control.cpp 53.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/****************************************************************************
 *
 *   Copyright (c) 2015-2020 Estimation and Control Library (ECL). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name ECL nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file control.cpp
 * Control functions for ekf attitude and position estimator.
 *
 * @author Paul Riseborough <p_riseborough@live.com.au>
 *
 */

#include "../ecl.h"
#include "ekf.h"
#include <mathlib/mathlib.h>

void Ekf::controlFusionModes()
{
	// Store the status to enable change detection
	_control_status_prev.value = _control_status.value;

	// monitor the tilt alignment
	if (!_control_status.flags.tilt_align) {
		// whilst we are aligning the tilt, monitor the variances
		const Vector3f angle_err_var_vec = calcRotVecVariances();

		// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states
		// and declare the tilt alignment complete
		if ((angle_err_var_vec(0) + angle_err_var_vec(1)) < sq(math::radians(3.0f))) {
			_control_status.flags.tilt_align = true;
			_control_status.flags.yaw_align = resetMagHeading(_mag_lpf.getState()); // TODO: is this needed?

			// send alignment status message to the console
			const char* height_source = nullptr;
			if (_control_status.flags.baro_hgt) {
				height_source = "baro";

			} else if (_control_status.flags.ev_hgt) {
				height_source = "ev";

			} else if (_control_status.flags.gps_hgt) {
				height_source = "gps";

			} else if (_control_status.flags.rng_hgt) {
				height_source = "rng";

			} else {
				height_source = "unknown";

			}
			if (height_source){
				ECL_INFO("%llu: EKF aligned, (%s hgt, IMU buf: %i, OBS buf: %i)",
					(unsigned long long)_imu_sample_delayed.time_us, height_source, (int)_imu_buffer_length, (int)_obs_buffer_length);
			}
		}
	}

	// check for intermittent data (before pop_first_older_than)
	const baroSample &baro_init = _baro_buffer.get_newest();
	_baro_hgt_faulty = !isRecent(baro_init.time_us, 2 * BARO_MAX_INTERVAL);

	const gpsSample &gps_init = _gps_buffer.get_newest();
	_gps_hgt_intermittent = !isRecent(gps_init.time_us, 2 * GPS_MAX_INTERVAL);

	// check for arrival of new sensor data at the fusion time horizon
	_time_prev_gps_us = _gps_sample_delayed.time_us;
	_gps_data_ready = _gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed);
	_mag_data_ready = _mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed);

	if (_mag_data_ready) {
		_mag_lpf.update(_mag_sample_delayed.mag);

		// if enabled, use knowledge of theoretical magnetic field vector to calculate a synthetic magnetomter Z component value.
		// this is useful if there is a lot of interference on the sensor measurement.
		if (_params.synthesize_mag_z && (_params.mag_declination_source & MASK_USE_GEO_DECL) && (_NED_origin_initialised || ISFINITE(_mag_declination_gps))) {
			const Vector3f mag_earth_pred = Dcmf(Eulerf(0, -_mag_inclination_gps, _mag_declination_gps)) * Vector3f(_mag_strength_gps, 0, 0);
			_mag_sample_delayed.mag(2) = calculate_synthetic_mag_z_measurement(_mag_sample_delayed.mag, mag_earth_pred);
			_control_status.flags.synthetic_mag_z = true;

		} else {
			_control_status.flags.synthetic_mag_z = false;
		}
	}

	_delta_time_baro_us = _baro_sample_delayed.time_us;
	_baro_data_ready = _baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed);

	// if we have a new baro sample save the delta time between this sample and the last sample which is
	// used below for baro offset calculations
	if (_baro_data_ready) {
		_delta_time_baro_us = _baro_sample_delayed.time_us - _delta_time_baro_us;
	}

	{
	// Get range data from buffer and check validity
	const bool is_rng_data_ready = _range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, _range_sensor.getSampleAddress());
	_range_sensor.setDataReadiness(is_rng_data_ready);

	// update range sensor angle parameters in case they have changed
	_range_sensor.setPitchOffset(_params.rng_sens_pitch);
	_range_sensor.setCosMaxTilt(_params.range_cos_max_tilt);
	_range_sensor.setQualityHysteresis(_params.range_valid_quality_s);

	_range_sensor.runChecks(_imu_sample_delayed.time_us, _R_to_earth);
	}

	if (_range_sensor.isDataHealthy()) {
		// correct the range data for position offset relative to the IMU
		const Vector3f pos_offset_body = _params.rng_pos_body - _params.imu_pos_body;
		const Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
		_range_sensor.setRange(_range_sensor.getRange() + pos_offset_earth(2) / _range_sensor.getCosTilt());
	}

	// We don't fuse flow data immediately because we have to wait for the mid integration point to fall behind the fusion time horizon.
	// This means we stop looking for new data until the old data has been fused, unless we are not fusing optical flow,
	// in this case we need to empty the buffer
	if (!_flow_data_ready || !_control_status.flags.opt_flow) {
		_flow_data_ready = _flow_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_flow_sample_delayed);
	}

	// check if we should fuse flow data for terrain estimation
	if (!_flow_for_terrain_data_ready && _flow_data_ready && _control_status.flags.in_air) {
		// TODO: WARNING, _flow_data_ready can be modified in controlOpticalFlowFusion
		// due to some checks failing
		// only fuse flow for terrain if range data hasn't been fused for 5 seconds
		_flow_for_terrain_data_ready = isTimedOut(_time_last_hagl_fuse, (uint64_t)5E6);
		// only fuse flow for terrain if the main filter is not fusing flow and we are using gps
		_flow_for_terrain_data_ready &= (!_control_status.flags.opt_flow && _control_status.flags.gps);
	}

	_ev_data_ready = _ext_vision_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_ev_sample_delayed);
	_tas_data_ready = _airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed);

	// check for height sensor timeouts and reset and change sensor if necessary
	controlHeightSensorTimeouts();

	// control use of observations for aiding
	controlMagFusion();
	controlOpticalFlowFusion();
	controlGpsFusion();
	controlAirDataFusion();
	controlBetaFusion();
	controlDragFusion();
	controlHeightFusion();

	// Additional data odoemtery data from an external estimator can be fused.
	controlExternalVisionFusion();

	// Additional horizontal velocity data from an auxiliary sensor can be fused
	controlAuxVelFusion();

	// Fake position measurement for constraining drift when no other velocity or position measurements
	controlFakePosFusion();

	// check if we are no longer fusing measurements that directly constrain velocity drift
	update_deadreckoning_status();
}

void Ekf::controlExternalVisionFusion()
{
	// Check for new external vision data
	if (_ev_data_ready) {

		// if the ev data is not in a NED reference frame, then the transformation between EV and EKF navigation frames
		// needs to be calculated and the observations rotated into the EKF frame of reference
		if ((_params.fusion_mode & MASK_ROTATE_EV) && ((_params.fusion_mode & MASK_USE_EVPOS) || (_params.fusion_mode & MASK_USE_EVVEL)) && !_control_status.flags.ev_yaw) {
			// rotate EV measurements into the EKF Navigation frame
			calcExtVisRotMat();
		}

		// external vision aiding selection logic
		if (_control_status.flags.tilt_align && _control_status.flags.yaw_align) {

