data_utils.py
14.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from __future__ import division, print_function
import tensorflow as tf
import numpy as np
import cv2
import sys
import random
PY_VERSION = sys.version_info[0]
iter_cnt = 0
def _parse_tfrecord(data):
example = tf.train.Example()
example.ParseFromString(data)
features = example.features.feature
return features
def parse_tfrecord(data):
# tfrecord parser for TFRecordDataset (raw data)
features = _parse_tfrecord(data)
index = features['index'].int64_list.value[0]
encoded_image = np.frombuffer(features['image'].bytes_list.value[0], dtype = np.uint8)
width = features['width'].int64_list.value[0]
height = features['height'].int64_list.value[0]
boxes = features['boxes'].int64_list.value
assert len(boxes) % 5 == 0, 'Annotation error occured in box array.'
box_cnt = len(boxes) // 5
aligned_boxes = []
labels = []
for i in range(box_cnt):
label, x_min, y_min, x_max, y_max = int(boxes[i * 5]), float(boxes[i * 5 + 1]), float(boxes[i * 5 + 2]), float(boxes[i * 5 + 3]), float(boxes[i * 5 + 4]) ## do we need to change int to float? is there float rectangle sample?
aligned_boxes.append([x_min, y_min, x_max, y_max])
labels.append(label)
aligned_boxes = np.asarray(aligned_boxes, np.float32)
labels = np.asarray(labels, np.int64)
return index, encoded_image, aligned_boxes, labels, width, height
def parse_record(features):
# tfrecord parser for TFRecordIterator (primitive data)
index = int(features['index'])
encoded_image = np.frombuffer(features['image'], dtype = np.uint8)
width = int(features['width'])
height = int(features['height'])
boxes = features['boxes']
assert len(boxes) % 5 == 0, 'Annotation error occured in box array.'
box_cnt = len(boxes) // 5
aligned_boxes = []
labels = []
for i in range(box_cnt):
label, x_min, y_min, x_max, y_max = int(boxes[i * 5]), float(boxes[i * 5 + 1]), float(boxes[i * 5 + 2]), float(boxes[i * 5 + 3])
aligned_boxes.append([x_min, y_min, x_max, y_max])
labels.append(label)
aligned_boxes = np.asarray(aligned_boxes, np.float32)
labels = np.asarray(labels, np.int64)
return index, encoded_image, aligned_boxes, labels, width, height
def bbox_crop(bbox, crop_box=None, allow_outside_center=True):
bbox = bbox.copy()
if crop_box is None:
return bbox
if not len(crop_box) == 4:
raise ValueError(
"Invalid crop_box parameter, requires length 4, given {}".format(str(crop_box)))
if sum([int(c is None) for c in crop_box]) == 4:
return bbox
l, t, w, h = crop_box
left = l if l else 0
top = t if t else 0
right = left + (w if w else np.inf)
bottom = top + (h if h else np.inf)
crop_bbox = np.array((left, top, right, bottom))
if allow_outside_center:
mask = np.ones(bbox.shape[0], dtype=bool)
else:
centers = (bbox[:, :2] + bbox[:, 2:4]) / 2
mask = np.logical_and(crop_bbox[:2] <= centers, centers < crop_bbox[2:]).all(axis=1)
# transform borders
bbox[:, :2] = np.maximum(bbox[:, :2], crop_bbox[:2])
bbox[:, 2:4] = np.minimum(bbox[:, 2:4], crop_bbox[2:4])
bbox[:, :2] -= crop_bbox[:2]
bbox[:, 2:4] -= crop_bbox[:2]
mask = np.logical_and(mask, (bbox[:, :2] < bbox[:, 2:4]).all(axis=1))
bbox = bbox[mask]
return bbox
def bbox_iou(bbox_a, bbox_b, offset=0):
