mission_block.cpp
26.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
/****************************************************************************
*
* Copyright (c) 2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file mission_block.cpp
*
* Helper class to use mission items
*
* @author Julian Oes <julian@oes.ch>
* @author Sander Smeets <sander@droneslab.com>
* @author Andreas Antener <andreas@uaventure.com>
*/
#include "mission_block.h"
#include "navigator.h"
#include <math.h>
#include <float.h>
#include <lib/ecl/geo/geo.h>
#include <systemlib/mavlink_log.h>
#include <mathlib/mathlib.h>
#include <uORB/uORB.h>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/vehicle_command.h>
#include <uORB/topics/vtol_vehicle_status.h>
using matrix::wrap_pi;
MissionBlock::MissionBlock(Navigator *navigator) :
NavigatorMode(navigator)
{
_mission_item.lat = (double)NAN;
_mission_item.lon = (double)NAN;
_mission_item.yaw = NAN;
_mission_item.loiter_radius = _navigator->get_loiter_radius();
_mission_item.acceptance_radius = _navigator->get_acceptance_radius();
_mission_item.time_inside = 0.0f;
_mission_item.autocontinue = true;
_mission_item.origin = ORIGIN_ONBOARD;
}
bool
MissionBlock::is_mission_item_reached()
{
/* handle non-navigation or indefinite waypoints */
switch (_mission_item.nav_cmd) {
case NAV_CMD_DO_SET_SERVO:
return true;
case NAV_CMD_LAND: /* fall through */
case NAV_CMD_VTOL_LAND:
return _navigator->get_land_detected()->landed;
case NAV_CMD_IDLE: /* fall through */
case NAV_CMD_LOITER_UNLIMITED:
return false;
case NAV_CMD_DO_LAND_START:
case NAV_CMD_DO_TRIGGER_CONTROL:
case NAV_CMD_DO_DIGICAM_CONTROL:
case NAV_CMD_IMAGE_START_CAPTURE:
case NAV_CMD_IMAGE_STOP_CAPTURE:
case NAV_CMD_VIDEO_START_CAPTURE:
case NAV_CMD_VIDEO_STOP_CAPTURE:
case NAV_CMD_DO_CONTROL_VIDEO:
case NAV_CMD_DO_MOUNT_CONFIGURE:
case NAV_CMD_DO_MOUNT_CONTROL:
case NAV_CMD_DO_GIMBAL_MANAGER_PITCHYAW:
case NAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE:
case NAV_CMD_DO_SET_ROI:
case NAV_CMD_DO_SET_ROI_LOCATION:
case NAV_CMD_DO_SET_ROI_WPNEXT_OFFSET:
case NAV_CMD_DO_SET_ROI_NONE:
case NAV_CMD_DO_SET_CAM_TRIGG_DIST:
case NAV_CMD_OBLIQUE_SURVEY:
case NAV_CMD_DO_SET_CAM_TRIGG_INTERVAL:
case NAV_CMD_SET_CAMERA_MODE:
case NAV_CMD_SET_CAMERA_ZOOM:
case NAV_CMD_SET_CAMERA_FOCUS:
return true;
case NAV_CMD_DO_VTOL_TRANSITION:
/*
* We wait half a second to give the transition command time to propagate.
* Then monitor the transition status for completion.
*/
// TODO: check desired transition state achieved and drop _action_start
if (hrt_absolute_time() - _action_start > 500000 &&
!_navigator->get_vstatus()->in_transition_mode) {
_action_start = 0;
return true;
} else {
return false;
}
case NAV_CMD_DO_CHANGE_SPEED:
case NAV_CMD_DO_SET_HOME:
return true;
default:
/* do nothing, this is a 3D waypoint */
break;
}
hrt_abstime now = hrt_absolute_time();
if (!_navigator->get_land_detected()->landed && !_waypoint_position_reached) {
float dist = -1.0f;
float dist_xy = -1.0f;
float dist_z = -1.0f;
const float mission_item_altitude_amsl = get_absolute_altitude_for_item(_mission_item);
dist = get_distance_to_point_global_wgs84(_mission_item.lat, _mission_item.lon, mission_item_altitude_amsl,
_navigator->get_global_position()->lat,
_navigator->get_global_position()->lon,
_navigator->get_global_position()->alt,
&dist_xy, &dist_z);
if ((_mission_item.nav_cmd == NAV_CMD_TAKEOFF || _mission_item.nav_cmd == NAV_CMD_VTOL_TAKEOFF)
&& _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {
/* We want to avoid the edge case where the acceptance radius is bigger or equal than
* the altitude of the takeoff waypoint above home. Otherwise, we do not really follow
* take-off procedures like leaving the landing gear down. */
float takeoff_alt = _mission_item.altitude_is_relative ?