			// check for a external vision measurement that has fallen behind the fusion time horizon
			if (isRecent(_time_last_ext_vision, 2 * EV_MAX_INTERVAL)) {
				// turn on use of external vision measurements for position
				if (_params.fusion_mode & MASK_USE_EVPOS && !_control_status.flags.ev_pos) {
					startEvPosFusion();
				}

				// turn on use of external vision measurements for velocity
				if (_params.fusion_mode & MASK_USE_EVVEL && !_control_status.flags.ev_vel) {
					startEvVelFusion();
				}
			}
		}

		// external vision yaw aiding selection logic
		if (!_control_status.flags.gps && (_params.fusion_mode & MASK_USE_EVYAW) && !_control_status.flags.ev_yaw && _control_status.flags.tilt_align) {
			// don't start using EV data unless data is arriving frequently
			if (isRecent(_time_last_ext_vision, 2 * EV_MAX_INTERVAL)) {
				startEvYawFusion();
			}
		}



		// determine if we should use the horizontal position observations
		if (_control_status.flags.ev_pos) {

			Vector3f ev_pos_obs_var;
			Vector2f ev_pos_innov_gates;

			// correct position and height for offset relative to IMU
			const Vector3f pos_offset_body = _params.ev_pos_body - _params.imu_pos_body;
			const Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
			_ev_sample_delayed.pos -= pos_offset_earth;

			// Use an incremental position fusion method for EV position data if GPS is also used
			if (_params.fusion_mode & MASK_USE_GPS) {
				_fuse_hpos_as_odom = true;
			} else {
				_fuse_hpos_as_odom = false;
			}

			if (_fuse_hpos_as_odom) {
				if (!_hpos_prev_available) {
					// no previous observation available to calculate position change
					_hpos_prev_available = true;

				} else {
					// calculate the change in position since the last measurement
					Vector3f ev_delta_pos = _ev_sample_delayed.pos - _pos_meas_prev;

					// rotate measurement into body frame is required when fusing with GPS
					ev_delta_pos = _R_ev_to_ekf * ev_delta_pos;

					// use the change in position since the last measurement
					_ev_pos_innov(0) = _state.pos(0) - _hpos_pred_prev(0) - ev_delta_pos(0);
					_ev_pos_innov(1) = _state.pos(1) - _hpos_pred_prev(1) - ev_delta_pos(1);

					// observation 1-STD error, incremental pos observation is expected to have more uncertainty
					Matrix3f ev_pos_var = matrix::diag(_ev_sample_delayed.posVar);
					ev_pos_var = _R_ev_to_ekf * ev_pos_var * _R_ev_to_ekf.transpose();
					ev_pos_obs_var(0) = fmaxf(ev_pos_var(0, 0), sq(0.5f));
					ev_pos_obs_var(1) = fmaxf(ev_pos_var(1, 1), sq(0.5f));
				}

				// record observation and estimate for use next time
				_pos_meas_prev = _ev_sample_delayed.pos;
				_hpos_pred_prev = _state.pos.xy();

			} else {
				// use the absolute position
				Vector3f ev_pos_meas = _ev_sample_delayed.pos;
				Matrix3f ev_pos_var = matrix::diag(_ev_sample_delayed.posVar);
				if (_params.fusion_mode & MASK_ROTATE_EV) {
					ev_pos_meas = _R_ev_to_ekf * ev_pos_meas;
					ev_pos_var = _R_ev_to_ekf * ev_pos_var * _R_ev_to_ekf.transpose();
				}
				_ev_pos_innov(0) = _state.pos(0) - ev_pos_meas(0);
				_ev_pos_innov(1) = _state.pos(1) - ev_pos_meas(1);

				ev_pos_obs_var(0) = fmaxf(ev_pos_var(0, 0), sq(0.01f));
				ev_pos_obs_var(1) = fmaxf(ev_pos_var(1, 1), sq(0.01f));

				// check if we have been deadreckoning too long
				if (isTimedOut(_time_last_hor_pos_fuse, _params.reset_timeout_max)) {
					// only reset velocity if we have no another source of aiding constraining it
					if (isTimedOut(_time_last_of_fuse, (uint64_t)1E6) &&
					    isTimedOut(_time_last_hor_vel_fuse, (uint64_t)1E6)) {
						resetVelocity();
					}

					resetHorizontalPosition();
				}
			}

			// innovation gate size
			ev_pos_innov_gates(0) = fmaxf(_params.ev_pos_innov_gate, 1.0f);

			fuseHorizontalPosition(_ev_pos_innov, ev_pos_innov_gates, ev_pos_obs_var, _ev_pos_innov_var, _ev_pos_test_ratio);
		}

		// determine if we should use the velocity observations
		if (_control_status.flags.ev_vel) {

			Vector2f ev_vel_innov_gates;

			_last_vel_obs = getVisionVelocityInEkfFrame();
			_ev_vel_innov = _state.vel - _last_vel_obs;

			// check if we have been deadreckoning too long
			if (isTimedOut(_time_last_hor_vel_fuse, _params.reset_timeout_max)) {
				// only reset velocity if we have no another source of aiding constraining it
				if (isTimedOut(_time_last_of_fuse, (uint64_t)1E6) &&
				    isTimedOut(_time_last_hor_pos_fuse, (uint64_t)1E6)) {
					resetVelocity();
				}
			}

			_last_vel_obs_var = matrix::max(getVisionVelocityVarianceInEkfFrame(), sq(0.05f));

			ev_vel_innov_gates.setAll(fmaxf(_params.ev_vel_innov_gate, 1.0f));

			fuseHorizontalVelocity(_ev_vel_innov, ev_vel_innov_gates,_last_vel_obs_var, _ev_vel_innov_var, _ev_vel_test_ratio);
			fuseVerticalVelocity(_ev_vel_innov, ev_vel_innov_gates, _last_vel_obs_var, _ev_vel_innov_var, _ev_vel_test_ratio);
		}

		// determine if we should use the yaw observation
		if (_control_status.flags.ev_yaw) {
			fuseHeading();
		}

	} else if ((_control_status.flags.ev_pos || _control_status.flags.ev_vel ||  _control_status.flags.ev_yaw)
		   && isTimedOut(_time_last_ext_vision, (uint64_t)_params.reset_timeout_max)) {

		// Turn off EV fusion mode if no data has been received
		stopEvFusion();
		_warning_events.flags.vision_data_stopped = true;
		ECL_WARN("vision data stopped");

	}
}

void Ekf::controlOpticalFlowFusion()
{
	// Check if on ground motion is un-suitable for use of optical flow
	if (!_control_status.flags.in_air) {
		updateOnGroundMotionForOpticalFlowChecks();

	} else {
		resetOnGroundMotionForOpticalFlowChecks();
	}

	// Accumulate autopilot gyro data across the same time interval as the flow sensor
	_imu_del_ang_of += _imu_sample_delayed.delta_ang - _state.delta_ang_bias;
	_delta_time_of += _imu_sample_delayed.delta_ang_dt;

	if (_flow_data_ready) {
		const bool is_quality_good = (_flow_sample_delayed.quality >= _params.flow_qual_min);
		const bool is_magnitude_good = !_flow_sample_delayed.flow_xy_rad.longerThan(_flow_sample_delayed.dt * _flow_max_rate);
		const bool is_tilt_good = (_R_to_earth(2, 2) > _params.range_cos_max_tilt);

		const float delta_time_min = fmaxf(0.8f * _delta_time_of, 0.001f);
		const float delta_time_max = fminf(1.2f * _delta_time_of, 0.2f);
		const bool is_delta_time_good = _flow_sample_delayed.dt >= delta_time_min
		                                && _flow_sample_delayed.dt <= delta_time_max;
		const bool is_body_rate_comp_available = calcOptFlowBodyRateComp();

		if (is_quality_good
		    && is_magnitude_good
		    && is_tilt_good
		    && is_body_rate_comp_available
		    && is_delta_time_good) {
			// compensate for body motion to give a LOS rate
			_flow_compensated_XY_rad = _flow_sample_delayed.flow_xy_rad - _flow_sample_delayed.gyro_xyz.xy();

