RCInput.cpp
22.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/****************************************************************************
*
* Copyright (c) 2012-2020 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "RCInput.hpp"
#include "crsf_telemetry.h"
#include <uORB/topics/vehicle_command_ack.h>
using namespace time_literals;
constexpr char const *RCInput::RC_SCAN_STRING[];
RCInput::RCInput(const char *device) :
ModuleParams(nullptr),
ScheduledWorkItem(MODULE_NAME, px4::serial_port_to_wq(device)),
_cycle_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": cycle time")),
_publish_interval_perf(perf_alloc(PC_INTERVAL, MODULE_NAME": publish interval"))
{
// rc input, published to ORB
_rc_in.input_source = input_rc_s::RC_INPUT_SOURCE_PX4FMU_PPM;
// initialize it as RC lost
_rc_in.rc_lost = true;
// initialize raw_rc values and count
for (unsigned i = 0; i < input_rc_s::RC_INPUT_MAX_CHANNELS; i++) {
_raw_rc_values[i] = UINT16_MAX;
}
if (device) {
strncpy(_device, device, sizeof(_device) - 1);
_device[sizeof(_device) - 1] = '\0';
}
}
RCInput::~RCInput()
{
#if defined(SPEKTRUM_POWER_PASSIVE)
// Disable power controls for Spektrum receiver
SPEKTRUM_POWER_PASSIVE();
#endif
dsm_deinit();
delete _crsf_telemetry;
delete _ghst_telemetry;
perf_free(_cycle_perf);
perf_free(_publish_interval_perf);
}
int
RCInput::init()
{
#ifdef RF_RADIO_POWER_CONTROL
// power radio on
RF_RADIO_POWER_CONTROL(true);
#endif // RF_RADIO_POWER_CONTROL
// dsm_init sets some file static variables and returns a file descriptor
// it also powers on the radio if needed
_rcs_fd = dsm_init(_device);
if (_rcs_fd < 0) {
return -errno;
}
if (board_rc_swap_rxtx(_device)) {
#if defined(TIOCSSWAP)
ioctl(_rcs_fd, TIOCSSWAP, SER_SWAP_ENABLED);
#endif // TIOCSSWAP
}
// assume SBUS input and immediately switch it to
// so that if Single wire mode on TX there will be only
// a short contention
sbus_config(_rcs_fd, board_rc_singlewire(_device));
#ifdef GPIO_PPM_IN
// disable CPPM input by mapping it away from the timer capture input
px4_arch_unconfiggpio(GPIO_PPM_IN);
#endif // GPIO_PPM_IN
return 0;
}
int
RCInput::task_spawn(int argc, char *argv[])
{
bool error_flag = false;
int myoptind = 1;
int ch;
const char *myoptarg = nullptr;
const char *device = nullptr;
#if defined(RC_SERIAL_PORT)
device = RC_SERIAL_PORT;
#endif // RC_SERIAL_PORT
while ((ch = px4_getopt(argc, argv, "d:", &myoptind, &myoptarg)) != EOF) {
switch (ch) {
case 'd':
device = myoptarg;
break;
case '?':
error_flag = true;
break;
default:
PX4_WARN("unrecognized flag");
error_flag = true;
break;
}
}
if (error_flag) {
return -1;
}
if (device == nullptr) {
PX4_ERR("valid device required");
return PX4_ERROR;
}
RCInput *instance = new RCInput(device);
if (instance == nullptr) {
PX4_ERR("alloc failed");
return PX4_ERROR;
}
_object.store(instance);
_task_id = task_id_is_work_queue;
instance->ScheduleOnInterval(_current_update_interval);
return PX4_OK;
}
void
RCInput::fill_rc_in(uint16_t raw_rc_count_local,
uint16_t raw_rc_values_local[input_rc_s::RC_INPUT_MAX_CHANNELS],
hrt_abstime now, bool frame_drop, bool failsafe,
unsigned frame_drops, int rssi = -1)
{
// fill rc_in struct for publishing
_rc_in.channel_count = raw_rc_count_local;
if (_rc_in.channel_count > input_rc_s::RC_INPUT_MAX_CHANNELS) {
_rc_in.channel_count = input_rc_s::RC_INPUT_MAX_CHANNELS;
}
unsigned valid_chans = 0;