if bbox_a.shape[1] < 4 or bbox_b.shape[1] < 4:
raise IndexError("Bounding boxes axis 1 must have at least length 4")
tl = np.maximum(bbox_a[:, None, :2], bbox_b[:, :2])
br = np.minimum(bbox_a[:, None, 2:4], bbox_b[:, 2:4])
area_i = np.prod(br - tl + offset, axis=2) * (tl < br).all(axis=2)
area_a = np.prod(bbox_a[:, 2:4] - bbox_a[:, :2] + offset, axis=1)
area_b = np.prod(bbox_b[:, 2:4] - bbox_b[:, :2] + offset, axis=1)
return area_i / (area_a[:, None] + area_b - area_i)
def random_crop_with_constraints(bbox, size, min_scale=0.3, max_scale=1,
max_aspect_ratio=2, constraints=None,
max_trial=50):
# default params in paper
if constraints is None:
constraints = (
(0.1, None),
(0.3, None),
(0.5, None),
(0.7, None),
(0.9, None),
(None, 1),
)
w, h = size
candidates = [(0, 0, w, h)]
for min_iou, max_iou in constraints:
min_iou = -np.inf if min_iou is None else min_iou
max_iou = np.inf if max_iou is None else max_iou
for _ in range(max_trial):
scale = random.uniform(min_scale, max_scale)
aspect_ratio = random.uniform(
max(1 / max_aspect_ratio, scale * scale),
min(max_aspect_ratio, 1 / (scale * scale)))
crop_h = int(h * scale / np.sqrt(aspect_ratio))
crop_w = int(w * scale * np.sqrt(aspect_ratio))
crop_t = random.randrange(h - crop_h)
crop_l = random.randrange(w - crop_w)
crop_bb = np.array((crop_l, crop_t, crop_l + crop_w, crop_t + crop_h))
if len(bbox) == 0:
top, bottom = crop_t, crop_t + crop_h
left, right = crop_l, crop_l + crop_w
return bbox, (left, top, right-left, bottom-top)
iou = bbox_iou(bbox, crop_bb[np.newaxis])
if min_iou <= iou.min() and iou.max() <= max_iou:
top, bottom = crop_t, crop_t + crop_h
left, right = crop_l, crop_l + crop_w
candidates.append((left, top, right-left, bottom-top))
break
# random select one
while candidates:
crop = candidates.pop(np.random.randint(0, len(candidates)))
new_bbox = bbox_crop(bbox, crop, allow_outside_center=False)
if new_bbox.size < 1:
continue
new_crop = (crop[0], crop[1], crop[2], crop[3])
return new_bbox, new_crop
return bbox, (0, 0, w, h)
def random_color_distort(img, brightness_delta=32, hue_vari=18, sat_vari=0.5, val_vari=0.5):
def random_hue(img_hsv, hue_vari, p=0.5):
if np.random.uniform(0, 1) > p:
hue_delta = np.random.randint(-hue_vari, hue_vari)
img_hsv[:, :, 0] = (img_hsv[:, :, 0] + hue_delta) % 180
return img_hsv
def random_saturation(img_hsv, sat_vari, p=0.5):
if np.random.uniform(0, 1) > p:
sat_mult = 1 + np.random.uniform(-sat_vari, sat_vari)
img_hsv[:, :, 1] *= sat_mult
return img_hsv
def random_value(img_hsv, val_vari, p=0.5):
if np.random.uniform(0, 1) > p:
val_mult = 1 + np.random.uniform(-val_vari, val_vari)
img_hsv[:, :, 2] *= val_mult
return img_hsv
def random_brightness(img, brightness_delta, p=0.5):
if np.random.uniform(0, 1) > p:
img = img.astype(np.float32)
brightness_delta = int(np.random.uniform(-brightness_delta, brightness_delta))
img = img + brightness_delta
return np.clip(img, 0, 255)
# brightness
img = random_brightness(img, brightness_delta)
img = img.astype(np.uint8)
# color jitter
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype(np.float32)
if np.random.randint(0, 2):
img_hsv = random_value(img_hsv, val_vari)