_mission_item.altitude :
(_mission_item.altitude - _navigator->get_home_position()->alt);
float altitude_acceptance_radius = _navigator->get_altitude_acceptance_radius();
/* It should be safe to just use half of the takoeff_alt as an acceptance radius. */
if (takeoff_alt > 0 && takeoff_alt < altitude_acceptance_radius) {
altitude_acceptance_radius = takeoff_alt / 2.0f;
}
/* require only altitude for takeoff for multicopter */
if (_navigator->get_global_position()->alt >
mission_item_altitude_amsl - altitude_acceptance_radius) {
_waypoint_position_reached = true;
}
} else if (_mission_item.nav_cmd == NAV_CMD_TAKEOFF
&& _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROVER) {
/* for takeoff mission items use the parameter for the takeoff acceptance radius */
if (dist_xy >= 0.0f && dist_xy <= _navigator->get_acceptance_radius()) {
_waypoint_position_reached = true;
}
} else if (_mission_item.nav_cmd == NAV_CMD_TAKEOFF) {
/* for takeoff mission items use the parameter for the takeoff acceptance radius */
if (dist >= 0.0f && dist <= _navigator->get_acceptance_radius()
&& dist_z <= _navigator->get_altitude_acceptance_radius()) {
_waypoint_position_reached = true;
}
} else if (_navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING &&
(_mission_item.nav_cmd == NAV_CMD_LOITER_UNLIMITED ||
_mission_item.nav_cmd == NAV_CMD_LOITER_TIME_LIMIT)) {
/* Loiter mission item on a non rotary wing: the aircraft is going to circle the
* coordinates with a radius equal to the loiter_radius field. It is not flying
* through the waypoint center.
* Therefore the item is marked as reached once the system reaches the loiter
* radius + L1 distance. Time inside and turn count is handled elsewhere.
*/
// check if within loiter radius around wp, if yes then set altitude sp to mission item
if (dist >= 0.0f && dist_xy <= (_navigator->get_acceptance_radius() + fabsf(_mission_item.loiter_radius))
&& dist_z <= _navigator->get_altitude_acceptance_radius()) {
_waypoint_position_reached = true;
}
} else if (_mission_item.nav_cmd == NAV_CMD_LOITER_TO_ALT) {
// NAV_CMD_LOITER_TO_ALT only uses mission item altitude once it's in the loiter.
// First check if the altitude setpoint is the mission setpoint (that means that the loiter is not yet reached)
struct position_setpoint_s *curr_sp = &_navigator->get_position_setpoint_triplet()->current;
if (fabsf(curr_sp->alt - mission_item_altitude_amsl) >= FLT_EPSILON) {
dist_xy = -1.0f;
dist_z = -1.0f;
dist = get_distance_to_point_global_wgs84(_mission_item.lat, _mission_item.lon, curr_sp->alt,
_navigator->get_global_position()->lat,
_navigator->get_global_position()->lon,
_navigator->get_global_position()->alt,
&dist_xy, &dist_z);
// check if within loiter radius around wp, if yes then set altitude sp to mission item
if (dist >= 0.0f && dist_xy <= (_navigator->get_acceptance_radius() + fabsf(_mission_item.loiter_radius))
&& dist_z <= _navigator->get_default_altitude_acceptance_radius()) {
curr_sp->alt = mission_item_altitude_amsl;
curr_sp->type = position_setpoint_s::SETPOINT_TYPE_LOITER;
_navigator->set_position_setpoint_triplet_updated();
}
} else if (dist >= 0.f && dist_xy <= (_navigator->get_acceptance_radius() + fabsf(_mission_item.loiter_radius))
&& dist_z <= _navigator->get_altitude_acceptance_radius()) {
// loitering, check if new altitude is reached, while still also having check on position
_waypoint_position_reached = true;
}
} else if (_mission_item.nav_cmd == NAV_CMD_CONDITION_GATE) {
struct position_setpoint_s *curr_sp = &_navigator->get_position_setpoint_triplet()->current;
// if the setpoint is valid we are checking if we reached the gate
// in the case of an invalid setpoint we are defaulting to
// assuming that we have already reached the gate to not block
// the further execution of the mission.