for (unsigned i = 0; i < _rc_in.channel_count; i++) {
_rc_in.values[i] = raw_rc_values_local[i];
if (raw_rc_values_local[i] != UINT16_MAX) {
valid_chans++;
}
// once filled, reset values back to default
_raw_rc_values[i] = UINT16_MAX;
}
_rc_in.timestamp = now;
_rc_in.timestamp_last_signal = _rc_in.timestamp;
_rc_in.rc_ppm_frame_length = 0;
/* fake rssi if no value was provided */
if (rssi == -1) {
if ((_param_rc_rssi_pwm_chan.get() > 0) && (_param_rc_rssi_pwm_chan.get() < _rc_in.channel_count)) {
const int32_t rssi_pwm_chan = _param_rc_rssi_pwm_chan.get();
const int32_t rssi_pwm_min = _param_rc_rssi_pwm_min.get();
const int32_t rssi_pwm_max = _param_rc_rssi_pwm_max.get();
// get RSSI from input channel
int rc_rssi = ((_rc_in.values[rssi_pwm_chan - 1] - rssi_pwm_min) * 100) / (rssi_pwm_max - rssi_pwm_min);
_rc_in.rssi = math::constrain(rc_rssi, 0, 100);
} else if (_analog_rc_rssi_stable) {
// set RSSI if analog RSSI input is present
float rssi_analog = ((_analog_rc_rssi_volt - 0.2f) / 3.0f) * 100.0f;
if (rssi_analog > 100.0f) {
rssi_analog = 100.0f;
}
if (rssi_analog < 0.0f) {
rssi_analog = 0.0f;
}
_rc_in.rssi = rssi_analog;
} else {
_rc_in.rssi = 255;
}
} else {
_rc_in.rssi = rssi;
}
if (valid_chans == 0) {
_rc_in.rssi = 0;
}
_rc_in.rc_failsafe = failsafe;
_rc_in.rc_lost = (valid_chans == 0);
_rc_in.rc_lost_frame_count = frame_drops;
_rc_in.rc_total_frame_count = 0;
}
void RCInput::set_rc_scan_state(RC_SCAN newState)
{
PX4_DEBUG("RCscan: %s failed, trying %s", RCInput::RC_SCAN_STRING[_rc_scan_state], RCInput::RC_SCAN_STRING[newState]);
_rc_scan_begin = 0;
_rc_scan_state = newState;
_rc_scan_locked = false;
}
void RCInput::rc_io_invert(bool invert)
{
// First check if the board provides a board-specific inversion method (e.g. via GPIO),
// and if not use an IOCTL
if (!board_rc_invert_input(_device, invert)) {
#if defined(TIOCSINVERT)
ioctl(_rcs_fd, TIOCSINVERT, invert ? (SER_INVERT_ENABLED_RX | SER_INVERT_ENABLED_TX) : 0);
#endif // TIOCSINVERT
}
}
void RCInput::Run()
{
if (should_exit()) {
exit_and_cleanup();
return;
}
if (!_initialized) {
if (init() == PX4_OK) {
_initialized = true;
} else {
PX4_ERR("init failed");
exit_and_cleanup();
}
} else {
perf_begin(_cycle_perf);
// Check if parameters have changed
if (_parameter_update_sub.updated()) {
// clear update
parameter_update_s param_update;
_parameter_update_sub.copy(¶m_update);
updateParams();
}
if (_vehicle_status_sub.updated()) {
vehicle_status_s vehicle_status;
if (_vehicle_status_sub.copy(&vehicle_status)) {
_armed = (vehicle_status.arming_state == vehicle_status_s::ARMING_STATE_ARMED);
}
}
const hrt_abstime cycle_timestamp = hrt_absolute_time();
/* vehicle command */
vehicle_command_s vcmd;
if (_vehicle_cmd_sub.update(&vcmd)) {
// Check for a pairing command
if (vcmd.command == vehicle_command_s::VEHICLE_CMD_START_RX_PAIR) {
uint8_t cmd_ret = vehicle_command_s::VEHICLE_CMD_RESULT_UNSUPPORTED;
#if defined(SPEKTRUM_POWER)
if (!_rc_scan_locked && !_armed) {
if ((int)vcmd.param1 == 0) {
// DSM binding command
int dsm_bind_mode = (int)vcmd.param2;
int dsm_bind_pulses = 0;
if (dsm_bind_mode == 0) {
dsm_bind_pulses = DSM2_BIND_PULSES;
} else if (dsm_bind_mode == 1) {
dsm_bind_pulses = DSMX_BIND_PULSES;
} else {
dsm_bind_pulses = DSMX8_BIND_PULSES;
}
bind_spektrum(dsm_bind_pulses);
cmd_ret = vehicle_command_s::VEHICLE_CMD_RESULT_ACCEPTED;