		} else if (!_control_status.flags.in_air && is_body_rate_comp_available) {

			if (!is_delta_time_good) {
				// handle special case of SITL and PX4Flow where dt is forced to
				// zero when the quaity is 0
				_flow_sample_delayed.dt = delta_time_min;
			}

			// when on the ground with poor flow quality,
			// assume zero ground relative velocity and LOS rate
			_flow_compensated_XY_rad.setZero();

		} else {
			// don't use this flow data and wait for the next data to arrive
			_flow_data_ready = false;
			_flow_for_terrain_data_ready = false; // TODO: find a better place
		}
	}

	// New optical flow data is available and is ready to be fused when the midpoint of the sample falls behind the fusion time horizon
	if (_flow_data_ready) {
		// Inhibit flow use if motion is un-suitable or we have good quality GPS
		// Apply hysteresis to prevent rapid mode switching
		const float gps_err_norm_lim = _control_status.flags.opt_flow ? 0.7f : 1.0f;

		// Check if we are in-air and require optical flow to control position drift
		const bool is_flow_required = _control_status.flags.in_air
		                              && (_is_dead_reckoning // is doing inertial dead-reckoning so must constrain drift urgently
		                                  || isOnlyActiveSourceOfHorizontalAiding(_control_status.flags.opt_flow)
		                                  || (_control_status.flags.gps && (_gps_error_norm > gps_err_norm_lim))); // is using GPS, but GPS is bad


		// inhibit use of optical flow if motion is unsuitable and we are not reliant on it for flight navigation
		const bool preflight_motion_not_ok = !_control_status.flags.in_air
		                                     && ((_imu_sample_delayed.time_us > (_time_good_motion_us + (uint64_t)1E5))
		                                         || (_imu_sample_delayed.time_us < (_time_bad_motion_us + (uint64_t)5E6)));
		const bool flight_condition_not_ok = _control_status.flags.in_air && !isTerrainEstimateValid();

		_inhibit_flow_use = ((preflight_motion_not_ok || flight_condition_not_ok) && !is_flow_required)
		                    || !_control_status.flags.tilt_align;

		// Handle cases where we are using optical flow but we should not use it anymore
		if (_control_status.flags.opt_flow) {
			if (!(_params.fusion_mode & MASK_USE_OF)
			    || _inhibit_flow_use) {

				stopFlowFusion();
				return;
			}
		}

		// optical flow fusion mode selection logic
		if ((_params.fusion_mode & MASK_USE_OF) // optical flow has been selected by the user
			&& !_control_status.flags.opt_flow // we are not yet using flow data
			&& !_inhibit_flow_use)
		{
			// If the heading is not aligned, reset the yaw and magnetic field states
			// TODO: ekf2 should always try to align itself if not already aligned
			if (!_control_status.flags.yaw_align) {
				_control_status.flags.yaw_align = resetMagHeading(_mag_lpf.getState());
			}

			// If the heading is valid and use is not inhibited , start using optical flow aiding
			if (_control_status.flags.yaw_align) {
				// set the flag and reset the fusion timeout
				_control_status.flags.opt_flow = true;
				_time_last_of_fuse = _time_last_imu;

				// if we are not using GPS or external vision aiding, then the velocity and position states and covariances need to be set
				const bool flow_aid_only = !isOtherSourceOfHorizontalAidingThan(_control_status.flags.opt_flow);

				if (flow_aid_only) {
					resetVelocity();
					resetHorizontalPosition();
				}
			}
		}

		if (_control_status.flags.opt_flow) {
			// Wait until the midpoint of the flow sample has fallen behind the fusion time horizon
			if (_imu_sample_delayed.time_us > (_flow_sample_delayed.time_us - uint32_t(1e6f * _flow_sample_delayed.dt) / 2)) {
				// Fuse optical flow LOS rate observations into the main filter only if height above ground has been updated recently
				// but use a relaxed time criteria to enable it to coast through bad range finder data
				if (isRecent(_time_last_hagl_fuse, (uint64_t)10e6)) {
					fuseOptFlow();
					_last_known_posNE = _state.pos.xy();
				}

				_flow_data_ready = false;
			}

			// handle the case when we have optical flow, are reliant on it, but have not been using it for an extended period
			if (isTimedOut(_time_last_of_fuse, _params.reset_timeout_max)
			    && !isOtherSourceOfHorizontalAidingThan(_control_status.flags.opt_flow)) {

				resetVelocity();
				resetHorizontalPosition();
			}
		}

	} else if (_control_status.flags.opt_flow && (_imu_sample_delayed.time_us >  _flow_sample_delayed.time_us + (uint64_t)10e6)) {
		stopFlowFusion();
	}
}

void Ekf::updateOnGroundMotionForOpticalFlowChecks()
{
	// When on ground check if the vehicle is being shaken or moved in a way that could cause a loss of navigation
	const float accel_norm = _accel_vec_filt.norm();

	const bool motion_is_excessive = ((accel_norm > (CONSTANTS_ONE_G * 1.5f)) // upper g limit
				    || (accel_norm < (CONSTANTS_ONE_G * 0.5f)) // lower g limit
				    || (_ang_rate_magnitude_filt > _flow_max_rate) // angular rate exceeds flow sensor limit
				    || (_R_to_earth(2,2) < cosf(math::radians(30.0f)))); // tilted excessively

	if (motion_is_excessive) {
		_time_bad_motion_us = _imu_sample_delayed.time_us;

	} else {
		_time_good_motion_us = _imu_sample_delayed.time_us;
	}
}

void Ekf::resetOnGroundMotionForOpticalFlowChecks()
{
	_time_bad_motion_us = 0;
	_time_good_motion_us = _imu_sample_delayed.time_us;
}

void Ekf::controlGpsFusion()
{
	// Check for new GPS data that has fallen behind the fusion time horizon
	if (_gps_data_ready) {

		controlGpsYawFusion();