if (curr_sp->valid) {
// location of gate (mission item)
struct map_projection_reference_s ref_pos;
map_projection_init(&ref_pos, _mission_item.lat, _mission_item.lon);
// current setpoint
matrix::Vector2f gate_to_curr_sp;
map_projection_project(&ref_pos, curr_sp->lat, curr_sp->lon, &gate_to_curr_sp(0), &gate_to_curr_sp(1));
// system position
matrix::Vector2f vehicle_pos;
map_projection_project(&ref_pos, _navigator->get_global_position()->lat, _navigator->get_global_position()->lon,
&vehicle_pos(0), &vehicle_pos(1));
const float dot_product = vehicle_pos.dot(gate_to_curr_sp.normalized());
// if the dot product (projected vector) is positive, then
// the current position is between the gate position and the
// next waypoint
if (dot_product >= 0) {
_waypoint_position_reached = true;
_waypoint_yaw_reached = true;
_time_wp_reached = now;
}
}
} else if (_mission_item.nav_cmd == NAV_CMD_DELAY) {
_waypoint_position_reached = true;
_waypoint_yaw_reached = true;
_time_wp_reached = now;
} else {
/*normal mission items */
float mission_acceptance_radius = _navigator->get_acceptance_radius();
/* for vtol back transition calculate acceptance radius based on time and ground speed */
if (_mission_item.vtol_back_transition
&& _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING) {
float velocity = sqrtf(_navigator->get_local_position()->vx * _navigator->get_local_position()->vx +
_navigator->get_local_position()->vy * _navigator->get_local_position()->vy);
const float back_trans_dec = _navigator->get_vtol_back_trans_deceleration();
const float reverse_delay = _navigator->get_vtol_reverse_delay();
if (back_trans_dec > FLT_EPSILON && velocity > FLT_EPSILON) {
mission_acceptance_radius = ((velocity / back_trans_dec / 2) * velocity) + reverse_delay * velocity;
}
}
if (dist_xy >= 0.0f && dist_xy <= mission_acceptance_radius
&& dist_z <= _navigator->get_altitude_acceptance_radius()) {
_waypoint_position_reached = true;
}
}
if (_waypoint_position_reached) {
// reached just now
_time_wp_reached = now;
}
// consider yaw reached for non-rotary wing vehicles (such as fixed-wing)
if (_navigator->get_vstatus()->vehicle_type != vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) {
_waypoint_yaw_reached = true;
}
}
/* Check if the requested yaw setpoint is reached (only for rotary wing flight). */
if (_waypoint_position_reached && !_waypoint_yaw_reached) {
if (_navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
&& PX4_ISFINITE(_navigator->get_yaw_acceptance(_mission_item.yaw))) {
const float yaw_err = wrap_pi(_mission_item.yaw - _navigator->get_local_position()->heading);
/* accept yaw if reached or if timeout is set in which case we ignore not forced headings */
if (fabsf(yaw_err) < _navigator->get_yaw_threshold()
|| (_navigator->get_yaw_timeout() >= FLT_EPSILON && !_mission_item.force_heading)) {
_waypoint_yaw_reached = true;
}
/* if heading needs to be reached, the timeout is enabled and we don't make it, abort mission */
if (!_waypoint_yaw_reached && _mission_item.force_heading &&