img_hsv = random_saturation(img_hsv, sat_vari)
img_hsv = random_hue(img_hsv, hue_vari)
else:
img_hsv = random_saturation(img_hsv, sat_vari)
img_hsv = random_hue(img_hsv, hue_vari)
img_hsv = random_value(img_hsv, val_vari)
img_hsv = np.clip(img_hsv, 0, 255)
img = cv2.cvtColor(img_hsv.astype(np.uint8), cv2.COLOR_HSV2BGR)
return img
def letterbox_resize(img, new_width, new_height, interp=0):
ori_height, ori_width = img.shape[:2]
resize_ratio = min(new_width / ori_width, new_height / ori_height)
resize_w = int(resize_ratio * ori_width)
resize_h = int(resize_ratio * ori_height)
img = cv2.resize(img, (resize_w, resize_h), interpolation=interp)
image_padded = np.full((new_height, new_width, 3), 128, np.uint8)
dw = int((new_width - resize_w) / 2)
dh = int((new_height - resize_h) / 2)
image_padded[dh: resize_h + dh, dw: resize_w + dw, :] = img
return image_padded, resize_ratio, dw, dh
def resize_with_bbox(img, bbox, new_width, new_height, interp=0, letterbox=False):
if letterbox:
image_padded, resize_ratio, dw, dh = letterbox_resize(img, new_width, new_height, interp)
# xmin, xmax
bbox[:, [0, 2]] = bbox[:, [0, 2]] * resize_ratio + dw
# ymin, ymax
bbox[:, [1, 3]] = bbox[:, [1, 3]] * resize_ratio + dh
return image_padded, bbox
else:
ori_height, ori_width = img.shape[:2]
img = cv2.resize(img, (new_width, new_height), interpolation=interp)
# xmin, xmax
bbox[:, [0, 2]] = bbox[:, [0, 2]] / ori_width * new_width
# ymin, ymax
bbox[:, [1, 3]] = bbox[:, [1, 3]] / ori_height * new_height
return img, bbox
def random_flip(img, bbox, px=0, py=0):
height, width = img.shape[:2]
if np.random.uniform(0, 1) < px:
img = cv2.flip(img, 1)
xmax = width - bbox[:, 0]
xmin = width - bbox[:, 2]
bbox[:, 0] = xmin
bbox[:, 2] = xmax
if np.random.uniform(0, 1) < py:
img = cv2.flip(img, 0)
ymax = height - bbox[:, 1]
ymin = height - bbox[:, 3]
bbox[:, 1] = ymin
bbox[:, 3] = ymax
return img, bbox
def random_expand(img, bbox, max_ratio=4, fill=0, keep_ratio=True):
h, w, c = img.shape
ratio_x = random.uniform(1, max_ratio)
if keep_ratio:
ratio_y = ratio_x
else:
ratio_y = random.uniform(1, max_ratio)
oh, ow = int(h * ratio_y), int(w * ratio_x)
off_y = random.randint(0, oh - h)
off_x = random.randint(0, ow - w)
dst = np.full(shape=(oh, ow, c), fill_value=fill, dtype=img.dtype)
dst[off_y:off_y + h, off_x:off_x + w, :] = img
# correct bbox
bbox[:, :2] += (off_x, off_y)
bbox[:, 2:4] += (off_x, off_y)
return dst, bbox
def process_box(boxes, labels, img_size, class_num, anchors):
anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
# convert boxes form:
# shape: [N, 2]
# (x_center, y_center)
box_centers = (boxes[:, 0:2] + boxes[:, 2:4]) / 2
# (width, height)
box_sizes = boxes[:, 2:4] - boxes[:, 0:2]
# [13, 13, 3, 5+num_class+1] `5` means coords and labels. `1` means mix up weight.
y_true_13 = np.zeros((img_size[1] // 32, img_size[0] // 32, 3, 6 + class_num), np.float32)
y_true_26 = np.zeros((img_size[1] // 16, img_size[0] // 16, 3, 6 + class_num), np.float32)
y_true_52 = np.zeros((img_size[1] // 8, img_size[0] // 8, 3, 6 + class_num), np.float32)
# mix up weight default to 1.
y_true_13[..., -1] = 1.
y_true_26[..., -1] = 1.
y_true_52[..., -1] = 1.