		// Determine if we should use GPS aiding for velocity and horizontal position
		// To start using GPS we need angular alignment completed, the local NED origin set and GPS data that has not failed checks recently
		const bool gps_checks_passing = isTimedOut(_last_gps_fail_us, (uint64_t)5e6);
		const bool gps_checks_failing = isTimedOut(_last_gps_pass_us, (uint64_t)5e6);
		if ((_params.fusion_mode & MASK_USE_GPS) && !_control_status.flags.gps) {
			if (_control_status.flags.tilt_align && _NED_origin_initialised && gps_checks_passing) {
				// If the heading is not aligned, reset the yaw and magnetic field states
				// Do not use external vision for yaw if using GPS because yaw needs to be
				// defined relative to an NED reference frame
				const bool want_to_reset_mag_heading = !_control_status.flags.yaw_align ||
								       _control_status.flags.ev_yaw ||
								       _mag_inhibit_yaw_reset_req;
				if (want_to_reset_mag_heading && canResetMagHeading()) {
					_control_status.flags.ev_yaw = false;
					_control_status.flags.yaw_align = resetMagHeading(_mag_lpf.getState());
					// Handle the special case where we have not been constraining yaw drift or learning yaw bias due
					// to assumed invalid mag field associated with indoor operation with a downwards looking flow sensor.
					if (_mag_inhibit_yaw_reset_req) {
						_mag_inhibit_yaw_reset_req = false;
						// Zero the yaw bias covariance and set the variance to the initial alignment uncertainty
						P.uncorrelateCovarianceSetVariance<1>(12, sq(_params.switch_on_gyro_bias * FILTER_UPDATE_PERIOD_S));
					}
				}

				// If the heading is valid start using gps aiding
				if (_control_status.flags.yaw_align) {
					startGpsFusion();
				}
			}

		}  else if (!(_params.fusion_mode & MASK_USE_GPS)) {
			_control_status.flags.gps = false;

		}

		// Handle the case where we are using GPS and another source of aiding and GPS is failing checks
		if (_control_status.flags.gps && gps_checks_failing && isOtherSourceOfHorizontalAidingThan(_control_status.flags.gps)) {
			stopGpsFusion();
			// Reset position state to external vision if we are going to use absolute values
			if (_control_status.flags.ev_pos && !(_params.fusion_mode & MASK_ROTATE_EV)) {
				resetHorizontalPosition();
			}
			_warning_events.flags.gps_quality_poor = true;
			ECL_WARN("GPS quality poor - stopping use");
		}

		// handle case where we are not currently using GPS, but need to align yaw angle using EKF-GSF before
		// we can start using GPS
		const bool align_yaw_using_gsf = !_control_status.flags.gps && _do_ekfgsf_yaw_reset && isTimedOut(_ekfgsf_yaw_reset_time, 5000000);
		if (align_yaw_using_gsf) {
			if (resetYawToEKFGSF()) {
				_ekfgsf_yaw_reset_time = _time_last_imu;
				_do_ekfgsf_yaw_reset = false;
			}
		}

		// handle the case when we now have GPS, but have not been fusing it for an extended period
		if (_control_status.flags.gps) {
			// We are relying on aiding to constrain drift so after a specified time
			// with no aiding we need to do something
			bool do_vel_pos_reset = isTimedOut(_time_last_hor_pos_fuse, _params.reset_timeout_max)
					&& isTimedOut(_time_last_delpos_fuse, _params.reset_timeout_max)
					&& isTimedOut(_time_last_hor_vel_fuse, _params.reset_timeout_max)
					&& isTimedOut(_time_last_of_fuse, _params.reset_timeout_max);

			// We haven't had an absolute position fix for a longer time so need to do something
			do_vel_pos_reset = do_vel_pos_reset || isTimedOut(_time_last_hor_pos_fuse, 2 * _params.reset_timeout_max);

			/* Logic controlling the reset of navigation filter yaw to the EKF-GSF estimate to recover from loss of
			   navigation casued by a bad yaw estimate.

			   A rapid reset to the EKF-GSF estimate is performed after a recent takeoff if horizontal velocity
			   innovation checks fail. This enables recovery from a bad yaw estimate. After 30 seconds from takeoff,
			   different test criteria are used that take longer to trigger and reduce false positives. A reset is
			   not performed if the fault condition was present before flight to prevent triggering due to GPS glitches
			   or other sensor errors.

			   The yaw reset to the EKF-GSF estimate can be requested externally at any time during flight.

			   The total number of resets allowed per boot cycle is limited.

			   The minimum time interval between resets to the EKF-GSF estimate is limited to allow the EKF-GSF time
			   to improve its estimate if the previous reset was not successful.

			   A reset is not performed when getting GPS back after a significant period of no data because the timeout
			   could have been caused by bad GPS.
			*/

			const bool recent_takeoff_nav_failure = _control_status.flags.in_air &&
								!isTimedOut(_time_last_on_ground_us, 30000000) &&
								isTimedOut(_time_last_hor_vel_fuse, _params.EKFGSF_reset_delay) &&
								(_time_last_hor_vel_fuse > _time_last_on_ground_us);

			const bool inflight_nav_failure = _control_status.flags.in_air &&
							  do_vel_pos_reset &&
							  (_time_last_hor_vel_fuse > _time_last_on_ground_us) &&
							  (_time_last_hor_pos_fuse > _time_last_on_ground_us);

			bool is_yaw_failure = false;
			if ((recent_takeoff_nav_failure || inflight_nav_failure) && _time_last_hor_vel_fuse > 0) {
				// Do sanity check to see if the innovation failures is likely caused by a yaw angle error
				// by measuring the angle between the velocity estimate and the last velocity observation
				// Only use those vectors if their norm if they are larger than 4 times their noise standard deviation
				const float vel_obs_xy_norm_sq = _last_vel_obs.xy().norm_squared();
				const float vel_state_xy_norm_sq = _state.vel.xy().norm_squared();

				const float vel_obs_threshold_sq = fmaxf(sq(4.f) * (_last_vel_obs_var(0) + _last_vel_obs_var(1)), 1.f);
				const float vel_state_threshold_sq = fmaxf(sq(4.f) * (P(4, 4) + P(5, 5)), 1.f);

				if (vel_obs_xy_norm_sq > vel_obs_threshold_sq && vel_state_xy_norm_sq > vel_state_threshold_sq) {
					const float obs_dot_vel = Vector2f(_last_vel_obs).dot(_state.vel.xy());
					const float cos_sq = sq(obs_dot_vel) / (vel_state_xy_norm_sq * vel_obs_xy_norm_sq);

					if (cos_sq < sq(cosf(math::radians(25.f))) || obs_dot_vel < 0.f) {
						// The angle between the observation and the velocity estimate is greater than 25 degrees
						is_yaw_failure = true;
					}
				}
			}

			// Detect if coming back after significant time without GPS data
			const bool gps_signal_was_lost = isTimedOut(_time_prev_gps_us, 1000000);
			const bool do_yaw_vel_pos_reset = (_do_ekfgsf_yaw_reset || is_yaw_failure) &&
							  _ekfgsf_yaw_reset_count < _params.EKFGSF_reset_count_limit &&
							  isTimedOut(_ekfgsf_yaw_reset_time, 5000000) &&
							  !gps_signal_was_lost;

			if (do_yaw_vel_pos_reset) {
				if (resetYawToEKFGSF()) {
					_ekfgsf_yaw_reset_time = _time_last_imu;
					_do_ekfgsf_yaw_reset = false;
					_ekfgsf_yaw_reset_count++;

					// Reset the timeout counters
					_time_last_hor_pos_fuse = _time_last_imu;
					_time_last_delpos_fuse = _time_last_imu;
					_time_last_hor_vel_fuse = _time_last_imu;
					_time_last_of_fuse = _time_last_imu;
				}