(_navigator->get_yaw_timeout() >= FLT_EPSILON) &&
(now - _time_wp_reached >= (hrt_abstime)_navigator->get_yaw_timeout() * 1e6f)) {
_navigator->set_mission_failure("unable to reach heading within timeout");
}
} else {
_waypoint_yaw_reached = true;
}
}
/* Once the waypoint and yaw setpoint have been reached we can start the loiter time countdown */
if (_waypoint_position_reached && _waypoint_yaw_reached) {
bool time_inside_reached = false;
/* check if the MAV was long enough inside the waypoint orbit */
if ((get_time_inside(_mission_item) < FLT_EPSILON) ||
(now - _time_wp_reached >= (hrt_abstime)(get_time_inside(_mission_item) * 1e6f))) {
time_inside_reached = true;
}
// check if heading for exit is reached (only applies for fixed-wing flight)
bool exit_heading_reached = false;
if (time_inside_reached) {
struct position_setpoint_s *curr_sp_new = &_navigator->get_position_setpoint_triplet()->current;
const position_setpoint_s &next_sp = _navigator->get_position_setpoint_triplet()->next;
/* enforce exit heading if in FW, the next wp is valid, the vehicle is currently loitering and either having force_heading set,
or if loitering to achieve altitdue at a NAV_CMD_WAYPOINT */
const bool enforce_exit_heading = _navigator->get_vstatus()->vehicle_type != vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
&&
next_sp.valid &&
curr_sp_new->type == position_setpoint_s::SETPOINT_TYPE_LOITER &&
(_mission_item.force_heading || _mission_item.nav_cmd == NAV_CMD_WAYPOINT);
if (enforce_exit_heading) {
const float dist_current_next = get_distance_to_next_waypoint(curr_sp_new->lat, curr_sp_new->lon, next_sp.lat,
next_sp.lon);
float yaw_err = 0.0f;
if (dist_current_next > 1.2f * _navigator->get_loiter_radius()) {
// set required yaw from bearing to the next mission item
_mission_item.yaw = get_bearing_to_next_waypoint(_navigator->get_global_position()->lat,
_navigator->get_global_position()->lon,
next_sp.lat, next_sp.lon);
const float cog = atan2f(_navigator->get_local_position()->vy, _navigator->get_local_position()->vx);
yaw_err = wrap_pi(_mission_item.yaw - cog);
}
if (fabsf(yaw_err) < _navigator->get_yaw_threshold()) {
exit_heading_reached = true;
}
} else {
exit_heading_reached = true;
}
}
// set exit flight course to next waypoint
if (exit_heading_reached) {
position_setpoint_s &curr_sp = _navigator->get_position_setpoint_triplet()->current;
const position_setpoint_s &next_sp = _navigator->get_position_setpoint_triplet()->next;
const float range = get_distance_to_next_waypoint(curr_sp.lat, curr_sp.lon, next_sp.lat, next_sp.lon);
// exit xtrack location
// reset lat/lon of loiter waypoint so vehicle follows a tangent
if (_mission_item.loiter_exit_xtrack && next_sp.valid && PX4_ISFINITE(range) &&
(_mission_item.nav_cmd == NAV_CMD_LOITER_TIME_LIMIT ||
_mission_item.nav_cmd == NAV_CMD_LOITER_TO_ALT)) {
float bearing = get_bearing_to_next_waypoint(curr_sp.lat, curr_sp.lon, next_sp.lat, next_sp.lon);
// We should not use asinf outside of [-1..1].