}
} else {
cmd_ret = vehicle_command_s::VEHICLE_CMD_RESULT_TEMPORARILY_REJECTED;
}
#endif // SPEKTRUM_POWER
// publish acknowledgement
vehicle_command_ack_s command_ack{};
command_ack.command = vcmd.command;
command_ack.result = cmd_ret;
command_ack.target_system = vcmd.source_system;
command_ack.target_component = vcmd.source_component;
command_ack.timestamp = hrt_absolute_time();
uORB::Publication<vehicle_command_ack_s> vehicle_command_ack_pub{ORB_ID(vehicle_command_ack)};
vehicle_command_ack_pub.publish(command_ack);
}
}
#if defined(ADC_RC_RSSI_CHANNEL)
// update ADC sampling
if (_adc_report_sub.updated()) {
adc_report_s adc;
if (_adc_report_sub.copy(&adc)) {
for (unsigned i = 0; i < PX4_MAX_ADC_CHANNELS; ++i) {
if (adc.channel_id[i] == ADC_RC_RSSI_CHANNEL) {
float adc_volt = adc.raw_data[i] *
adc.v_ref /
adc.resolution;
if (_analog_rc_rssi_volt < 0.0f) {
_analog_rc_rssi_volt = adc_volt;
}
_analog_rc_rssi_volt = _analog_rc_rssi_volt * 0.995f + adc_volt * 0.005f;
/* only allow this to be used if we see a high RSSI once */
if (_analog_rc_rssi_volt > 2.5f) {
_analog_rc_rssi_stable = true;
}
}
}
}
}
#endif // ADC_RC_RSSI_CHANNEL
bool rc_updated = false;
// This block scans for a supported serial RC input and locks onto the first one found
// Scan for 300 msec, then switch protocol
constexpr hrt_abstime rc_scan_max = 300_ms;
unsigned frame_drops = 0;
if (_report_lock && _rc_scan_locked) {
_report_lock = false;
PX4_INFO("RC scan: %s RC input locked", RC_SCAN_STRING[_rc_scan_state]);
}
int newBytes = 0;
// TODO: needs work (poll _rcs_fd)
// int ret = poll(fds, sizeof(fds) / sizeof(fds[0]), 100);
// then update priority to SCHED_PRIORITY_FAST_DRIVER
// read all available data from the serial RC input UART
// read all available data from the serial RC input UART
newBytes = ::read(_rcs_fd, &_rcs_buf[0], SBUS_BUFFER_SIZE);
if (newBytes > 0) {
_bytes_rx += newBytes;
}
switch (_rc_scan_state) {
case RC_SCAN_SBUS:
if (_rc_scan_begin == 0) {
_rc_scan_begin = cycle_timestamp;
// Configure serial port for SBUS
sbus_config(_rcs_fd, board_rc_singlewire(_device));
rc_io_invert(true);
} else if (_rc_scan_locked
|| cycle_timestamp - _rc_scan_begin < rc_scan_max) {
// parse new data
if (newBytes > 0) {
bool sbus_failsafe = false;
bool sbus_frame_drop = false;
rc_updated = sbus_parse(cycle_timestamp, &_rcs_buf[0], newBytes, &_raw_rc_values[0], &_raw_rc_count, &sbus_failsafe,
&sbus_frame_drop, &frame_drops, input_rc_s::RC_INPUT_MAX_CHANNELS);
if (rc_updated) {
// we have a new SBUS frame. Publish it.
_rc_in.input_source = input_rc_s::RC_INPUT_SOURCE_PX4FMU_SBUS;
fill_rc_in(_raw_rc_count, _raw_rc_values, cycle_timestamp,
sbus_frame_drop, sbus_failsafe, frame_drops);
_rc_scan_locked = true;
}
}
} else {
// Scan the next protocol
set_rc_scan_state(RC_SCAN_DSM);
}
break;
case RC_SCAN_DSM:
if (_rc_scan_begin == 0) {
_rc_scan_begin = cycle_timestamp;
// // Configure serial port for DSM
dsm_config(_rcs_fd);
rc_io_invert(false);
} else if (_rc_scan_locked
|| cycle_timestamp - _rc_scan_begin < rc_scan_max) {
if (newBytes > 0) {
int8_t dsm_rssi = 0;
bool dsm_11_bit = false;
// parse new data
rc_updated = dsm_parse(cycle_timestamp, &_rcs_buf[0], newBytes, &_raw_rc_values[0], &_raw_rc_count,
&dsm_11_bit, &frame_drops, &dsm_rssi, input_rc_s::RC_INPUT_MAX_CHANNELS);
if (rc_updated) {
// we have a new DSM frame. Publish it.