			} else if (do_vel_pos_reset) {
				// use GPS velocity data to check and correct yaw angle if a FW vehicle
				if (_control_status.flags.fixed_wing && _control_status.flags.in_air) {
					// if flying a fixed wing aircraft, do a complete reset that includes yaw
					_control_status.flags.mag_aligned_in_flight = realignYawGPS();
				}

				resetVelocity();
				resetHorizontalPosition();
				_velpos_reset_request = false;
				_warning_events.flags.gps_fusion_timout = true;
				ECL_WARN("GPS fusion timeout - reset to GPS");

				// Reset the timeout counters
				_time_last_hor_pos_fuse = _time_last_imu;
				_time_last_hor_vel_fuse = _time_last_imu;
			}
		}

		// Only use GPS data for position and velocity aiding if enabled
		if (_control_status.flags.gps) {

			Vector2f gps_vel_innov_gates; // [horizontal vertical]
			Vector2f gps_pos_innov_gates; // [horizontal vertical]
			Vector3f gps_pos_obs_var;

			// correct velocity for offset relative to IMU
			const Vector3f pos_offset_body = _params.gps_pos_body - _params.imu_pos_body;
			const Vector3f vel_offset_body = _ang_rate_delayed_raw % pos_offset_body;
			const Vector3f vel_offset_earth = _R_to_earth * vel_offset_body;
			_gps_sample_delayed.vel -= vel_offset_earth;

			// correct position and height for offset relative to IMU
			const Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
			_gps_sample_delayed.pos -= pos_offset_earth.xy();
			_gps_sample_delayed.hgt += pos_offset_earth(2);

			const float lower_limit = fmaxf(_params.gps_pos_noise, 0.01f);

			if (isOtherSourceOfHorizontalAidingThan(_control_status.flags.gps)) {
				// if we are using other sources of aiding, then relax the upper observation
				// noise limit which prevents bad GPS perturbing the position estimate
				gps_pos_obs_var(0) = gps_pos_obs_var(1) = sq(fmaxf(_gps_sample_delayed.hacc, lower_limit));

			} else {
				// if we are not using another source of aiding, then we are reliant on the GPS
				// observations to constrain attitude errors and must limit the observation noise value.
				float upper_limit = fmaxf(_params.pos_noaid_noise, lower_limit);
				gps_pos_obs_var(0) = gps_pos_obs_var(1) = sq(math::constrain(_gps_sample_delayed.hacc, lower_limit, upper_limit));
			}

			_gps_sample_delayed.sacc = fmaxf(_gps_sample_delayed.sacc, _params.gps_vel_noise);

			_last_vel_obs_var.setAll(sq(_gps_sample_delayed.sacc));
			_last_vel_obs_var(2) *= sq(1.5f);

			// calculate innovations
			_last_vel_obs = _gps_sample_delayed.vel;
			_gps_vel_innov = _state.vel - _last_vel_obs;
			_gps_pos_innov.xy() = Vector2f(_state.pos) - _gps_sample_delayed.pos;

			// set innovation gate size
			gps_pos_innov_gates(0) = fmaxf(_params.gps_pos_innov_gate, 1.0f);
			gps_vel_innov_gates(0) = gps_vel_innov_gates(1) = fmaxf(_params.gps_vel_innov_gate, 1.0f);

			// fuse GPS measurement
			fuseHorizontalVelocity(_gps_vel_innov, gps_vel_innov_gates, _last_vel_obs_var, _gps_vel_innov_var, _gps_vel_test_ratio);
			fuseVerticalVelocity(_gps_vel_innov, gps_vel_innov_gates, _last_vel_obs_var, _gps_vel_innov_var, _gps_vel_test_ratio);
			fuseHorizontalPosition(_gps_pos_innov, gps_pos_innov_gates, gps_pos_obs_var, _gps_pos_innov_var, _gps_pos_test_ratio);
		}

	} else if (_control_status.flags.gps && (_imu_sample_delayed.time_us - _gps_sample_delayed.time_us > (uint64_t)10e6)) {
		stopGpsFusion();
		_warning_events.flags.gps_data_stopped = true;
		ECL_WARN("GPS data stopped");
	}  else if (_control_status.flags.gps && (_imu_sample_delayed.time_us - _gps_sample_delayed.time_us > (uint64_t)1e6) && isOtherSourceOfHorizontalAidingThan(_control_status.flags.gps)) {
		// Handle the case where we are fusing another position source along GPS,
		// stop waiting for GPS after 1 s of lost signal
		stopGpsFusion();
		_warning_events.flags.gps_data_stopped_using_alternate = true;
		ECL_WARN("GPS data stopped, using only EV, OF or air data" );
	}
}

void Ekf::controlGpsYawFusion()
{
	if (!(_params.fusion_mode & MASK_USE_GPSYAW)
	    || _is_gps_yaw_faulty) {

		stopGpsYawFusion();
		return;
	}

	if (ISFINITE(_gps_sample_delayed.yaw)) {

		if (_control_status.flags.gps_yaw) {
			fuseGpsYaw();

		} else {
			// Try to activate GPS yaw fusion
			if (_control_status.flags.tilt_align
			    && !_gps_hgt_intermittent) {

				if (resetYawToGps()) {
					_control_status.flags.yaw_align = true;
					startGpsYawFusion();
				}
			}
		}
	}

	// Check if the data is constantly fused by the estimator,
	// if not, declare the sensor faulty and stop the fusion
	// By doing this, another source of yaw aiding is allowed to start
	if (_control_status.flags.gps_yaw
	    && isTimedOut(_time_last_gps_yaw_fuse, (uint64_t)5e6)) {
		_is_gps_yaw_faulty = true;
		stopGpsYawFusion();
	}
}

void Ekf::controlHeightSensorTimeouts()
{
	/*
	 * Handle the case where we have not fused height measurements recently and
	 * uncertainty exceeds the max allowable. Reset using the best available height
	 * measurement source, continue using it after the reset and declare the current
	 * source failed if we have switched.
	*/

	checkVerticalAccelerationHealth();

	// check if height is continuously failing because of accel errors
	const bool continuous_bad_accel_hgt = isTimedOut(_time_good_vert_accel, (uint64_t)_params.bad_acc_reset_delay_us);

	// check if height has been inertial deadreckoning for too long
	const bool hgt_fusion_timeout = isTimedOut(_time_last_hgt_fuse, (uint64_t)5e6);

	if (hgt_fusion_timeout || continuous_bad_accel_hgt) {

		bool request_height_reset = false;
		const char* failing_height_source = nullptr;
		const char* new_height_source = nullptr;

		if (_control_status.flags.baro_hgt) {
			// check if GPS height is available
			const gpsSample &gps_init = _gps_buffer.get_newest();
			const bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);

			// check for inertial sensing errors in the last BADACC_PROBATION seconds
			const bool prev_bad_vert_accel = isRecent(_time_bad_vert_accel, BADACC_PROBATION);

			// reset to GPS if adequate GPS data is available and the timeout cannot be blamed on IMU data
			const bool reset_to_gps = !_gps_hgt_intermittent &&
					    ((gps_hgt_accurate && !prev_bad_vert_accel) || _baro_hgt_faulty);

			if (reset_to_gps) {
				// set height sensor health
				_baro_hgt_faulty = true;

				startGpsHgtFusion();

				request_height_reset = true;
				failing_height_source = "baro";
				new_height_source = "gps";

			} else if (!_baro_hgt_faulty) {
				request_height_reset = true;
				failing_height_source = "baro";
				new_height_source = "baro";
			}