const float ratio = math::constrain(_mission_item.loiter_radius / range, -1.0f, 1.0f);
float inner_angle = M_PI_2_F - asinf(ratio);
// Compute "ideal" tangent origin
if (curr_sp.loiter_direction > 0) {
bearing -= inner_angle;
} else {
bearing += inner_angle;
}
// Replace current setpoint lat/lon with tangent coordinate
waypoint_from_heading_and_distance(curr_sp.lat, curr_sp.lon,
bearing, fabsf(curr_sp.loiter_radius),
&curr_sp.lat, &curr_sp.lon);
}
return true; // mission item is reached
}
}
return false;
}
void
MissionBlock::reset_mission_item_reached()
{
_waypoint_position_reached = false;
_waypoint_yaw_reached = false;
_time_wp_reached = 0;
}
void
MissionBlock::issue_command(const mission_item_s &item)
{
if (item_contains_position(item)
|| item_contains_gate(item)
|| item_contains_marker(item)) {
return;
}
if (item.nav_cmd == NAV_CMD_DO_SET_SERVO) {
PX4_INFO("DO_SET_SERVO command");
// XXX: we should issue a vehicle command and handle this somewhere else
actuator_controls_s actuators = {};
actuators.timestamp = hrt_absolute_time();
// params[0] actuator number to be set 0..5 (corresponds to AUX outputs 1..6)
// params[1] new value for selected actuator in ms 900...2000
actuators.control[(int)item.params[0]] = 1.0f / 2000 * -item.params[1];
_actuator_pub.publish(actuators);
} else {
_action_start = hrt_absolute_time();
// This is to support legacy DO_MOUNT_CONTROL as part of a mission.
if (item.nav_cmd == NAV_CMD_DO_MOUNT_CONTROL) {
_navigator->acquire_gimbal_control();
}
// we're expecting a mission command item here so assign the "raw" inputs to the command
// (MAV_FRAME_MISSION mission item)
vehicle_command_s vcmd = {};
vcmd.command = item.nav_cmd;
vcmd.param1 = item.params[0];
vcmd.param2 = item.params[1];
vcmd.param3 = item.params[2];
vcmd.param4 = item.params[3];
if (item.nav_cmd == NAV_CMD_DO_SET_ROI_LOCATION && item.altitude_is_relative) {
vcmd.param5 = item.lat;
vcmd.param6 = item.lon;
vcmd.param7 = item.altitude + _navigator->get_home_position()->alt;
} else {
vcmd.param5 = (double)item.params[4];
vcmd.param6 = (double)item.params[5];
vcmd.param7 = item.params[6];
}
_navigator->publish_vehicle_cmd(&vcmd);
}
}
float
MissionBlock::get_time_inside(const mission_item_s &item) const
{
if ((item.nav_cmd == NAV_CMD_WAYPOINT
&& _navigator->get_vstatus()->vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING) ||
item.nav_cmd == NAV_CMD_LOITER_TIME_LIMIT ||
item.nav_cmd == NAV_CMD_DELAY) {
// a negative time inside would be invalid
return math::max(item.time_inside, 0.0f);
}
return 0.0f;
}
bool
MissionBlock::item_contains_position(const mission_item_s &item)
{
return item.nav_cmd == NAV_CMD_WAYPOINT ||
item.nav_cmd == NAV_CMD_LOITER_UNLIMITED ||
item.nav_cmd == NAV_CMD_LOITER_TIME_LIMIT ||
item.nav_cmd == NAV_CMD_LAND ||
item.nav_cmd == NAV_CMD_TAKEOFF ||
item.nav_cmd == NAV_CMD_LOITER_TO_ALT ||
item.nav_cmd == NAV_CMD_VTOL_TAKEOFF ||
item.nav_cmd == NAV_CMD_VTOL_LAND ||
item.nav_cmd == NAV_CMD_DO_FOLLOW_REPOSITION;
}
bool
MissionBlock::item_contains_gate(const mission_item_s &item)
{
return item.nav_cmd == NAV_CMD_CONDITION_GATE;
}
bool
MissionBlock::item_contains_marker(const mission_item_s &item)
{
return item.nav_cmd == NAV_CMD_DO_LAND_START;
}
bool
MissionBlock::mission_item_to_position_setpoint(const mission_item_s &item, position_setpoint_s *sp)
{
/* don't change the setpoint for non-position items */
