, so the
range of the result of the addition implied by the precision of its operands is
<code>2.04995</code> to <code>2.15005</code>.
</p>
<p>
The result given by BigDecimal of <code>2.1000</code> however, indicates that the value is in
the range <code>2.09995</code> to <code>2.10005</code> and therefore the precision implied by
its trailing zeros may be misleading.
</p>
<p>
In the second example, the true range is <code>4.122744</code> to <code>4.157256</code> yet
the BigDecimal answer of <code>4.1400000</code> indicates a range of <code>4.13999995</code>
to <code>4.14000005</code>. Again, the precision implied by the trailing zeros may be
misleading.
</p>
<p>
This library, like binary floating point and most calculators, does not retain trailing
fractional zeros. Instead, the <code>toExponential</code>, <code>toFixed</code> and
<code>toPrecision</code> methods enable trailing zeros to be added if and when required.<br />
</p>
</div>
</body>
</html>