		} else if (_control_status.flags.gps_hgt) {
			// check if GPS height is available
			const gpsSample &gps_init = _gps_buffer.get_newest();
			const bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);

			// check the baro height source for consistency and freshness
			const baroSample &baro_init = _baro_buffer.get_newest();
			const float baro_innov = _state.pos(2) - (_hgt_sensor_offset - baro_init.hgt + _baro_hgt_offset);
			const bool baro_data_consistent = fabsf(baro_innov) < (sq(_params.baro_noise) + P(9,9)) * sq(_params.baro_innov_gate);

			// if baro data is acceptable and GPS data is inaccurate, reset height to baro
			const bool reset_to_baro = !_baro_hgt_faulty &&
						   ((baro_data_consistent && !gps_hgt_accurate) ||
						     _gps_hgt_intermittent);

			if (reset_to_baro) {
				startBaroHgtFusion();

				request_height_reset = true;
				failing_height_source = "gps";
				new_height_source = "baro";

			} else if (!_gps_hgt_intermittent) {
				request_height_reset = true;
				failing_height_source = "gps";
				new_height_source = "gps";
			}

		} else if (_control_status.flags.rng_hgt) {

			if (_range_sensor.isHealthy()) {
				request_height_reset = true;
				failing_height_source = "rng";
				new_height_source = "rng";

			} else if (!_baro_hgt_faulty) {
				startBaroHgtFusion();

				request_height_reset = true;
				failing_height_source = "rng";
				new_height_source = "baro";
			}

		} else if (_control_status.flags.ev_hgt) {
			// check if vision data is available
			const extVisionSample &ev_init = _ext_vision_buffer.get_newest();
			const bool ev_data_available = isRecent(ev_init.time_us, 2 * EV_MAX_INTERVAL);

			if (ev_data_available) {
				request_height_reset = true;
				failing_height_source = "ev";
				new_height_source = "ev";

			} else if (!_baro_hgt_faulty) {
				startBaroHgtFusion();

				request_height_reset = true;
				failing_height_source = "ev";
				new_height_source = "baro";
			}
		}

		if (failing_height_source && new_height_source) {
			_warning_events.flags.height_sensor_timeout = true;
			ECL_WARN("%s hgt timeout - reset to %s", failing_height_source, new_height_source);
		}

		// Reset vertical position and velocity states to the last measurement
		if (request_height_reset) {
			resetHeight();
			// Reset the timout timer
			_time_last_hgt_fuse = _time_last_imu;
		}
	}
}

void Ekf::checkVerticalAccelerationHealth()
{
	// Check for IMU accelerometer vibration induced clipping as evidenced by the vertical
	// innovations being positive and not stale.
	// Clipping usually causes the average accel reading to move towards zero which makes the INS
	// think it is falling and produces positive vertical innovations.
	// Don't use stale innovation data.
	bool is_inertial_nav_falling = false;
	bool are_vertical_pos_and_vel_independant = false;
	if (isRecent(_vert_pos_fuse_attempt_time_us, 1000000)) {
		if (isRecent(_vert_vel_fuse_time_us, 1000000)) {
			// If vertical position and velocity come from independent sensors then we can
			// trust them more if they disagree with the IMU, but need to check that they agree
			const bool using_gps_for_both = _control_status.flags.gps_hgt && _control_status.flags.gps;
			const bool using_ev_for_both = _control_status.flags.ev_hgt && _control_status.flags.ev_vel;
			are_vertical_pos_and_vel_independant = !(using_gps_for_both || using_ev_for_both);
			is_inertial_nav_falling |= _vert_vel_innov_ratio > _params.vert_innov_test_lim && _vert_pos_innov_ratio > 0.0f;
			is_inertial_nav_falling |= _vert_pos_innov_ratio > _params.vert_innov_test_lim && _vert_vel_innov_ratio > 0.0f;
		} else {
			// only height sensing available
			is_inertial_nav_falling = _vert_pos_innov_ratio > _params.vert_innov_test_lim;
		}
	}

	// Check for more than 50% clipping affected IMU samples within the past 1 second
	const uint16_t clip_count_limit = 1000 / FILTER_UPDATE_PERIOD_MS;
	const bool is_clipping = _imu_sample_delayed.delta_vel_clipping[0] ||
				 _imu_sample_delayed.delta_vel_clipping[1] ||
				 _imu_sample_delayed.delta_vel_clipping[2];
	if (is_clipping &&_clip_counter < clip_count_limit) {
		_clip_counter++;
	} else if (_clip_counter > 0) {
		_clip_counter--;
	}
	const bool is_clipping_frequently = _clip_counter > 0;

	// if vertical velocity and position are independent and agree, then do not require evidence of clipping if
	// innovations are large
	const bool bad_vert_accel = (are_vertical_pos_and_vel_independant || is_clipping_frequently) &&
				is_inertial_nav_falling;

	if (bad_vert_accel) {
		_time_bad_vert_accel =  _time_last_imu;

	} else {
		_time_good_vert_accel = _time_last_imu;
	}

	// declare a bad vertical acceleration measurement and make the declaration persist
	// for a minimum of BADACC_PROBATION seconds
	if (_fault_status.flags.bad_acc_vertical) {
		_fault_status.flags.bad_acc_vertical = isRecent(_time_bad_vert_accel, BADACC_PROBATION);

	} else {
		_fault_status.flags.bad_acc_vertical = bad_vert_accel;
	}
}

void Ekf::controlHeightFusion()
{
	checkRangeAidSuitability();
	const bool do_range_aid = (_params.range_aid == 1) && isRangeAidSuitable();

	bool fuse_height = false;

	switch (_params.vdist_sensor_type) {
	default:
		ECL_ERR("Invalid hgt mode: %d", _params.vdist_sensor_type);

	// FALLTHROUGH
	case VDIST_SENSOR_BARO:
		if (do_range_aid && _range_sensor.isDataHealthy()) {
			setControlRangeHeight();
			fuse_height = true;

			// we have just switched to using range finder, calculate height sensor offset such that current
			// measurement matches our current height estimate
			if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) {
				_hgt_sensor_offset = _terrain_vpos;
			}

		} else if (!do_range_aid && _baro_data_ready && !_baro_hgt_faulty) {
			startBaroHgtFusion();
			fuse_height = true;

		} else if (_control_status.flags.gps_hgt && _gps_data_ready && !_gps_hgt_intermittent) {
			// switch to gps if there was a reset to gps
			fuse_height = true;

			// we have just switched to using gps height, calculate height sensor offset such that current
			// measurement matches our current height estimate
			if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) {
				_hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2);
			}
		}

		break;

	case VDIST_SENSOR_RANGE:
		if (_range_sensor.isDataHealthy()) {
			setControlRangeHeight();
			fuse_height = true;

			if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) {
				// we have just switched to using range finder, calculate height sensor offset such that current
				// measurement matches our current height estimate
				// use the parameter rng_gnd_clearance if on ground to avoid a noisy offset initialization (e.g. sonar)
				if (_control_status.flags.in_air && isTerrainEstimateValid()) {
					_hgt_sensor_offset = _terrain_vpos;

				} else if (_control_status.flags.in_air) {
					_hgt_sensor_offset = _range_sensor.getDistBottom() + _state.pos(2);