if (!item_contains_position(item)) {
return false;
}
sp->lat = item.lat;
sp->lon = item.lon;
sp->alt = get_absolute_altitude_for_item(item);
sp->yaw = item.yaw;
sp->yaw_valid = PX4_ISFINITE(item.yaw);
sp->loiter_radius = (fabsf(item.loiter_radius) > NAV_EPSILON_POSITION) ? fabsf(item.loiter_radius) :
_navigator->get_loiter_radius();
sp->loiter_direction = (item.loiter_radius > 0) ? 1 : -1;
if (item.acceptance_radius > 0.0f && PX4_ISFINITE(item.acceptance_radius)) {
// if the mission item has a specified acceptance radius, overwrite the default one from parameters
sp->acceptance_radius = item.acceptance_radius;
} else {
sp->acceptance_radius = _navigator->get_default_acceptance_radius();
}
sp->cruising_speed = _navigator->get_cruising_speed();
sp->cruising_throttle = _navigator->get_cruising_throttle();
switch (item.nav_cmd) {
case NAV_CMD_IDLE:
sp->type = position_setpoint_s::SETPOINT_TYPE_IDLE;
break;
case NAV_CMD_TAKEOFF:
// if already flying (armed and !landed) treat TAKEOFF like regular POSITION
if ((_navigator->get_vstatus()->arming_state == vehicle_status_s::ARMING_STATE_ARMED)
&& !_navigator->get_land_detected()->landed && !_navigator->get_land_detected()->maybe_landed) {
sp->type = position_setpoint_s::SETPOINT_TYPE_POSITION;
} else {
sp->type = position_setpoint_s::SETPOINT_TYPE_TAKEOFF;
}
break;
case NAV_CMD_VTOL_TAKEOFF:
sp->type = position_setpoint_s::SETPOINT_TYPE_TAKEOFF;
break;
case NAV_CMD_LAND:
case NAV_CMD_VTOL_LAND:
sp->type = position_setpoint_s::SETPOINT_TYPE_LAND;
break;
case NAV_CMD_LOITER_TO_ALT:
// initially use current altitude, and switch to mission item altitude once in loiter position
if (_navigator->get_loiter_min_alt() > 0.f) { // ignore _param_loiter_min_alt if smaller than 0
sp->alt = math::max(_navigator->get_global_position()->alt,
_navigator->get_home_position()->alt + _navigator->get_loiter_min_alt());
} else {
sp->alt = _navigator->get_global_position()->alt;
}
// FALLTHROUGH
case NAV_CMD_LOITER_TIME_LIMIT:
case NAV_CMD_LOITER_UNLIMITED:
sp->type = position_setpoint_s::SETPOINT_TYPE_LOITER;
break;
default:
sp->type = position_setpoint_s::SETPOINT_TYPE_POSITION;
break;
}
sp->valid = true;
sp->timestamp = hrt_absolute_time();
return sp->valid;
}
void
MissionBlock::set_loiter_item(struct mission_item_s *item, float min_clearance)
{
if (_navigator->get_land_detected()->landed) {
/* landed, don't takeoff, but switch to IDLE mode */
item->nav_cmd = NAV_CMD_IDLE;
} else {
item->nav_cmd = NAV_CMD_LOITER_UNLIMITED;
struct position_setpoint_triplet_s *pos_sp_triplet = _navigator->get_position_setpoint_triplet();
if (_navigator->get_can_loiter_at_sp() && pos_sp_triplet->current.valid) {
/* use current position setpoint */
item->lat = pos_sp_triplet->current.lat;
item->lon = pos_sp_triplet->current.lon;
item->altitude = pos_sp_triplet->current.alt;
} else {
/* use current position and use return altitude as clearance */
item->lat = _navigator->get_global_position()->lat;
item->lon = _navigator->get_global_position()->lon;
item->altitude = _navigator->get_global_position()->alt;
if (min_clearance > 0.0f && item->altitude < _navigator->get_home_position()->alt + min_clearance) {
item->altitude = _navigator->get_home_position()->alt + min_clearance;
}
}
item->altitude_is_relative = false;
item->yaw = NAN;
item->loiter_radius = _navigator->get_loiter_radius();
item->acceptance_radius = _navigator->get_acceptance_radius();