y_true = [y_true_13, y_true_26, y_true_52]
# [N, 1, 2]
box_sizes = np.expand_dims(box_sizes, 1)
# broadcast tricks
# [N, 1, 2] & [9, 2] ==> [N, 9, 2]
mins = np.maximum(- box_sizes / 2, - anchors / 2)
maxs = np.minimum(box_sizes / 2, anchors / 2)
# [N, 9, 2]
whs = maxs - mins
# [N, 9]
iou = (whs[:, :, 0] * whs[:, :, 1]) / (
box_sizes[:, :, 0] * box_sizes[:, :, 1] + anchors[:, 0] * anchors[:, 1] - whs[:, :, 0] * whs[:, :,
1] + 1e-10)
# [N]
best_match_idx = np.argmax(iou, axis=1)
ratio_dict = {1.: 8., 2.: 16., 3.: 32.}
for i, idx in enumerate(best_match_idx):
# idx: 0,1,2 ==> 2; 3,4,5 ==> 1; 6,7,8 ==> 0
feature_map_group = 2 - idx // 3
# scale ratio: 0,1,2 ==> 8; 3,4,5 ==> 16; 6,7,8 ==> 32
ratio = ratio_dict[np.ceil((idx + 1) / 3.)]
x = int(np.floor(box_centers[i, 0] / ratio))
y = int(np.floor(box_centers[i, 1] / ratio))
k = anchors_mask[feature_map_group].index(idx)
c = labels[i]
# print(feature_map_group, '|', y,x,k,c)
y_true[feature_map_group][y, x, k, :2] = box_centers[i]
y_true[feature_map_group][y, x, k, 2:4] = box_sizes[i]
y_true[feature_map_group][y, x, k, 4] = 1.
y_true[feature_map_group][y, x, k, 5 + c] = 1.
y_true[feature_map_group][y, x, k, -1] = boxes[i, -1]
return y_true_13, y_true_26, y_true_52
def parse_data(data, class_num, img_size, anchors, is_training, letterbox_resize):
img_idx, encoded_img, boxes, labels, _, _ = parse_tfrecord(data)
img = cv2.imdecode(encoded_img, cv2.IMREAD_COLOR)
boxes = np.concatenate((boxes, np.full(shape=(boxes.shape[0], 1), fill_value=1., dtype=np.float32)), axis=-1)
## I erased mix-up method here
if is_training:
# random color distortion
img = random_color_distort(img)
# random expansion with prob 0.5
if np.random.uniform(0, 1) > 0.5:
img, boxes = random_expand(img, boxes, 4)
# random cropping
h, w, _ = img.shape
boxes, crop = random_crop_with_constraints(boxes, (w, h))
x0, y0, w, h = crop
img = img[y0: y0+h, x0: x0+w]
# resize with random interpolation
h, w, _ = img.shape
interp = np.random.randint(0, 5)
img, boxes = resize_with_bbox(img, boxes, img_size[0], img_size[1], interp=interp, letterbox=letterbox_resize)
# random horizontal flip
h, w, _ = img.shape
img, boxes = random_flip(img, boxes, px=0.5)
else:
img, boxes = resize_with_bbox(img, boxes, img_size[0], img_size[1], interp=1, letterbox=letterbox_resize)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32)
# the input of yolo_v3 should be in range 0~1
img = img / 255.
y_true_13, y_true_26, y_true_52 = process_box(boxes, labels, img_size, class_num, anchors)
return img_idx, img, y_true_13, y_true_26, y_true_52
def get_batch_data(records, class_num, img_size, anchors, is_training, multi_scale=False, mix_up=False, letterbox_resize=True, interval=10):
global iter_cnt
# multi_scale training
if multi_scale and is_training:
random.seed(iter_cnt // interval)
random_img_size = [[x * 32, x * 32] for x in range(10, 20)]
img_size = random.sample(random_img_size, 1)[0]
iter_cnt += 1
img_idx_batch, img_batch, y_true_13_batch, y_true_26_batch, y_true_52_batch = [], [], [], [], []
# deleted mix up strategy
for data in records:
img_idx, img, y_true_13, y_true_26, y_true_52 = parse_data(data, class_num, img_size, anchors, is_training, letterbox_resize)
img_idx_batch.append(img_idx)
img_batch.append(img)
y_true_13_batch.append(y_true_13)
y_true_26_batch.append(y_true_26)
y_true_52_batch.append(y_true_52)
img_idx_batch, img_batch, y_true_13_batch, y_true_26_batch, y_true_52_batch = np.asarray(img_idx_batch, np.int64), np.asarray(img_batch), np.asarray(y_true_13_batch), np.asarray(y_true_26_batch), np.asarray(y_true_52_batch)
return img_idx_batch, img_batch, y_true_13_batch, y_true_26_batch, y_true_52_batch