				} else {
					_hgt_sensor_offset = _params.rng_gnd_clearance;
				}
			}

		} else if (_control_status.flags.baro_hgt && _baro_data_ready && !_baro_hgt_faulty) {
			// fuse baro data if there was a reset to baro
			fuse_height = true;
		}

		break;

	case VDIST_SENSOR_GPS:

		// NOTE: emergency fallback due to extended loss of currently selected sensor data or failure
		// to pass innovation cinsistency checks is handled elsewhere in Ekf::controlHeightSensorTimeouts.
		// Do switching between GPS and rangefinder if using range finder as a height source when close
		// to ground and moving slowly. Also handle switch back from emergency Baro sensor when GPS recovers.
		if (!_control_status_prev.flags.rng_hgt && do_range_aid && _range_sensor.isDataHealthy()) {
			setControlRangeHeight();

			// we have just switched to using range finder, calculate height sensor offset such that current
			// measurement matches our current height estimate
			_hgt_sensor_offset = _terrain_vpos;

		} else if (_control_status_prev.flags.rng_hgt && !do_range_aid) {
			// must stop using range finder so find another sensor now
			if (!_gps_hgt_intermittent && _gps_checks_passed) {
				// GPS quality OK
				startGpsHgtFusion();
			} else if (!_baro_hgt_faulty) {
				// Use baro as a fallback
				startBaroHgtFusion();
			}
		} else if (_control_status.flags.baro_hgt && !do_range_aid && !_gps_hgt_intermittent && _gps_checks_passed) {
			// In baro fallback mode and GPS has recovered so start using it
			startGpsHgtFusion();
		}
		if (_control_status.flags.gps_hgt && _gps_data_ready) {
			fuse_height = true;
		} else if (_control_status.flags.rng_hgt && _range_sensor.isDataHealthy()) {
			fuse_height = true;
		} else if (_control_status.flags.baro_hgt && _baro_data_ready && !_baro_hgt_faulty) {
			fuse_height = true;
		}
		break;

	case VDIST_SENSOR_EV:

		// don't start using EV data unless data is arriving frequently
		if (!_control_status.flags.ev_hgt && isRecent(_time_last_ext_vision, 2 * EV_MAX_INTERVAL)) {
			fuse_height = true;
			setControlEVHeight();
			resetHeight();
		}

		if (_control_status.flags.baro_hgt && _baro_data_ready && !_baro_hgt_faulty) {
			// switch to baro if there was a reset to baro
			fuse_height = true;
		}

		// determine if we should use the vertical position observation
		if (_control_status.flags.ev_hgt) {
			fuse_height = true;
		}

		break;
	}

	updateBaroHgtOffset();

	if (_control_status.flags.rng_hgt
	    && isTimedOut(_time_last_hgt_fuse, 2 * RNG_MAX_INTERVAL)
	    && !_range_sensor.isDataHealthy()
	    && _range_sensor.isRegularlySendingData()
	    && !_control_status.flags.in_air) {

		// If we are supposed to be using range finder data as the primary height sensor, have missed or rejected measurements
		// and are on the ground, then synthesise a measurement at the expected on ground value
		_range_sensor.setRange(_params.rng_gnd_clearance);
		_range_sensor.setDataReadiness(true);
		_range_sensor.setValidity(true); // bypass the checks

		fuse_height = true;
	}

	if (fuse_height) {
		if (_control_status.flags.baro_hgt) {
			Vector2f baro_hgt_innov_gate;
			Vector3f baro_hgt_obs_var;

			// vertical position innovation - baro measurement has opposite sign to earth z axis
			_baro_hgt_innov(2) = _state.pos(2) + _baro_sample_delayed.hgt - _baro_hgt_offset;
			// observation variance - user parameter defined
			baro_hgt_obs_var(2) = sq(fmaxf(_params.baro_noise, 0.01f));
			// innovation gate size
			baro_hgt_innov_gate(1) = fmaxf(_params.baro_innov_gate, 1.0f);

			// Compensate for positive static pressure transients (negative vertical position innovations)
			// caused by rotor wash ground interaction by applying a temporary deadzone to baro innovations.
			const float deadzone_start = 0.0f;
			const float deadzone_end = deadzone_start + _params.gnd_effect_deadzone;

			if (_control_status.flags.gnd_effect) {
				if (_baro_hgt_innov(2) < -deadzone_start) {
					if (_baro_hgt_innov(2) <= -deadzone_end) {
						_baro_hgt_innov(2) += deadzone_end;

					} else {
						_baro_hgt_innov(2) = -deadzone_start;
					}
				}
			}
			// fuse height information
			fuseVerticalPosition(_baro_hgt_innov,baro_hgt_innov_gate,
				baro_hgt_obs_var, _baro_hgt_innov_var,_baro_hgt_test_ratio);

		} else if (_control_status.flags.gps_hgt) {
			Vector2f gps_hgt_innov_gate;
			Vector3f gps_hgt_obs_var;
			// vertical position innovation - gps measurement has opposite sign to earth z axis
			_gps_pos_innov(2) = _state.pos(2) + _gps_sample_delayed.hgt - _gps_alt_ref - _hgt_sensor_offset;
			gps_hgt_obs_var(2) = getGpsHeightVariance();
			// innovation gate size
			gps_hgt_innov_gate(1) = fmaxf(_params.baro_innov_gate, 1.0f);
			// fuse height information
			fuseVerticalPosition(_gps_pos_innov,gps_hgt_innov_gate,
				gps_hgt_obs_var, _gps_pos_innov_var, _gps_pos_test_ratio);

		} else if (_control_status.flags.rng_hgt) {
			Vector2f rng_hgt_innov_gate;
			Vector3f rng_hgt_obs_var;
			// use range finder with tilt correction
			_rng_hgt_innov(2) = _state.pos(2) - (-math::max(_range_sensor.getDistBottom(),
							 _params.rng_gnd_clearance)) - _hgt_sensor_offset;
			// observation variance - user parameter defined
			rng_hgt_obs_var(2) = fmaxf(sq(_params.range_noise)
						   + sq(_params.range_noise_scaler * _range_sensor.getDistBottom()), 0.01f);
			// innovation gate size
			rng_hgt_innov_gate(1) = fmaxf(_params.range_innov_gate, 1.0f);
			// fuse height information
			fuseVerticalPosition(_rng_hgt_innov,rng_hgt_innov_gate,
				rng_hgt_obs_var, _rng_hgt_innov_var,_rng_hgt_test_ratio);