_rc_in.input_source = input_rc_s::RC_INPUT_SOURCE_PX4FMU_DSM;
fill_rc_in(_raw_rc_count, _raw_rc_values, cycle_timestamp,
false, false, frame_drops, dsm_rssi);
_rc_scan_locked = true;
}
}
} else {
// Scan the next protocol
set_rc_scan_state(RC_SCAN_ST24);
}
break;
case RC_SCAN_ST24:
if (_rc_scan_begin == 0) {
_rc_scan_begin = cycle_timestamp;
// Configure serial port for DSM
dsm_config(_rcs_fd);
rc_io_invert(false);
} else if (_rc_scan_locked
|| cycle_timestamp - _rc_scan_begin < rc_scan_max) {
if (newBytes > 0) {
// parse new data
uint8_t st24_rssi, lost_count;
rc_updated = false;
for (unsigned i = 0; i < (unsigned)newBytes; i++) {
/* set updated flag if one complete packet was parsed */
st24_rssi = RC_INPUT_RSSI_MAX;
rc_updated = (OK == st24_decode(_rcs_buf[i], &st24_rssi, &lost_count,
&_raw_rc_count, _raw_rc_values, input_rc_s::RC_INPUT_MAX_CHANNELS));
}
// The st24 will keep outputting RC channels and RSSI even if RC has been lost.
// The only way to detect RC loss is therefore to look at the lost_count.
if (rc_updated) {
if (lost_count == 0) {
// we have a new ST24 frame. Publish it.
_rc_in.input_source = input_rc_s::RC_INPUT_SOURCE_PX4FMU_ST24;
fill_rc_in(_raw_rc_count, _raw_rc_values, cycle_timestamp,
false, false, frame_drops, st24_rssi);
_rc_scan_locked = true;
} else {
// if the lost count > 0 means that there is an RC loss
_rc_in.rc_lost = true;
}
}
}
} else {
// Scan the next protocol
set_rc_scan_state(RC_SCAN_SUMD);
}
break;
case RC_SCAN_SUMD:
if (_rc_scan_begin == 0) {
_rc_scan_begin = cycle_timestamp;
// Configure serial port for DSM
dsm_config(_rcs_fd);
rc_io_invert(false);
} else if (_rc_scan_locked
|| cycle_timestamp - _rc_scan_begin < rc_scan_max) {
if (newBytes > 0) {
// parse new data
uint8_t sumd_rssi, rx_count;
bool sumd_failsafe;
rc_updated = false;
for (unsigned i = 0; i < (unsigned)newBytes; i++) {
/* set updated flag if one complete packet was parsed */
sumd_rssi = RC_INPUT_RSSI_MAX;
rc_updated = (OK == sumd_decode(_rcs_buf[i], &sumd_rssi, &rx_count,
&_raw_rc_count, _raw_rc_values, input_rc_s::RC_INPUT_MAX_CHANNELS, &sumd_failsafe));
}
if (rc_updated) {
// we have a new SUMD frame. Publish it.
_rc_in.input_source = input_rc_s::RC_INPUT_SOURCE_PX4FMU_SUMD;
fill_rc_in(_raw_rc_count, _raw_rc_values, cycle_timestamp,
false, sumd_failsafe, frame_drops, sumd_rssi);
_rc_scan_locked = true;
}
}
} else {
// Scan the next protocol
set_rc_scan_state(RC_SCAN_PPM);
}
break;
case RC_SCAN_PPM:
// skip PPM if it's not supported
#ifdef HRT_PPM_CHANNEL
if (_rc_scan_begin == 0) {
_rc_scan_begin = cycle_timestamp;
// Configure timer input pin for CPPM
px4_arch_configgpio(GPIO_PPM_IN);
rc_io_invert(false);
ioctl(_rcs_fd, TIOCSINVERT, 0);
} else if (_rc_scan_locked || cycle_timestamp - _rc_scan_begin < rc_scan_max) {
// see if we have new PPM input data
if ((ppm_last_valid_decode != _rc_in.timestamp_last_signal) && ppm_decoded_channels > 3) {
// we have a new PPM frame. Publish it.