item->time_inside = 0.0f;
item->autocontinue = false;
item->origin = ORIGIN_ONBOARD;
}
}
void
MissionBlock::set_takeoff_item(struct mission_item_s *item, float abs_altitude)
{
item->nav_cmd = NAV_CMD_TAKEOFF;
/* use current position */
item->lat = _navigator->get_global_position()->lat;
item->lon = _navigator->get_global_position()->lon;
item->yaw = _navigator->get_local_position()->heading;
item->altitude = abs_altitude;
item->altitude_is_relative = false;
item->loiter_radius = _navigator->get_loiter_radius();
item->autocontinue = false;
item->origin = ORIGIN_ONBOARD;
}
void
MissionBlock::set_land_item(struct mission_item_s *item, bool at_current_location)
{
/* VTOL transition to RW before landing */
if (_navigator->force_vtol()) {
vehicle_command_s vcmd = {};
vcmd.command = NAV_CMD_DO_VTOL_TRANSITION;
vcmd.param1 = vtol_vehicle_status_s::VEHICLE_VTOL_STATE_MC;
_navigator->publish_vehicle_cmd(&vcmd);
}
/* set the land item */
item->nav_cmd = NAV_CMD_LAND;
/* use current position */
if (at_current_location) {
item->lat = (double)NAN; //descend at current position
item->lon = (double)NAN; //descend at current position
item->yaw = _navigator->get_local_position()->heading;
} else {
/* use home position */
item->lat = _navigator->get_home_position()->lat;
item->lon = _navigator->get_home_position()->lon;
item->yaw = _navigator->get_home_position()->yaw;
}
item->altitude = 0;
item->altitude_is_relative = false;
item->loiter_radius = _navigator->get_loiter_radius();
item->acceptance_radius = _navigator->get_acceptance_radius();
item->time_inside = 0.0f;
item->autocontinue = true;
item->origin = ORIGIN_ONBOARD;
}
void
MissionBlock::set_idle_item(struct mission_item_s *item)
{
item->nav_cmd = NAV_CMD_IDLE;
item->lat = _navigator->get_home_position()->lat;
item->lon = _navigator->get_home_position()->lon;
item->altitude_is_relative = false;
item->altitude = _navigator->get_home_position()->alt;
item->yaw = NAN;
item->loiter_radius = _navigator->get_loiter_radius();
item->acceptance_radius = _navigator->get_acceptance_radius();
item->time_inside = 0.0f;
item->autocontinue = true;
item->origin = ORIGIN_ONBOARD;
}
void
MissionBlock::set_vtol_transition_item(struct mission_item_s *item, const uint8_t new_mode)
{
item->nav_cmd = NAV_CMD_DO_VTOL_TRANSITION;
item->params[0] = (float) new_mode;
item->yaw = _navigator->get_local_position()->heading;
item->autocontinue = true;
}
void
MissionBlock::mission_apply_limitation(mission_item_s &item)
{
/*
* Limit altitude
*/
/* do nothing if altitude max is negative */
if (_navigator->get_land_detected()->alt_max > 0.0f) {
/* absolute altitude */
float altitude_abs = item.altitude_is_relative
? item.altitude + _navigator->get_home_position()->alt
: item.altitude;
/* limit altitude to maximum allowed altitude */
if ((_navigator->get_land_detected()->alt_max + _navigator->get_home_position()->alt) < altitude_abs) {
item.altitude = item.altitude_is_relative ?
_navigator->get_land_detected()->alt_max :
_navigator->get_land_detected()->alt_max + _navigator->get_home_position()->alt;
}
}
/*
* Add other limitations here
*/
}
float
MissionBlock::get_absolute_altitude_for_item(const mission_item_s &mission_item) const
{
if (mission_item.altitude_is_relative) {
return mission_item.altitude + _navigator->get_home_position()->alt;
} else {
return mission_item.altitude;
}
}