		} else if (_control_status.flags.ev_hgt) {
			Vector2f ev_hgt_innov_gate;
			Vector3f ev_hgt_obs_var;
			// calculate the innovation assuming the external vision observation is in local NED frame
			_ev_pos_innov(2) = _state.pos(2) - _ev_sample_delayed.pos(2);
			// observation variance - defined externally
			ev_hgt_obs_var(2) = fmaxf(_ev_sample_delayed.posVar(2), sq(0.01f));
			// innovation gate size
			ev_hgt_innov_gate(1) = fmaxf(_params.ev_pos_innov_gate, 1.0f);
			// fuse height information
			fuseVerticalPosition(_ev_pos_innov,ev_hgt_innov_gate,
				ev_hgt_obs_var, _ev_pos_innov_var,_ev_pos_test_ratio);
		}
	}
}

void Ekf::checkRangeAidSuitability()
{
	if (_control_status.flags.in_air
	    && _range_sensor.isHealthy()
	    && isTerrainEstimateValid()) {
		// check if we can use range finder measurements to estimate height, use hysteresis to avoid rapid switching
		// Note that the 0.7 coefficients and the innovation check are arbitrary values but work well in practice
		const float range_hagl = _terrain_vpos - _state.pos(2);
		const float range_hagl_max = _is_range_aid_suitable ? _params.max_hagl_for_range_aid : (_params.max_hagl_for_range_aid * 0.7f);
		const bool is_in_range = range_hagl < range_hagl_max;

		const float hagl_test_ratio = (_hagl_innov * _hagl_innov / (sq(_params.range_aid_innov_gate) * _hagl_innov_var));
		const bool is_hagl_stable = _is_range_aid_suitable ? (hagl_test_ratio < 1.f) : (hagl_test_ratio < 0.01f);

		if (isHorizontalAidingActive()) {
			const float max_vel = _is_range_aid_suitable ? _params.max_vel_for_range_aid : (_params.max_vel_for_range_aid * 0.7f);
			const bool is_below_max_speed = !_state.vel.xy().longerThan(max_vel);

			_is_range_aid_suitable = is_in_range && is_hagl_stable && is_below_max_speed;

		} else {
			_is_range_aid_suitable = is_in_range && is_hagl_stable;
		}

	} else {
		_is_range_aid_suitable = false;
	}
}

void Ekf::controlAirDataFusion()
{
	// control activation and initialisation/reset of wind states required for airspeed fusion

	// If both airspeed and sideslip fusion have timed out and we are not using a drag observation model then we no longer have valid wind estimates
	const bool airspeed_timed_out = isTimedOut(_time_last_arsp_fuse, (uint64_t)10e6);
	const bool sideslip_timed_out = isTimedOut(_time_last_beta_fuse, (uint64_t)10e6);
	if (_control_status.flags.wind &&
	    (_using_synthetic_position || (airspeed_timed_out && sideslip_timed_out && !(_params.fusion_mode & MASK_USE_DRAG)))) {
		_control_status.flags.wind = false;
	}

	if (_control_status.flags.fuse_aspd && airspeed_timed_out) {
		_control_status.flags.fuse_aspd = false;
	}

	// Always try to fuse airspeed data if available and we are in flight
	if (!_using_synthetic_position && _tas_data_ready && _control_status.flags.in_air) {
		// If starting wind state estimation, reset the wind states and covariances before fusing any data
		if (!_control_status.flags.wind) {
			// activate the wind states
			_control_status.flags.wind = true;
			// reset the timout timer to prevent repeated resets
			_time_last_arsp_fuse = _time_last_imu;
			// reset the wind speed states and corresponding covariances
			resetWindStates();
			resetWindCovariance();
		}

		fuseAirspeed();
	}
}

void Ekf::controlBetaFusion()
{
	if (_using_synthetic_position) {
		return;
	}

	// Perform synthetic sideslip fusion at regular intervals when in-air and sideslip fuson had been enabled externally:
	const bool beta_fusion_time_triggered = isTimedOut(_time_last_beta_fuse, _params.beta_avg_ft_us);
	if (beta_fusion_time_triggered &&
	    _control_status.flags.fuse_beta &&
	    _control_status.flags.in_air) {
		// If starting wind state estimation, reset the wind states and covariances before fusing any data
		if (!_control_status.flags.wind) {
			// activate the wind states
			_control_status.flags.wind = true;
			// reset the timeout timers to prevent repeated resets
			_time_last_beta_fuse = _time_last_imu;
			// reset the wind speed states and corresponding covariances
			resetWindStates();
			resetWindCovariance();
		}

		fuseSideslip();
	}
}

void Ekf::controlDragFusion()
{
	if ((_params.fusion_mode & MASK_USE_DRAG) &&
	    !_using_synthetic_position &&
	    _control_status.flags.in_air &&
	    !_mag_inhibit_yaw_reset_req) {
			if (!_control_status.flags.wind) {
				// reset the wind states and covariances when starting drag accel fusion
				_control_status.flags.wind = true;
				resetWindStates();
				resetWindCovariance();

			} else if (_drag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_drag_sample_delayed)) {
				fuseDrag();
			}

	}
}

void Ekf::controlFakePosFusion()
{
	// if we aren't doing any aiding, fake position measurements at the last known position to constrain drift
	// Coincide fake measurements with baro data for efficiency with a minimum fusion rate of 5Hz

	if (!isHorizontalAidingActive()
	    && !(_control_status.flags.fuse_aspd && _control_status.flags.fuse_beta)) {

		// We now need to use a synthetic position observation to prevent unconstrained drift of the INS states.
		_using_synthetic_position = true;

		// Fuse synthetic position observations every 200msec
		if (isTimedOut(_time_last_fake_pos, (uint64_t)2e5)) {

			// Reset position and velocity states if we re-commence this aiding method
			if (isTimedOut(_time_last_fake_pos, (uint64_t)4e5)) {
				_last_known_posNE = _state.pos.xy();
				resetHorizontalPosition();
				resetVelocity();
				_fuse_hpos_as_odom = false;

				if (_time_last_fake_pos != 0) {
					_warning_events.flags.stopping_navigation = true;
					ECL_WARN("stopping navigation");
				}

			}
			_time_last_fake_pos = _time_last_imu;

			Vector3f fake_pos_obs_var;

			if (_control_status.flags.in_air && _control_status.flags.tilt_align) {
				fake_pos_obs_var(0) = fake_pos_obs_var(1) = sq(fmaxf(_params.pos_noaid_noise, _params.gps_pos_noise));

			} else if (_control_status.flags.vehicle_at_rest) {
				// Accelerate tilt fine alignment by fusing more
				// aggressively when the vehicle is at rest
				fake_pos_obs_var(0) = fake_pos_obs_var(1) = sq(0.1f);

			} else {
				fake_pos_obs_var(0) = fake_pos_obs_var(1) = sq(0.5f);
			}

			_gps_pos_innov.xy() = Vector2f(_state.pos) - _last_known_posNE;

			const Vector2f fake_pos_innov_gate(3.0f, 3.0f);

			fuseHorizontalPosition(_gps_pos_innov, fake_pos_innov_gate, fake_pos_obs_var,
						_gps_pos_innov_var, _gps_pos_test_ratio, true);
		}

	} else {
		_using_synthetic_position = false;
	}

}

void Ekf::controlAuxVelFusion()
{
	const bool data_ready = _auxvel_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_auxvel_sample_delayed);

	if (data_ready && isHorizontalAidingActive()) {

		const Vector2f aux_vel_innov_gate(_params.auxvel_gate, _params.auxvel_gate);

		_last_vel_obs = _auxvel_sample_delayed.vel;
		_aux_vel_innov = _state.vel - _last_vel_obs;
		_last_vel_obs_var = _aux_vel_innov_var;

		fuseHorizontalVelocity(_aux_vel_innov, aux_vel_innov_gate, _auxvel_sample_delayed.velVar,
				_aux_vel_innov_var, _aux_vel_test_ratio);

		// Can be enabled after bit for this is added to EKF_AID_MASK
		// fuseVerticalVelocity(_aux_vel_innov, aux_vel_innov_gate, _auxvel_sample_delayed.velVar,
		//		_aux_vel_innov_var, _aux_vel_test_ratio);

	}
}