rc_updated = true;
_rc_in.input_source = input_rc_s::RC_INPUT_SOURCE_PX4FMU_PPM;
fill_rc_in(ppm_decoded_channels, ppm_buffer, cycle_timestamp, false, false, 0);
_rc_scan_locked = true;
_rc_in.rc_ppm_frame_length = ppm_frame_length;
_rc_in.timestamp_last_signal = ppm_last_valid_decode;
}
} else {
// disable CPPM input by mapping it away from the timer capture input
px4_arch_unconfiggpio(GPIO_PPM_IN);
// Scan the next protocol
set_rc_scan_state(RC_SCAN_CRSF);
}
#else // skip PPM if it's not supported
set_rc_scan_state(RC_SCAN_CRSF);
#endif // HRT_PPM_CHANNEL
break;
case RC_SCAN_CRSF:
if (_rc_scan_begin == 0) {
_rc_scan_begin = cycle_timestamp;
// Configure serial port for CRSF
crsf_config(_rcs_fd);
rc_io_invert(false);
} else if (_rc_scan_locked
|| cycle_timestamp - _rc_scan_begin < rc_scan_max) {
// parse new data
if (newBytes > 0) {
rc_updated = crsf_parse(cycle_timestamp, &_rcs_buf[0], newBytes, &_raw_rc_values[0], &_raw_rc_count,
input_rc_s::RC_INPUT_MAX_CHANNELS);
if (rc_updated) {
// we have a new CRSF frame. Publish it.
_rc_in.input_source = input_rc_s::RC_INPUT_SOURCE_PX4FMU_CRSF;
fill_rc_in(_raw_rc_count, _raw_rc_values, cycle_timestamp, false, false, 0);
// Enable CRSF Telemetry only on the Omnibus, because on Pixhawk (-related) boards
// we cannot write to the RC UART
// It might work on FMU-v5. Or another option is to use a different UART port
#ifdef CONFIG_ARCH_BOARD_OMNIBUS_F4SD
if (!_rc_scan_locked && !_crsf_telemetry) {
_crsf_telemetry = new CRSFTelemetry(_rcs_fd);
}
#endif /* CONFIG_ARCH_BOARD_OMNIBUS_F4SD */
_rc_scan_locked = true;
if (_crsf_telemetry) {
_crsf_telemetry->update(cycle_timestamp);
}
}
}
} else {
// Scan the next protocol
set_rc_scan_state(RC_SCAN_GHST);
}
break;
case RC_SCAN_GHST:
if (_rc_scan_begin == 0) {
_rc_scan_begin = cycle_timestamp;
// Configure serial port for GHST
ghst_config(_rcs_fd);
rc_io_invert(false);
} else if (_rc_scan_locked
|| cycle_timestamp - _rc_scan_begin < rc_scan_max) {
// parse new data
if (newBytes > 0) {
int8_t ghst_rssi = -1;
rc_updated = ghst_parse(cycle_timestamp, &_rcs_buf[0], newBytes, &_raw_rc_values[0], &ghst_rssi,
&_raw_rc_count, input_rc_s::RC_INPUT_MAX_CHANNELS);
if (rc_updated) {
// we have a new GHST frame. Publish it.
_rc_in.input_source = input_rc_s::RC_INPUT_SOURCE_PX4FMU_GHST;
fill_rc_in(_raw_rc_count, _raw_rc_values, cycle_timestamp, false, false, 0, ghst_rssi);
// ghst telemetry works on fmu-v5
// on other Pixhawk (-related) boards it does not work because
// we cannot write to the RC UART
if (!_rc_scan_locked && !_ghst_telemetry) {
_ghst_telemetry = new GHSTTelemetry(_rcs_fd);
}
_rc_scan_locked = true;
if (_ghst_telemetry) {
_ghst_telemetry->update(cycle_timestamp);
}
}
}
} else {
// Scan the next protocol
set_rc_scan_state(RC_SCAN_SBUS);
}
break;
}
perf_end(_cycle_perf);
if (rc_updated) {
perf_count(_publish_interval_perf);
_to_input_rc.publish(_rc_in);
} else if (!rc_updated && ((hrt_absolute_time() - _rc_in.timestamp_last_signal) > 1_s)) {
_rc_scan_locked = false;
}
}
}
#if defined(SPEKTRUM_POWER)
bool RCInput::bind_spektrum(int arg) const
{
int ret = PX4_ERROR;
/* specify 11ms DSMX. RX will automatically fall back to 22ms or DSM2 if necessary */
/* only allow DSM2, DSM-X and DSM-X with more than 7 channels */
PX4_INFO("DSM_BIND_START: DSM%s RX", (arg == 0) ? "2" : ((arg == 1) ? "-X" : "-X8"));
if (arg == DSM2_BIND_PULSES ||
arg == DSMX_BIND_PULSES ||
arg == DSMX8_BIND_PULSES) {
dsm_bind(DSM_CMD_BIND_POWER_DOWN, 0);
dsm_bind(DSM_CMD_BIND_SET_RX_OUT, 0);
usleep(500000);
dsm_bind(DSM_CMD_BIND_POWER_UP, 0);
usleep(72000);
irqstate_t flags = px4_enter_critical_section();
dsm_bind(DSM_CMD_BIND_SEND_PULSES, arg);
px4_leave_critical_section(flags);
usleep(50000);
dsm_bind(DSM_CMD_BIND_REINIT_UART, 0);
ret = OK;
} else {
PX4_ERR("DSM bind failed");
ret = -EINVAL;
}
return (ret == PX4_OK);
}
#endif /* SPEKTRUM_POWER */
int RCInput::custom_command(int argc, char *argv[])
{
#if defined(SPEKTRUM_POWER)
const char *verb = argv[0];
if (!strcmp(verb, "bind")) {
uORB::Publication<vehicle_command_s> vehicle_command_pub{ORB_ID(vehicle_command)};
vehicle_command_s vcmd{};
vcmd.command = vehicle_command_s::VEHICLE_CMD_START_RX_PAIR;
vcmd.timestamp = hrt_absolute_time();
vehicle_command_pub.publish(vcmd);
return 0;
}
#endif /* SPEKTRUM_POWER */
/* start the FMU if not running */
if (!is_running()) {
int ret = RCInput::task_spawn(argc, argv);
if (ret) {
return ret;
}
}
return print_usage("unknown command");
}
int RCInput::print_status()
{
PX4_INFO("Max update rate: %i Hz", 1000000 / _current_update_interval);
if (_device[0] != '\0') {
PX4_INFO("UART device: %s", _device);
PX4_INFO("UART RX bytes: %u", _bytes_rx);
}
PX4_INFO("RC state: %s: %s", _rc_scan_locked ? "found" : "searching for signal", RC_SCAN_STRING[_rc_scan_state]);
if (_rc_scan_locked) {
switch (_rc_scan_state) {
case RC_SCAN_CRSF:
PX4_INFO("CRSF Telemetry: %s", _crsf_telemetry ? "yes" : "no");
break;
case RC_SCAN_GHST:
PX4_INFO("GHST Telemetry: %s", _ghst_telemetry ? "yes" : "no");
break;
case RC_SCAN_SBUS:
PX4_INFO("SBUS frame drops: %u", sbus_dropped_frames());
break;
case RC_SCAN_DSM:
// DSM status output
#if defined(SPEKTRUM_POWER)
#endif
break;
case RC_SCAN_PPM:
// PPM status output
break;
case RC_SCAN_SUMD:
// SUMD status output
break;
case RC_SCAN_ST24:
// SUMD status output
break;
}
}
#if ADC_RC_RSSI_CHANNEL
PX4_INFO("vrssi: %dmV", (int)(_analog_rc_rssi_volt * 1000.0f));
#endif
perf_print_counter(_cycle_perf);
perf_print_counter(_publish_interval_perf);
if (hrt_elapsed_time(&_rc_in.timestamp) < 1_s) {
print_message(_rc_in);
}
return 0;
}
int
RCInput::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
This module does the RC input parsing and auto-selecting the method. Supported methods are:
- PPM
- SBUS
- DSM
- SUMD
- ST24
- TBS Crossfire (CRSF)
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("rc_input", "driver");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_PARAM_STRING('d', "/dev/ttyS3", "<file:dev>", "RC device", true);
#if defined(SPEKTRUM_POWER)
PRINT_MODULE_USAGE_COMMAND_DESCR("bind", "Send a DSM bind command (module must be running)");
#endif /* SPEKTRUM_POWER */
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
extern "C" __EXPORT int rc_input_main(int argc, char *argv[])
{
return RCInput::main(argc, argv);
}